
Hindawi Publishing Corporation
ISRN Software Engineering
Volume 2013, Article ID 276105, 14 pages
http://dx.doi.org/10.1155/2013/276105

Research Article
Extension of Object-Oriented Metrics Suite for
Software Maintenance

John Michura, Miriam A. M. Capretz, and Shuying Wang

Department of Electrical and Computer Engineering, Faculty of Engineering, The University of Western Ontario,
London, ON, Canada N6A 5B9

Correspondence should be addressed to Miriam A. M. Capretz; mcapretz@uwo.ca

Received 2 December 2012; Accepted 22 January 2013

Academic Editors: Y. Malaiya, A. Rausch, and C. Rolland

Copyright © 2013 John Michura et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software developers require information to understand the characteristics of systems, such as complexity and maintainability. In
order to further understand and determine characteristics of object-oriented (OO) systems, this paper describes research that
identifies attributes that are valuable in determining the difficulty in implementing changes during maintenance, as well as the
possible effects that such changesmay produce. A set ofmetrics are proposed to quantify andmeasure these attributes.Theproposed
complexity metrics are used to determine the difficulty in implementing changes through the measurement of method complexity,
method diversity, and complexity density.The paper establishes impactmetrics to determine the potential effects ofmaking changes
to a class and dependence metrics that are used to measure the potential effects on a given class resulting from changes in other
classes. The case study shows that the proposed metrics provide additional information not sufficiently provided by the related
existing OOmetrics.Themetrics are also found to be useful in the investigation of large systems, correlating with project outcomes.

1. Introduction

Software metrics have been used to solve different problems
such as predicting testing complexity [1], identifying errors
[2], and promoting modularity [3]. The metrics proposed
by Chidamber and Kemerer [4], now referred to as the CK
metrics, have become well known and widely accepted by
the software engineering community. The CK metrics can be
used to measure some characteristics of OO systems such as
classes, message passing, inheritance, and encapsulation. On
the other hand, the software maintenance phase requires that
changes are made to the existing system. Although the exist-
ing metrics, such as the CK metrics, can be used to predict
outcomes during software maintenance, such as effort and
defects, they do not provide sufficient information regarding
the difficulty in implementing such changes, as well as the
potential effects of those changes. It would also be beneficial
if information is provided regarding the interaction of classes
in an OO system in order to predict behavioral changes in
those classes during maintenance. Therefore, it is necessary
to develop new metrics for software maintainers to better

understand the complexity of classes as well as the potential
effects of changing classes.

In order to develop new metrics, it is necessary to deter-
mine the weaknesses present in the existing metrics. Weak-
nesses include the loss of information when two classes are
said to be coupled and the simultaneous measurement of
multiple attributes. The coupling relationship also does not
disclose information regarding its direction or magnitude. It
is therefore imperative to identify attributes that are relevant
in determining the difficulty in implementing changes as well
as the effects of such changes. However, only identifying such
attributes is not sufficient. It is important that such attributes
are quantified in order for them to be effective. As a result,
a suite of metrics is required to measure the relevant class
attributes.

In this paper, we define the influence relationship, identify
class attributes, and develop a proposed suite of metrics used
for maintaining OO systems. The key contributions of the
research presented in this paper are as follows.

(i) The complexity of a class has been shown to pre-
dict the effort required to test and maintain it [4].

2 ISRN Software Engineering

Consequently, the difficulty in implementing changes
onto a class will be determined by its complexity.
Three attributes will be identified and measured by
the proposed set of complexity metrics: method com-
plexity, method diversity, and complexity density.
These attributes are associated with the difficulty in
implementing changes onto a class.

(ii) In addition, the effect of changes will be determined
by the use of instance variables and methods of a
given class in other classes. A relationship between
two classes, influence, will be defined. The influence
relationship will be used by a set of proposed metrics
tomeasure the effects ofmaking changes to particular
classes. Two attributes will be defined and measured
by the proposed set of metrics: impact and depen-
dence. Impact is used to determine the potential
effects of changes in a given class on the behavior of
the system, while dependence is used to determine
the potential change in behavior in a given class that
results from changes in other classes.

(iii) The metrics proposed in this research will be used
in conjunction with the CK metrics to provide addi-
tional information regarding the maintenance of OO
systems.

The remainder of this paper is organized as follows. In
Section 2, a literature review outlines various established
metrics. The CK metrics are discussed as well as research
conducted to investigate them. Section 3 identifies and
defines attributes associated with classes and presents a suite
of metrics intended to complement the CKmetrics discussed
in Section 2. Results used to determine the effectiveness of the
newmetrics are presented in Section 4. Section 5 presents the
conclusions and future work.

2. Literature Review

The goal of this section is to provide an overview of well-
adopted works in software metrics. Although widely used
metrics already existed, the arrival of the object-oriented
(OO) approach required the development of new metrics.
The majority of the established metrics are not designed for
the OO paradigm [5]. As a result, they are not sufficient in
measuring properties of OO systems. Some established met-
rics, such as cyclomatic complexity, are also thought to be
insufficient in desirable measurement properties [6], lack
theoretical basis [7], and are implementation dependent
[8]. On the other hand, the CK metrics present a suite of
metrics for OO systems that are claimed to be theoretically
sound, contained desired measurement characteristics, and
are empirically validated [4].The suite comprises six metrics:
Weighted Methods per Class (WMC), Coupling Between
Objects (CBO), Depth of Inheritance Tree (DIT), Number of
Children (NOC), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM).

There have been many studies conducted to investigate
the value of the CK metrics. The metrics have often been
associated with product results such as fault-proneness [9,
10], quality [11–15], complexitymeasurement [16], and project

results such asmaintenance effort [17, 18].We summarize five
improvements upon the CK Metrics as follows.

(1) Improving uponWMC. A criticism directed atWMC
is that the metric is ambiguously defined [19]. It is
the sum of the complexities of the methods in the
class. However, the complexities can either be unity
(equal to one) or some static complexity measure
such as cyclomatic complexity as assumed in this
research [18].The value ofWMC is dependent on how
complexity is defined. Li and Henry [18] solved this
problem by defining a metric that counts the number
of methods declared in the class, called Number of
Methods (NOM). Li later modified NOM to count
only methods that are accessible by other classes
[20]. This metric is called Number of Local Methods
(NLM). Both metrics have their advantages and dis-
advantages. NOM is a better measure of the size
of the class while NLM is a better measure of the
potential effect the given class can have on other
classes. Li also proposed another metric that would
measure the overall complexity of the class [20]. Class
Method Complexity (CMC) is equal to the sum of
the complexities of the methods in the class. This
differs from WMC in that the complexities used in
calculating CMC cannot be defined as unity.

