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This study theoretically investigates the conjugate effects of radiation flux and magnetohydrodynamic (MHD) on free convection
boundary layer flow of a nanofluid over a nonlinear stretching sheet. It is assumed that the magnetic Reynolds number is small
enough and the sheet is stretched with a power law velocity under the effects of the magnetic field, the buoyancy parameter,
and the solutal buoyancy parameter. The model used for the nanofluid incorporates the effects of Rosseland approximation,
Brownian motion, and thermophoresis parameters. By using appropriate similarity transformations, the governing nonlinear
partial differential equations are transformed into dimensionless form and numerically solved using an implicit finite difference
scheme known as the Keller-box method. It is found that the variations of magnetic field, buoyancy parameter, solutal buoyancy
parameter, and the power law velocity parameter have strong influence on the motion.

1. Introduction

Heat and mass transfer (double-diffusion) phenomenon on
free convection is driven by two density gradients which have
different rates of diffusion and currently is an important
fluid dynamics topic. A common example of double diffusive
convection appears in oceanography, where heat and salt
concentrations exist with different gradients and diffuse at
differing rates. Double diffusive convection is also important
in understanding the evolution of a number of systems that
have multiple causes for density variations. These include
convection in the earth’s oceans, in magma chambers, and
in the sun where heat and helium diffuse at differing rates
[1]. Double diffusive convection flows for Newtonian and
non-Newtonian fluids are extensively studied. However, for
nanofluids such studies are scarce due to their complicated
nature [2, 3]. Moreover, recent developments in the field of
fluid dynamics and nanotechnology confirm that nanofluids
are industrially more important than other available fluids
[4]. There are numerous biomedical applications that involve
nanofluids such as magnetic cell separation, drug delivery,

hyperthermia, and contrast enhancement in magnetic res-
onance imaging [5]. Hence, this is the motivation for
considering nanofluids in the present work.

On the other hand, stretching sheet problems with
double diffusion are important in extrusion process, glass
fibber, paper production, hot rolling, wire drawing, elec-
tronic chips, crystal growing, plastic manufactures, food
processing, and movement of biological fluids [6]. Khan
and Pop [7] investigated the laminar flow of a nanofluid
on a stretching flat surface by incorporating the effects of
Brownian motion, thermophoresis and reported to be the
pioneer for this study of stretching sheet in nanofluid. Rana
and Bhargava [8] discussed the flow and heat transfer of a
nanofluid over a nonlinearly stretching sheet. Furthermore,
the MHD flow of nanofluid over a power law stretching sheet
plays an important role in various industrial applications
including magnetic control of molten iron flow in the steel
industry and liquid metal cooling in nuclear reactors [9]. In
addition, when thermal radiation is considered, such studies
have useful chemical processing applications [10, 11].
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The aim of the present work is to numerically investigate
the thermal radiation effects for double diffusive MHD free
convection flow of a nanofluid over a power law stretching
sheet using Keller-box method [12, 13].

2. Problem Formulation

The unsteady two-dimensional boundary layer flow of a
nanofluid past a stretching surface is considered. The stretch-
ing velocity is assumed to be uw(x) = axm, where a is con-
stant, m (m ≥ 0) is the power law exponent parameter, and
x is the coordinate measured along the stretching surface.
The flow takes place above the stretching surface at y ≥
0. Here y is the coordinate axis measured normal to the
stretching surface. A uniform stress leading to equal and
opposite forces is applied along the x-axis, so that the
sheet is stretched keeping the origin fixed. Following the
work of Hayat and Qasim [6] and Afify [14], we assume
that a uniform transverse magnetic field of strength B is
imposed parallel to the y-axis and the induced magnetic
field due to the motion of the electrically-conducting fluid
is negligible. We also assume that the external electrical
field is zero and the electric field due to the polarization
of charges is negligible. Moreover, it is further supposed
that at the stretching surface, the temperature T and the
nanoparticle fraction C take constant values Tw and Cw,
whereas the ambient values of temperature T∞ and the
nanoparticle fraction C∞ are attained as y tends to infinity.
The Oberbeck-Boussinesq approximation is employed to the
field equations. The governing boundary layer equations that
are based on the balance laws of mass, linear momentum,
energy, and concentration species for the present problem are
given as follows [3, 15]:

∇ ·V = 0,

ρ f

(
∂V
∂t

+ (V · ∇)V
)

= −∇p + μ∇2V− σB2(x)V

+
[

(1− C∞)ρ f∞βT(T − T∞)+
(
ρp − ρ f∞

)
βC(C−C∞)

]
g,

(
ρc
)
f

(
∂T

∂t
+ V · ∇T

)

= k∇2T +
(
ρc
)
p

[
DB∇C · ∇T +

(
DT

T∞

)
∇T · ∇T

]

−∇ · qr ,
∂C

∂t
+ V · ∇C = DB∇C +

(
DT
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)
∇2T ,

(1)

where V is the velocity vector, σ is the electrical conductivity,
g is the acceleration due to gravity, μ is the viscosity, ρ f is the
density of the base fluid, ρp is the density of the nanoparticle,
βT is the coefficient of volumetric thermal expansion, βC is
the coefficient of volumetric concentration expansion, DB is
the Brownian diffusion coefficient, DT is the thermophoretic

diffusion coefficient, k is the thermal conductivity, (ρc)p is
the heat capacitance of the nanoparticles, (ρc) f is the heat
capacitance of the base fluid, and qr is the radiation flux.