(2) Improving upon coupling. CK’s formulation of cou-
pling has also been the subject of scrutiny. CK states
that two classes are coupled if at least one method
in one class uses a method or an instance variable of
the other class. The metric they devised to measure
coupling is CBO, a count of all classes the particular
class is coupled to. Li and Henry’s Message Passing
Coupling (MPC) metric addresses both coupling
strength and coupling direction [18]. The MPC of a
class is equal to the number of messages sent out from
the class. A possible shortcoming of MPC is that it
assumes that instance variables are not accessed by
other objects. Although the direct access of another
class instance variables is considered questionable
programming practices, it should not be ignored.
It is often used to access constants defined within
classes. As a result, it is possible that changes made
to instance variables may affect other classes. Li’s
Coupling Through Message Passing (CTM) [20] also
addresses both coupling strength and direction, but
does not address instance variables in the count of
message passing.

(3) Improving upon inheritance. Researchers have
addressed the inheritance metrics. Li states that the
DIT metric is flawed in that it does not consider
cases where a class is inheriting from multiple roots
[20]. She addresses this problem with the metric
Number of Ancestor Classes (NAC). NAC is a count
of all classes the given class inherits from. It is more
accurate in determining the number of classes that
can change the behavior of the given class. Li also
states that CK’s NOC is flawed by only considering
classes that directly inherit from the given class. The

ISRN Software Engineering 3

Number of Descendent Classes (NDC) is a count
of all classes that inherit from the given class. Li’s
inheritance metrics are an accurate measure of a class
involvement in inheritance. However, changes in
ancestor classes can affect the behavior of classes not
belonging to the same inheritance tree.

(4) Improving upon RFC (Response for a Class). The
RFC metric can also be criticized in its measurement
of multiple attributes [21] and is found to be highly
correlated with CBO [22]. RFC intends to measure
the number of different possible methods that can be
executed by the class in response to a message. As a
result, RFC is a function of the number of methods in
the class as well as the number of different methods
called within methods of the class. The criticism
directed at the metric is resolved by instead using a
combination of other metrics such as Li and Henry’s
NOM and MPC metrics.

(5) Improving upon LCOM (Lack of Cohesion in Meth-
ods). Hitz and Montazeri [23] have commented that
values obtained from LCOM are difficult to explain
as the value of the metric is influenced greatly by the
number ofmethods the class contains. Chae et al. [24]
also have commented that methods such as accessors
(methods used to obtain the value of a class instance
variables) and mutators (methods used to alter the
value of a class instance variables) increase the value
of the metric though they are considered sound
programming practices. Many cohesion metrics have
been developed by researchers to resolve the issues
concerning LCOM [25, 26]. Such solutions include
the exclusion of special methods [24] and changing
the equation [14].

3. Software Metrics

The key contributions of this research are the definition of
complexity and influence, the identification of class attributes
related to maintenance, and the proposal of a suite of metrics
used to measure such attributes.

3.1. Class Complexity and Influence Relationship. The focus
of this research is on changes to an existing software during
the maintenance phase of the software’s life cycle. The
attributes described in this research are aimed at providing
an understanding of the difficulty, as well as the effects, of
making changes to an existing system.

(i) Complexity is used to quantify the difficulty associated
with implementing changes during the maintenance
phase. Further, complexity is defined as the difficulty
in understanding abstractions of software such as
design documents and implementation code.

(a) Class complexity refers to the amount of effort
required to understand a class. A class that is
more complex will require more effort to main-
tain.

Class A

(a)

Class B

(b)

Figure 1: Method diversity.

(b) Method complexity refers to the amount of
effort required to understand the method. The
method complexity of a class refers to the
amount of effort required to understand each of
its methods.

(ii) Complexity density is defined as the proportion of
the class complexity not resulting frommethods with
minimal complexity.

(iii) Method diversity is defined as the differences in
complexities between methods within the same class.
Classes with similar methods will have low method
diversity while classes with very different methods
will have higher method diversity. Figure 1 shows an
example of two classes with different method diver-
sities. The two classes, Class A and Class B, are rep-
resented by two rectangles. Methods are represented
by subsections of the rectangles. Class complexities
are represented by the areas of the rectangles. The
complexities of methods are represented by the areas
of the subsections. Class B is said to have more
method diversity than Class A as its methods are less
consistent with regard to complexity.

(iv) Influence is a unidirectional relationship between two
classes. A class is said to have influence on the other
if it contains methods or instance variables that are
used in the other. The class containing the used
instance variables or methods is referred to as the
influencing class whereas the class using the methods
or instance variables is referred to as the influenced
class. Influence is measured by finding the number
of instances that a method in the influenced class
uses a method or instance variable declared in the
influencing class. Therefore, the influence strength of
a class is the averagemagnitude of the influences it has
on other classes. The received influence strength of a
class is the average magnitude of the influences other
classes have on the given class.The sequence diagram
in Figure 2(a) shows that theDealership class uses two
methods in the SalesAssociate class. This is shown in
Figure 2(b) as the SalesAssociate class has an influence
of two on the Dealership class.

4 ISRN Software Engineering

Dealership:
carDealer

SalesAssociate:
salesAsst

getCarsSold()

updateInventory()

updateProfit()

getCarsSold()

getCarID()

getSalePrice()

getCarCost()

getOwner()

getCarID()

updateFiles()

Sequence diagram Influence relationships

SalesAssociate

SalesAssociate

SalesAssociate

Dealership

Dealership

Dealership

Car

Car

Car: sold Car

(a) (b)

1

2

3

4

Figure 2: Influence relationship.

(v) Impact is defined as a class potential to alter the
behavior of other classes when it is changed. Impact
is a function of the class influence on other classes.
Figure 3 shows the examples of impact of three classes:
SalesAssociate, Dealership, and Car. The impact of a
class can be measured by the summation of its influ-
ences. The SalesAssociate class has an impact of two
since it has an influence on the Dealership class of
two.The Dealership class has an impact of three since
it has an influence of three on the SalesAssociate
class. The Car class has an influence of four on the
SalesAssociate class and one on the Dealership class.
Therefore, its impact is equal to five.

(vi) Dependence is defined as a class potential to change
in behavior when other classes are changed. It is used
to quantify the possible effects associated with imple-
menting changes during maintenance. The depen-
dence of a class can be measured by the summation
of influences on it. Figure 4 shows examples of
dependence. Figure 4(b) shows the dependence of
two classes: SalesAssociate and Dealership.The Deal-
ership class has a dependence of three since the Car
class has an influence on it equal to one and the
SalesAssociate class has an influence on it equal to
two. The SalesAssociate class has a dependence of
seven since the Car class has an influence on it equal
to four and the Dealership class has an influence on it
equal to three.TheCar class is said to have no depend-
ence since it is not influenced by any other classes.

3.2. Proposed Metrics. In order to measure the attributes
described in Section 3.1, a suite of metrics is developed to
quantify the attributes. The suite is comprised of four subsets
of metrics: complexity metrics, impact metrics, dependence
metrics, and inheritance metrics.

3.2.1. Complexity Metrics. The purpose of the complexity
metrics is to complement CK’sWMCmetric. SinceWMC is a
function of two different class attributes (number of methods
and class complexity), other metrics may be required to
fully understand its results.The proposed complexity metrics
consist of three metrics: Mean Method Complexity (MMC),
Standard Deviation Method Complexity (SDMC), and Pro-
portion of Nontrivial Complexity (PNC).

Definition 1. Mean Method Complexity (MMC) is a measure
of a class method complexity

MMC =
∑ 𝑐
𝑖

𝑛

, (1)

where 1 ⩽ 𝑖 ⩽ 𝑛, 𝑐
𝑖
is the cyclomatic complexity of the class

𝑖th method, and 𝑛 is equal to the number of methods in the
class.

MMC serves as an indicator of the complexity of the class
methods. MMC is similar to Etzkorn’s [27] Average Method
Complexity (AMC). The difference between the two metrics
is their interpretation of 𝑐

𝑖
. AMC specifies 𝑐

𝑖
as the complexity

of the method according to any static complexity measure
whereas MMC specifies 𝑐

𝑖
as the method’s cyclomatic com-

plexity. The purpose of this metric is to determine if a class
WMC value is a result of low-complexity methods or high-
complexity methods. High MMC is an indicator of classes
comprised of methods with high cyclomatic complexity.

Definition 2. Standard Deviation Method Complexity
(SDMC) is to measure the method diversity of a class.
Consider

SDMC = √
∑ (MMC − 𝑐

𝑖
)

2

𝑛 − 1

,

(2)

ISRN Software Engineering 5

Influence relationships Impact

SalesAssociate

SalesAssociate

SalesAssociate

SalesAssociate

Dealership
Dealership

Dealership

Dealership

Car

Car

Car

(a) (b)

1

2

3

4

5

2

3

Figure 3: Influence relationships to impact.

Influence relationships

SalesAssociate

SalesAssociate

SalesAssociate

SalesAssociate

Dealership
Dealership

Dealership

Dealership

Car

Car

Dependence

(a)

1

2

3

4

7

3

(b)

Figure 4: Influence relationships to dependence.

where 1 ⩽ 𝑖 ⩽ 𝑛, 𝑐
𝑖
is the cyclomatic complexity of the class

𝑖th method, and 𝑛 is equal to the number of methods in the
class.

A class with low SDMC implies similarly complex meth-
ods. A class with high SDMC indicates varying method com-
plexities.

Definition 3. Proportion of nontrivial complexity (PNC)mea-
sures the class complexity density as

PNC = 1 − 𝑇
WMC
, (3)

where 𝑇 is equal to the number of trivial methods in the
class, and WMC is the CK’s WMC metric that is the sum
of complexities of local methods in the class. A method is
said to be trivial if its cyclomatic complexity is equal to
one. Examples of trivial methods are accessor and mutator
methods, as well as empty methods.

A low PNC implies a large proportion of trivial methods.
Trivial methods require less testing and maintenance as they
have the lowest possible cyclomatic complexity. Classes with
high PNC indicate a higher percentage of methods that
require rigorous testing.

3.2.2. ImpactMetrics. Thepurpose of the impactmetrics is to
complement CK’s CBOmetric.The CBOmetric is a measure

of both the number of classes the given class uses and the
number of classes that use the given class.The impact metrics
focus on classes that use the given class in order to determine
and understand the potential effect a class may have on other
classes. The proposed impact metrics consist of two metrics:
Class Impact (CI) and Mean Nonzero Influence (MNI).

Definition 4. Class Impact (CI) measures the potential effect
of making changes in the given class. Consider

CI = ∑𝐼
𝑖
, (4)

where 0 ⩽ 𝑖 ⩽ 𝑁, 𝐼
𝑖
is the class influence on class 𝐼, and𝑁 is

equal to the number of other classes in the system.
CI serves as an indicator of themagnitude of the potential

effect that a change in the given class will have on the entire
system. Classes with high CI should be tested carefully as it
implies a greater potential for affecting the behavior of other
classes.

Definition 5. Mean Nonzero Influence (MNI) is a measure of
influence strength. Consider

MNI = CI
𝑀

, (5)

where 𝑀 is the number of classes that the given class is
influencing. If𝑀 is equal to zero, then MNI is valued at zero.

6 ISRN Software Engineering

Using only CI may give an incomplete view of the impact
of particular classes. The class with high CI may have a large
influence on a small number of classes or a small influence
on a large number of classes. MNI is an indication of which
case a particular class belongs to. MNI serves as an indicator
of the magnitude of the effect that a change in the given class
will have on the classes it is influencing.

3.2.3. Dependence Metrics. Like the impact metrics, the
purpose of the dependence metrics is to complement CK’s
CBOmetric.Whereas the impactmetrics focus on the classes
that use the given class, the dependence metrics focus on
the classes that are used by the given class. The purpose
of the dependence metrics is to determine and understand
the potential effect other classes may have on a given
class. The dependence metrics consist of two metrics: Class
Dependence (CD) and Mean Nonzero Dependence (MND).

Definition 6. Class Dependence (CD) is a measure of depen-
dence. Consider

CD = ∑𝐷
𝑖
, (6)

where 0 ⩽ 𝑖 ⩽ 𝑁,𝐷
𝑖
is the class 𝑖’s influence on the given class,

and𝑁 is equal to the number of other classes in the system.
Class dependence measures the potential for a change in

another class to create a change in behavior in the given class.
CD serves as an indicator of the magnitude of the potential
effect the system has on the given class. A class with high CD
will likely need to be retested if changes are made to other
classes.

Definition 7. Mean Nonzero Dependence (MND) is a measure
of the influence strength on the class. Consider

MND = CD
𝐿

, (7)

where 𝐿 is the number of classes that have an influence on the
given class. If 𝐿 is equal to zero, then MND is equal to zero.

Like CI, CD does not provide a complete view of the
influence of classes on each other. A class with a high CDmay
be heavily influenced by a few classes or lightly influenced by
a large number of classes. MND solves this by determining
the average magnitude of a class influence on the given class.
MND serves as an indicator of the magnitude of the effect
that a change an influencing class will have on the given
class. Classes with high MNDwill require more testing when
changes are made to classes that influence it.

3.2.4. Inheritance Metrics. The purpose of the inheritance
metrics is to complement CK’s DIT and NOC metrics. The
goal of the inheritance metrics is to measure impact and
dependence obtained through inheritance. The inheritance
metrics consist of two metrics: Inherited Dependence (ID)
and Weighted Descendent Impact (WDI).

Definition 8. Inherited Dependence (ID) is intended to mea-
sure how easily affected the given class is to changes to classes

that influence its ancestors. ID is a measure of dependence
obtained through inheritance and defined as

ID = ∑CD
𝑖
, (8)

where 0 ⩽ 𝑖 ⩽ 𝑁, CD
𝑖
is the class dependence of the class

𝑖th ancestor, and𝑁 is equal to the number of ancestors of the
given class.

A class with high ID will require more testing effort, as it
is easily affected by changes made in other classes. The cause
of change in behavior of this class may be more difficult to
trace, as it is not found in the class itself. As a result, classes
should not inherit from classes with high ID.

Definition 9. WeightedDescendent Impact (WDI) is ameasure
of a class impact obtained through inheritance. Consider

WDI = ∑CI
𝑖
, (9)

where 0⩽𝑖⩽𝑁, CI
𝑖
is the class impact of the class 𝑖th descen-

dent class, and𝑁 is equal to the number of descendents of the
given class.

This metric measures the class potential effect on the
other classes through inheritance. Changes to a class with
high WDI should be avoided as such changes made in an
ancestor class may propagate to the descendent classes and
other classes.

4. Validating Proposed Metrics

The goal of this section is to investigate and validate the
proposedmetrics discussed in Section 3. Section 4.1 discusses
the case study used in this research. Section 4.2 discusses
the validation plan used for this section, while Section 4.3
presents the results obtained from correlating the proposed
metrics with existing metrics. The effectiveness of the pro-
posed metrics is investigated in Section 4.4. Project data is
correlated with the proposed metrics in Section 4.5. We also
discuss the results in Section 4.6 and limitations of proposed
metrics in Section 4.7.

4.1. Case Study. Company L provided three systems, written
in Java, that required analysis. System 1 consists of 125 classes
and utilizes inheritance in its design. The highest number
of ancestors any given class inherited from is seven. System
2 consists of 34 classes and uses inheritance sparingly. No
classes in System 2 inherit from more than one other class.
System 3 consists of 12 classes and no classes in System 3
inherit from more than one other class.

4.1.1. Metrics Collection. The metrics are collected using a
small software tool developed for this research. Values for the
following existing metrics are collected:

(i) Weighted Methods per Class (WMC);
(ii) Number of Methods (NOM);
(iii) Number of Local Methods (NLM);
(iv) Coupling Between Objects (CBO);

ISRN Software Engineering 7

(v) Message Passing Coupling (MPC);
(vi) CouplingThrough Message Passing (CTM);
(vii) Depth in Inheritance Tree (DIT);
(viii) Number of Ancestor Classes (NAC);
(ix) Number of Children (NOC);
(x) Number of Descendent Classes (NDC).

Values for the following proposed metrics are collected:

(i) Mean Method Complexity (MMC);
(ii) Standard Deviation Method Complexity (SDMC);
(iii) Proportion of Nontrivial Complexity (PNC);
(iv) Class Impact (CI);
(v) Mean Nonzero Influence (MNI);
(vi) Class Dependence (CD);
(vii) Mean Nonzero Dependence (MND);
(viii) Weighted Descendent Impact (WDI);
(ix) Inherited Dependence (ID).

The proposedmetrics are compared to values of the exist-
ing metrics. This allows for the effectiveness of the proposed
metrics to be determined. It is also determined how the
values of the proposed metrics correlated with project data
provided by Company L in order to draw conclusions about
the relationships that exist between various class attributes
and project outcomes.The values obtained from the proposed
metrics can also be used to obtain a better understanding
regarding various characteristics of classes present in the
systems.

4.1.2. DataCollection. Theproject data used in this research is
collected using the Perforce software configuration manage-
ment system (SCMS). The SCMS provides change histories
alongwith the description of the changes, the classes involved
in the changes, and the associated change ID number. The
outputs of the SCMS provide the following project results for
each class.

(i) Number of Revisions (REV): the number of revisions
is investigated for multiple reasons as the number of
revisions provides a clear and quantifiable measure of
maintenance effort. It represents the number of times
the class is changed.

(ii) Number of Defects (DEF): the number of defects is
investigated for similar reasons. It is always beneficial
to reduce the number of defects found in classes.

(iii) Number of Corrective Actions (COR): the number of
corrections is investigated to determine the frequency
to correct mistakes in the classes such as defects. Note
that the number of corrections is not necessarily equal
to the number of defects. It may take more than one
correction to repair a defect as well as it may take
only one correction to repair multiple defects. For
this reason, it is determined that both defects and
corrections are to be investigated. Also the number

of revisions and the number of corrective actions
differ in that it may require more than one revision
to complete one corrective action.

4.2. Validation Plan. Pearson correlations are calculated
using the Statistical Package for the Social Sciences (SPSS).
The correlation values are an indication of how linearly
related two variables are with the lowest and highest possible
values being −1.0 and 1.0, respectively. A higher magnitude
indicates a stronger linear relationship between two variables.
A positive correlation indicates a simultaneous increase or
decrease in the values of the two variables. A negative cor-
relation indicates that as the values of one variable increase,
the values for the other variable decreased and vice versa.
Correlations are considered significant if there is a small
probability that the correlation is found due to random error.
A “∗” indicates that the probability that the correlation is
found due to random error is less than ten percent. The
explanation of random error is beyond the scope of this
research. Metrics are considered to be highly correlated if the
magnitude of the correlation is greater than 0.8.

We perform three validation tasks for the proposed met-
rics as follows.

(i) The introduction of new metrics requires a series of
steps to determine if they are necessary. Therefore it
is important to investigate how the proposed metrics
correlate with similar existing CK metrics. High
correlations between proposed and existing metrics
imply that the proposed metrics may not be required.
These correlations are investigated in Section 4.3.

(ii) The proposed metrics must also provide additional
information at an acceptable frequency. The fre-
quency at which the proposed metrics provide addi-
tional information determines their effectiveness.
Section 4.4 investigates the effectiveness of the pro-
posed metrics. The values of the proposed metrics
are compared to the values of the existing metrics to
determine how frequently the proposed metrics are
able to provide additional information.

(iii) Once the proposed metrics are shown to provide
additional information, it must be shown that such
information is useful in solving problems such as
the reduction of maintenance effort, identification
of defect-prone classes, and reduction of necessary
corrective actions. In order to do this, the values
obtained from the proposed metrics are correlated
with project data. The results from this investigation
are discussed in Section 4.5.

4.3. Correlating Metrics. The values extracted from the pro-
posed metrics are correlated with the values extracted from
the existing metrics. The purpose of finding these correla-
tions is to provide the likelihood that the proposed metrics
are providing additional information. A high correlation
(< −0.8 or >0.8) between two metrics implies that only one
of the metrics may be necessary in providing information
concerning the attribute they are measuring. As a result,

8 ISRN Software Engineering

high correlations between proposed and existing metrics
need to be justified in order to consider the proposed metric
necessary. Note that cells (“—”) in Tables 1, 2, and 3 represent
cases where a correlation could not be found.

4.3.1. Correlating Complexity Metrics. The proposed com-
plexity metrics MMC, SDMC, and PNC are correlated with
existing related metricsWMC, NOM, and NLM as presented
in Table 1(a). It shows that high correlations (>0.8) are
found between MMC and WMC in System 2 and System
3. However, MMC and NLM are only highly correlated
(>0.8) in System 2. The system may have been designed such
that classes with a large number of methods required such
methods to bemore complex. No high correlations (>0.8) are
found for SDMC and PNC with the existing metrics.

4.3.2. Correlating Impact Metrics. The proposed impact met-
rics, CI and MNI, are correlated with CBO. Table 1(b) shows
no high correlations between CI and CBO as well as between
MNI and CBO.

4.3.3. Correlating Dependence Metrics. The values for MPC
and CTM were equal in all three systems provided, as meth-
ods belonging to objects created in methods were not used.
As a result, only correlations concerning MPC are discussed
to avoid redundancy.

Table 1(c) shows that CD was highly correlated (>0.8)
with both MPC and CTM. MND was also correlated with
both MPC and CTM. This is not unexpected, as CD differs
from MPC and CTM mostly from its treatment of instance
variables. CD counts the use of instance variables while MPC
and CTM do not. Table 1(c) also shows that CD and MPC
are significantly correlated (∗) in all three systems. The two
metrics are also highly correlated (>0.8) in all three systems
as CD and MPC only differ in the use of instance variables.
CD counts the use of other classes’ instance variables as well
as methods while MPC only counts the use of methods. The
direct use of instance variables is considered as questionable
programming practices and therefore does not occur often.
This results in the high correlation between the two metrics.
Finally, Table 1(c) shows thatMNDandMPC are significantly
correlated (∗) in all three systems. As the definitions of CD
and MND show that they are proportional to each other, if
CD is highly correlated to MPC, it would follow that MND is
highly correlated to MPC.

4.3.4. Correlating Inheritance Metrics. From Table 1(d), ID is
not highly correlated (>0.8) with either DIT or NAC. This
implies that there is a substantial difference between the ID
and the existing metrics. Multiple inheritance has not been
utilized in the first two systems and therefore the values of
DIT are equal to those of NAC. Correlations for the third
system could not be found, as inheritance has not been used
in the development of the system. Also, Table 1(d) shows
that WDI and NDC are significantly correlated (∗) in System
1. That system produces a high correlation (>0.8) between
the two metrics. As the number of descendents increase,
so will the sum of the descendents’ impacts. Also note that

correlations for the third system could not be found, as
inheritance has not been used in the development of the
system.

4.4. Effectiveness of Proposed Metrics. The effectiveness of a
metric is determined by the frequency at which it provides
additional information when compared to other metrics.The
additional information can be detected when a case is found
where an existing metric cannot correctly measure some
class attributes. Therefore, the proposed metric is able to
show that the existing metric leads to incorrect conclusions
about the attribute. An example is using WMC to measure
method complexity because more complex classes generally
have more complex methods. The effectiveness of MMC
is determined by the frequency at which it can show that
the conclusions drawn using WMC are false. Therefore the
frequency of disagreement determines the effectiveness of a
proposed metric.

4.4.1. Effectiveness of Proposed Complexity Metrics. Table 2(a)
shows the results of investigating the effectiveness of MMC,
SDMC, and PNC when compared to the existing metrics
WMC, NOM, and NLM.

(i) Effectiveness of MMC compared to WMC, NOM, and
NLM—Method Complexity. Table 2(a) shows that
WMC is inaccurate in identifyingwhich of two classes
has higher method complexity in 19.1, 10.5, and 9.1
percent of cases in Systems 1, 2, and 3, respectively.
It also shows that NOM is inaccurate in identifying
which of two classes has highermethod complexity in
28.6, 16.2, and 22.7 percent of cases in Systems 1, 2, and
3, respectively. Furthermore, Table 2(a) indicates that
NLM is inaccurate in identifying which of two classes
has higher method complexity in 31.2, 16.8, and 36.4
percent of cases in Systems 1, 2, and 3, respectively.
Although MMC was shown to be correlated with
the existing complexity metrics discussed, the results
show that those metrics cannot accurately draw
conclusions regarding method complexity. Therefore
MMC is shown to provide additional information.

(ii) Effectiveness of SDMC compared to WMC, NOM, and
NLM—MethodDiversity. Table 2(a) shows thatWMC
is inaccurate in identifying which of two classes has
highermethod diversity in 29.6, 18.9, and 24.2 percent
of cases in Systems 1, 2, and 3, respectively. Also, it
is observed that NOM is inaccurate in identifying
which of two classes has higher method diversity in
38.3, 22.3, and 37.9 percent of cases in Systems 1, 2,
and 3, respectively. In addition, NLM is inaccurate in
identifying which of two classes has higher method
diversity in 40.2, 20.3, and 42.4 percent of cases in
systems 1, 2, and 3 respectively. Although SDMC was
correlated with the existing complexity metrics in
most cases, the results show that thosemetrics cannot
accurately draw conclusions regarding method diver-
sity. Therefore SDMC is shown to provide additional
information.

ISRN Software Engineering 9

Table 1: Correlations between metrics.

(a) Correlations between complexity metrics

Metric MMC SDMC PNC
System 1 System 2 System 3 System 1 System 2 System 3 System 1 System 2 System 3

WMC 0.794∗ 0.902∗ 0.873∗ 0.490∗ 0.436∗ 0.647∗ 0.417∗ 0.500∗ 0.620∗

NOM 0.422∗ 0.796∗ 0.615∗ 0.113 0.429∗ 0.315 0.348∗ 0.545∗ 0.448
NLM 0.312∗ 0.888∗ 0.326 0.037 0.568∗ 0.129 0.291∗ 0.531∗ 0.232

(b) Correlations between impact metrics

Metric CI MNI
System 1 System 2 System 3 System 1 System 2 System 3

CBO 0.693∗ 0.660∗ 0.481 0.277∗ 0.713∗ 0.245

(c) Correlations between dependence metrics

Metric CD MND
System 1 System 2 System 3 System 1 System 2 System 3

CBO 0.346∗ 0.547∗ 0.442 0.257∗ 0.494∗ 0.435
MPC 0.992∗ 0.939∗ 0.995∗ 0.797∗ 0.857∗ 0.974∗

CTM 0.992∗ 0.939∗ 0.995∗ 0.797∗ 0.857∗ 0.974∗

(d) Correlations between inheritance metrics

Metric ID WDI
System 1 System 2 System 3 System 1 System 2 System 3

DIT 0.550∗ 0.579∗ — — — —
NAC 0.550∗ 0.579∗ — — — —
NOC — — — 0.336∗ 0.186 —
NDC — — — 0.886∗ 0.186 —

(iii) Effectiveness of PNC compared to WMC, NOM, and
NLM—Method Density. It is shown in Table 2(a) that
WMC is inaccurate in identifyingwhich of two classes
has higher method density in 15.5, 18.8, and 23.6
percent of cases in Systems 1, 2, and 3, respectively.
Table 2(a) also shows that NOM is inaccurate in
identifying which of two classes has higher method
density in 27.8, 21.3, and 17.9 percent of cases in
Systems 1, 2, and 3, respectively. It indicates that
NLM is inaccurate in identifying which of two classes
has higher method density in 31.0, 16.3, and 27.4
percent of cases in Systems 1, 2, and 3 respectively.
Although PNC was shown to be correlated with the
existing complexity metrics discussed in all but two
cases, the results show that those metrics cannot
accurately draw conclusions regarding complexity
density.Therefore PNC is shown to provide additional
information.

4.4.2. Effectiveness of the Proposed Impact Metrics. In
Table 2(b), the effectiveness of CI when compared to CBO is
investigated. CBO is a measure of the number of classes that
the given class is coupled to.

The percentages shown in Table 2(b) represent the per-
centage of classes in each system where coupling is due to
the sending of messages (measured by CD) as opposed to
the receiving of messages (measured by CI).The CBOmetric

is not able to distinguish between the sending and receiving
of messages therefore drawing false conclusions regarding
a class impact. CBO was shown to inaccurately determine
that a class has at least some impact and thus CI provides
additional information. Table 2(b) shows that CBO falsely
identified a class as having at least some amount of impact
in 36.0 percent of classes in System 1, 20.5 percent of classes
in System 2, and 33.3 percent of classes in System 3.

In Table 2(b), MNI is used to complement CI in order
to provide additional information. The definitions of CI and
MNI show that MNI is more similar to CI than to CBO.
Consequently, MNI is investigated with respect to CI as
opposed to CBO. Table 2(b) shows that CI is inaccurate in
identifying which of two classes has higher influence strength
in 14.5 percent of cases in System 1, 10.6 percent of cases in
System 2, and 30.0 percent of cases in System 3. The results
show that CI is not sufficient inmeasuring influence strength.
Therefore, MNI is shown to provide additional information.

4.4.3. Effectiveness of Proposed Dependence Metrics.
Table 2(c) shows the results from investigating the effective-
ness of CD when compared to CBO, MPC, and CTM.
CBO measures the number of classes that the given class
is coupled to. It also shows CBO can falsely conclude that
the class has at least some class dependence. Note that for
three investigated systems, MPC and CTM values are equal.
This is not necessarily true for all systems as the systems we

10 ISRN Software Engineering

Table 2: Effectiveness of metrics.

(a) Effectiveness of complexity metrics

Metric MMC SDMC PNC
System 1 System 2 System 3 System 1 System 2 System 3 System 1 System 2 System 3

WMC 19.1 10.5 9.1 29.6 18.9 24.2 15.5 18.8 23.6
NOM 28.6 16.2 22.7 38.3 22.3 37.9 27.8 21.3 17.9
NLM 31.2 16.8 36.4 40.2 20.3 42.4 31.0 16.3 27.4

(b) Effectiveness of impact metrics

Metric CI MNI
System 1 System 2 System 3 System 1 System 2 System 3

CBO 36.0 20.5 33.3 — — —
CI — — — 14.5 10.6 30.0

(c) Effectiveness of dependence metrics

Metric CD MND
System 1 System 2 System 3 System 1 System 2 System 3

CBO 14.4 14.7 25.0 — — —
MPC 18.4 32.4 8.3 — — —
CTM 18.4 32.4 8.3 — — —
CD — — — 15.8 11.0 0.0

(d) Effectiveness of inheritance metrics

Metric ID WDI
System 1 System 2 System 3 System 1 System 2 System 3

DIT 5.6 8.8 25.0 — — —
NAC 5.6 8.8 25.0 — — —
NOC — — — 5.6 11.8 8.3
NDC — — — 5.6 11.8 8.3

investigated do not use methods of objects declared within
methods. We also compare MND with CD. MND is used to
complement CD in order to provide additional information.

4.4.4. Effectiveness of Proposed InheritanceMetrics. Table 2(d)
shows that DIT, NAC, NOC, and NDC falsely identified a
class as having at least some amount of ancestor or descendent
dependence in all three systems. In addition, although ID
andWDI are shown to be correlated with the related existing
inheritance metrics in System 1 and System 2, the results
show that those metrics cannot accurately draw conclusions
regarding ancestor or descendent dependence.

4.5. Correlating with Project Data. In order to determine
if the additional information is useful, the results from
the proposed metrics are correlated with the project data
described in Section 4.1. This will provide an understanding
of the relationships that exist between the class attributes
measured by the proposed metrics and the following project
outcomes: the number of revisions (REV), number of defects
(DEF), and number of corrective actions (COR).

4.5.1. Correlating Proposed Complexity Metrics with Project
Data. The relationship between complexity and project out-
comes is determined by correlating the results of the pro-
posed complexity metrics with project data. In System 1,
Table 3(a) shows that MMC, SDMC, and PNC are signifi-
cantly correlated (∗) to REV,DEF, andCOR.This implies that,
in System 1, classes with higher method diversity and com-
plexity density are likely to require more revisions, contain
more defects, and require more corrective actions. A possible
explanation for the correlations is that complex methods,
classes withmethods that are significantly different from each
other lead to mistakes which cause revisions, defects, and
corrective actions.

In Systems 2 and 3, Table 3(a) shows that MMC, SDMC,
and PNC are not significantly correlated (∗) to REV, DEF, or
COR. This implies that, in both systems, there is no relation-
ship between complexity metrics and number of revisions,
defects found, as well as required corrective actions. This
could be due to the size of the systems. Systems that consist
of fewer classes are less likely to require revisions than larger
systems.

ISRN Software Engineering 11

Table 3: Correlating metrics with project data.

(a) Correlating proposed complexity metrics with project data

Metric MMC SDMC PNC
System 1 System 2 System 3 System 1 System 2 System 3 System 1 System 2 System 3

REV 0.444∗ 0.218 −0.315 0.190∗ 0.141 −0.369 0.307∗ 0.154 0.085
DEF 0.573∗ 0.218 — 0.394∗ 0.141 — 0.230∗ 0.154 —
COR 0.515∗ 0.218 — 0.307∗ 0.141 — 0.243∗ 0.154 —

(b) Correlating proposed impact metrics with project data

Metric CI MNI
System 1 System 2 System 3 System 1 System 2 System 3

REV 0.229∗ 0.001 −0.176 0.437∗ 0.097 −0.207
DEF 0.174 0.001 — 0.436∗ 0.097 —
COR 0.200∗ 0.001 — 0.491∗ 0.097 —

(c) Correlating proposed dependence metrics with project data

Metric CD MND
System 1 System 2 System 3 System 1 System 2 System 3

REV 0.624∗ 0.031 −0.038 0.495∗ 0.098 0.070
DEF 0.745∗ 0.031 — 0.487∗ 0.098 —
COR 0.703∗ 0.031 — 0.477∗ 0.098 —

(d) Correlating proposed inheritance metrics with project data

Metric ID WDI
System 1 System 2 System 3 System 1 System 2 System 3

REV 0.376∗ −0.047 — −0.025 0.032 —
DEF 0.249∗ −0.047 — −0.025 0.032 —
COR 0.256∗ −0.047 — 0.032 0.032 —

4.5.2. Correlating Proposed Impact Metrics with Project Data.
Table 3(b) shows the relationship between impact and project
outcomes. In System 1, CI and MNI are significantly corre-
lated (∗) to REV and COR. This implies that, in System 1,
classes with higher impact or influence are likely to require
more revisions and require more corrective actions. A pos-
sible explanation is that classes with high impact undergo
revision and corrective action in order to repair the defect in
classes they influence.This would also explain why there is no
significant correlation between CI and DEF.

In addition, in Systems 2 and 3, CI andMNI are not signif-
icantly correlated (∗) to REV, DEF or COR.This implies that,
in both systems, there is no relationship between impact and
number of revisions, defects found, and required corrective
actions. This could also be due to system size.

4.5.3. Correlating Proposed Dependence Metrics with Project
Data. Table 3(c) shows that CD and MND are significantly
correlated (∗) to REV,DEF, andCOR in System 1.This implies
that, in System 1, classes with higher dependence and influ-
ence strength are likely to require more revisions, contain
more defects, and require more corrective actions. A possible
explanation is that classes that heavily rely on other classes, as
indicated by high dependence, are more difficult to compre-
hend, leading to mistakes which cause revisions, defects, and
corrective actions. This also supports the conclusion offered

in Section 4.5.2 regarding CI and MNI. If high dependence
classes are likelier to contain defects, they are likely candidates
for revisions and corrective actions. Although the classes that
are influencing the high dependence classes may not contain
defects, they may require revisions, as well as corrective
actions, to repair the defects in the high dependence classes.
This would account for the significant correlation between CI
and REV as well as CI and COR. It would also explain why
CI and DEF do not correlate. It is also possible that changes
in other classes are introducing errors into high dependence
classes. Such errorsmay be the cause of revisions, defects, and
corrective actions.

The low correlation in Systems 2 and 3 implies that in both
systems there is no relationship between dependence and
number of revisions, defects found, and required corrective
actions.

4.5.4. Correlating Proposed Inheritance Metrics with Project
Data. Table 3(d) shows the dependence metrics of ID and
WDI. In System 1, ID is significantly correlated (∗) to REV,
DEF, and COR. This implies that, in System 1, classes with
higher dependence are likely to require more revisions,
contain more defects, and require more corrective actions. It
is possible that changes in other classes are introducing errors
into high dependence classes. The errors are then inherited
by subclasses leading to revisions, defects, and corrective

12 ISRN Software Engineering

actions. In System 2, ID is not significantly correlated (∗) to
REV, DEF, or COR.This implies that, in System 2, there is no
relationship between inherited dependence and number of
revisions, defects found, or required corrective actions. This
could also be due to system size as well as a lack of inheritance
in the system. There are no cases of impact or dependence
through inheritance in System 3.

There was no significant correlation between WDI and
REV, DEF, or COR. The lack of significant correlations may
be due to system size and a lack of inheritance in System 2.
However, this is not the case for System 1. System 1 consists of
125 classes and utilizes inheritance in many of its classes.This
implies that there is no relationship between the impact of a
class descendents and project outcomes.

4.6. Discussion. The investigation of the metrics in this
section has two key objectives: to investigate the validity of
the proposed metrics and to assess the maintainability of the
three systems.

Section 4.3 discussed the correlations between the pro-
posed metrics and related existing metrics. Although the
proposed metrics are shown to be correlated with the related
existing metrics, only a small subset of correlations, with the
exception of the dependence metrics, are sufficiently high to
raise concerns. High correlations (>0.8) raised concerns as
they serve as indications that two metrics may be providing
similar information. An explanation is required in cases
where two metrics are highly correlated to help ensure that
the proposed metrics are providing additional information.
In addition, with regard to the dependence metrics, the high
correlations are expected as the proposed metric CD mostly
differs from MPC and CTM just in their treatment of direct
access of other classes’ instance variables. It was therefore
necessary to investigate the frequency in which instance
variables are accessed by other classes.

Section 4.4 revealed that the existing metrics are not
sufficient in measuring the attributes that the proposed
metrics are designed to measure. The existing metrics are
inaccurate in their assessment of such attributes that it can
be concluded that the proposed metrics do in fact provide
additional information not otherwise available. The results
from Section 4.4 show that the frequency at which CD pro-
duces different results fromMPC and CTM is not negligible.
This shows that instance variables are in fact accessed by
other classes, although such a practice is not advised. The
correlation between CD and MPC can be used as a measure
to determine the level of encapsulation in the class. A higher
correlation would imply that classes are being encapsulated
properly with regards to hiding instance variables.

The results from Section 4.5 show that, for larger sys-
tems, the attributes measured by the proposed metrics are
in fact related to the project outcomes investigated. The
results supported the notion that, for large systems, method
complexity, method diversity, and complexity density are
related to number of revisions, defects found, and required
corrective actions.The results from Section 4.5 also suggested
that, in large systems, it is important to pay close attention
to the complexity, impact, and dependence of classes as they
can lead to revisions, defects found, and required corrective

actions. The dependence of ancestor classes is shown to be
related to revisions, defects found, and required corrective
actions. One point of interest is that the impact of a class
descendent classes is not shown to be related to the project
outcomes investigated. However, this does not mean that the
metric used to measure this attribute should be discarded.
It may be valuable to determine which classes have impact
through inheritance. Such information may affect decisions
concerning changes made during maintenance.

Another important note is that the results obtained from
the values of the proposed metrics can be used to understand
various attributes of classes present in the system. The values
obtained from the proposed complexitymetrics will allow the
understanding of method complexities, method diversities,
and complexity densities of the classes in systems.The values
from the proposed impact and dependencemetrics will allow
better understanding of message passing in systems. The
inheritancemetrics will show how the classes interact beyond
direct message passing and inheritance.

4.7. Limitations. We consider the limitations of proposed
metrics as follows.

(i) The attributes identified and the metrics proposed
are specific in its purpose: to determine the difficulty
and the effects of change. The metrics are designed
to provide very specific information. The values for
the metrics can only be extracted using source code
or very highly detailed design documents. As a result,
the attributes may not be available in early phases of a
system’s life cycle.

(ii) The size of the systemmay be important in determin-
ing the significance of the proposed metrics [28]. The
results in Section 4 imply that small systems do not
benefit as readily from themetrics as larger systems. It
seems advantageous to use system size in conjunction
with the proposed metrics. However, the size of the
system is often not determinable until implementa-
tion therefore restricting the use of metrics to the
implementation phase [29]. The project data is also a
determining factor in the value of the proposed met-
rics. A lack in project data may provide poor results
and little information may be gained from using the
metrics. Also, low variances have shown to cause
a difficulty in finding relationships between metric
values and project data [30]. More systems should be
investigated to further validate the proposed metrics.

(iii) The proposed metrics do not consider the use of
classes that are predefined in the programming lan-
guage in their calculation. It is, however, possible
to overwrite such classes and doing so may cause
unpredicted changes in the system. It may be worth
investigating if the use of such classes should be
considered in the metrics.

5. Conclusion

The objective of this research was to identify the class
attributes that convey information regarding the mainte-
nance of that class in order to develop a suite of metrics

ISRN Software Engineering 13

that measure such attributes. A suite of metrics has been
developed to provide additional information that will assist
in the maintenance of object-oriented systems. The metrics
have been designed to measure attributes that lead to the
difficulty in maintaining classes as well as attributes that
describe potential effects of class changes. The use of the
proposed metrics will enable maintainers to better under-
stand the complexity of classes as well as the potential effects
of changing classes.

One possible future work is the modification of existing
modeling languages in order to display values associated
with the proposed metrics and convey information such as
influence relationships between classes. If such work were to
be completed, it may be more valuable to be able to easily
visualize the influence of classes as well as their complexities.
It is also possible that the metrics be applied to methods
instead of classes. Further, it is possible that providing infor-
mation regarding influence at a method level is as useful,
if not more useful, than at a class level. An application of
the proposed metrics could be the development of predictive
models. Neural networks and other data mining techniques
may be used to predict project outcomes by using the values
obtained from the proposed metrics, such as quality and
maintainability.

References

[1] I. Bluemke, “Object oriented metrics useful in the prediction of
class testing complexity,” in Proceedings of the 27th Euromicro
Conference, pp. 130–136, 2001.

[2] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10, pp. 751–
761, 1996.

[3] T. J. McCabe, “Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[4] S. R. Chidamber and C. F. Kemerer, “Metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[5] M. Bundschuh and C. Dekkers, “Object-oriented metrics,” in
The IT Measurement Compendium, M. Bundschuh and C.
Dekkers, Eds., pp. 241–255, Springer, Berlin, Germany, 2008.

[6] E. J. Weyuker, “Evaluating software complexity measures,” IEEE
Transactions on Software Engineering, vol. 14, no. 9, pp. 1357–
1365, 1988.

[7] I. Vessey and R. Weber, “Research on structured programming:
an wmpiricist’s evaluation,” IEEE Transactions on Software
Engineering, vol. 10, no. 4, pp. 397–407, 1984.

[8] T.Wand andR.Weber, “Toward a theory of the deep structure of
information systems,” inProceedings of International Conference
Information System, pp. 61–71, 1990.

[9] V. R. Basili andB. T. Perricone, “Software errors and complexity:
an empirical investigatio,” Communications of the ACM, vol. 27,
no. 1, pp. 42–52, 1984.

[10] M.H. Tang,M.H. Kao, andM.H. Chen, “An empirical study on
object-oriented metrics,” in Proceedings of the 6th International
Software Metrics Symposium, pp. 242–249, November 1999.

[11] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for measuring
the quality of modularization of large-scale object-oriented

software,” IEEE Transactions on Software Engineering, vol. 34,
no. 5, pp. 700–720, 2008.

[12] Y. Zhou, B. Xu, andH. Leung, “On the ability of complexitymet-
rics to predict fault-prone classes in object-oriented systems,”
Journal of Systems and Software, vol. 83, no. 4, pp. 660–674, 2010.

[13] H.M.Olague, L.H. Etzkorn, S. L.Messimer, andH. S.Delugach,
“An empirical validation of object-oriented class complexity
metrics and their ability to predict error-prone classes in highly
iterative, or agile, software: a case study,” Journal of Software
Maintenance and Evolution, vol. 20, no. 3, pp. 171–197, 2008.

[14] L. C. Briand and J. W. Daly, “A unified framework for coupling
measurement in object-oriented systems,” IEEE Transactions on
Software Engineering, vol. 25, no. 1, pp. 91–121, 1999.

[15] L. C. Briand, J.Wüst, J.W.Daly, andD.Victor Porter, “Exploring
the relationships between designmeasures and software quality
in object-oriented systems,” Journal of Systems and Software, vol.
51, no. 1, pp. 245–273, 2000.

[16] F. T. Sheldon and H. Chung, “Measuring the complexity of class
diagrams in reverse engineering,” Journal of Software Mainte-
nance and Evolution, vol. 18, no. 5, pp. 333–350, 2006.

[17] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves,” Journal of Software
Maintenance and Evolution, vol. 22, no. 1, pp. 1–16, 2010.

[18] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” The Journal of Systems and Software, vol. 23,
no. 2, pp. 111–122, 1993.

[19] N. I. Churcher and M. J. Shepperd, “‘Comments on’ a metrics
suite for object oriented design,” IEEE Transactions on Software
Engineering, vol. 21, no. 3, pp. 263–265, 1995.

[20] W. Li, “Another metric suite for object-oriented programming,”
Journal of Systems and Software, vol. 44, no. 2, pp. 155–162, 1998.

[21] T. Mayer and T. Hall, “A critical analysis of current OO design
metrics,” Software Quality Journal, vol. 8, no. 2, pp. 97–110, 1999.

[22] S. R.Chidamber,D. P.Darcy, andC. F.Kemerer, “Managerial use
ofmetrics for object-oriented software: an exploratory analysis,”
IEEE Transactions on Software Engineering, vol. 24, no. 8, pp.
629–639, 1998.

[23] M. Hitz and B. Montazeri, “Chidamber and kemerer’s metrics
suite: a measurement theory perspective,” IEEE Transactions on
Software Engineering, vol. 22, no. 4, pp. 267–271, 1996.

[24] H. S. Chae, Y. R. Kwon, and D. H. Bae, “A cohesion measure for
classes in object-oriented classes,” Software, vol. 30, no. 12, pp.
1405–1431, 2000.

[25] J. A. Dallal, “Improving the applicability of object-oriented class
cohesion metrics,”The Journal of Systems and Software, vol. 53,
no. 9, pp. 914–928, 2011.

[26] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O.
Mendes, and H. C. Almeida, “Identifying thresholds for object-
oriented software metrics,”The Journal of Systems and Software,
vol. 85, no. 2, pp. 244–257, 2012.

[27] L. Etzkorn, J. Bansiya, and C. Davis, “Design and code com-
plexity metrics for OO classes,” Journal of Object-Oriented
Programming, vol. 12, no. 1, pp. 35–40, 1999.

[28] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confound-
ing effect of class size on the validity of object-orientedmetrics,”
IEEE Transactions on Software Engineering, vol. 27, no. 7, pp.
630–650, 2001.

[29] W. M. Evanco, “Comments on ‘The confounding effect of
class size on the validity of object-oriented metrics’,” IEEE
Transactions on Software Engineering, vol. 29, no. 7, pp. 670–672,
2003.

14 ISRN Software Engineering

[30] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An
empirical exploration of the distributions of the Chidamber
and Kemerer object-oriented metrics suite,” Empirical Software
Engineering, vol. 10, no. 1, pp. 81–103, 2005.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