In the following we adopt the Rosseland approximation

qr = −4σ∗

3k∗
∂T4

∂y
, (2)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the
mean absorption coefficient. Assuming that the temperature
difference between the free stream T∞ and the fluid tempera-
ture T is small enough, expanding T4 in a Taylor series about
T∞, and neglecting higher order terms, it results that

T4 = 4T3
∞T − 3T4

∞. (3)

The two-dimensional steady-state problem under the
assumptions that the external pressure in x-direction having
diluted nanoparticles is constant; that is, p = p0 yields to
∂p/∂x = 0 and Oberbeck-Boussinesq approximation is valid;
(1) are reduced to
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(4)

where

α = k(
ρc
)
f

, τ =
(
ρc
)
p(

ρc
)
f

. (5)

Here u and v are the velocity components in the x and y-
directions, respectively, α is the thermal diffusivity parameter
and τ is the ratio between the effective heat capacity of the
nanoparticle material and heat capacity of the fluid.

The associated boundary conditions are

u = uw(x) = axm, v = 0, T = Tw, C = Cw

at y = 0,

u −→ 0, v −→ 0, T −→ T∞, C −→ C∞

as y −→ ∞.

(6)
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Using the stream function ψ = ψ(x, y), the components of
velocity are defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (7)

By using the following similarity transformations [14],

ψ =
√

2νaxm+1

m + 1
f
(
η
)
, θ

(
η
) = T − T∞

Tw − T∞ ,

φ
(
η
) = C − C∞
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√
(m + 1)axm−1

2ν
,

(8)

into (4), we get

f ′′′ + f f ′′ − 2m
m + 1

f ′2 +
2
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(10)

Here M is the magnetic parameter called Hartmann
number, λ is the buoyancy parameter, δ is the solutal
buoyancy parameter, Pr is the Prandtl number, N is the
radiation parameter, Le is the Lewis number, ν is the
kinematic viscosity of the fluid, Nb is the Brownian motion
parameter, Nt is the thermophoresis parameter, Rex is the
local Reynolds number based on the stretching velocity,
Gr is the local thermal Grashof number, Gm is the local
concentration Grashof number, and f , θ, and φ are the
dimensionless stream functions, temperature, and rescaled
nanoparticle volume fraction, respectively. Further, in order
to eliminate the dependence of M on x, the magnetic field
strength has been taken proportional to x, that is, B(x) =
B0x(m−1)/2 where B0 is a constant [14]. Also, βT and βC are
proportional to x−3, that is, βT = nx−3, βC = n1x−3, where n
and n1 are constants of proportionality [16].

The corresponding boundary conditions are transformed to

f = 0, f ′ = 1, θ = 1, φ = 1

at η = 0,

f ′ −→ 0, θ −→ 0, φ −→ 0 as η −→ ∞.
(11)

In the present case, we define Nusselt number, Sherwood
number, and skin-friction as follows:

Nu = qwx

k(Tw − T∞)
, Sh = qmx

DB(Cw − C∞)
,

Cf = τw
(1/2)ρU2

,
(12)

where

qw = −k ∂T
∂y

, qm = −DB
∂C

∂y
, τw = μ

∂u

∂y
,

at y = 0.

(13)

The associated expressions of the dimensionless reduced
Nusselt number −θ′(0), reduced Sherwood number −φ′(0),
and skin-friction coefficient Cf x are defined as

Nur = Nu√
((m + 1)/2)Rex

, Shr = Sh√
((m + 1)/2)Rex

,

Cf x =
Cf

2

√
2

m + 1
Rex.

(14)

The transformed nonlinear ordinary differential (9) with
the boundary conditions (11) are numerically solved by
means of the Keller-box method [12, 13].

3. Results and Discussion

Numerical results for some physical parameters of interest
are shown in Tables 1 and 2 and in Figures 1–9. In Table 1,
the results for reduced Nusselt number −θ′(0) and reduced
Sherwood number −φ′(0), when the Hartmann number M,
the buoyancy parameter λ, the solutal buoyancy parameter
δ, and the radiation parameter N are zero and the power law
velocity parameter m = 1, are compared with those obtained
by Khan and Pop [7]. We found that, this comparison shows
an excellent agreement for the involved flow parameters and
in general their solutions appeared as the special cases of
our general solutions. Similarly if we take Nb = 0.5, Nt =
0.5, Pr = 2.0, Le = 2.0, and m = 2.0, the results of Rana and
Bhargava [8] can also be obtained as a special case. Hence we
are quite confident that our results are accurate and are more
general than the existing studies in the literature.

The variations of reduced Nusselt number −θ′(0),
reduced Sherwood number −φ′(0), and the skin-friction
coefficient Cf x for different values of Nb, Nt, Pr, Le, M, λ,
δ, N , and m are shown in Table 2. It is observed that −θ′(0)
is a decreasing function of Nb, Nt, M, δ, N , and m, whereas
−θ′(0) increases with increasing values of Pr, Le, and λ.
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Table 1: Comparison of reduced Nusselt number and reduced Sherwood number.

Nb Nt Pr Le M λ δ N m
Khan and Pop [7] Present result

−θ′(0) −φ′(0) −θ′(0) −φ′(0)

0.1 0.1 10 10 0.0 0.0 0.0 0.0 1.0 0.9524 2.1294 0.9524 2.1294

0.2 0.2 10 10 0.0 0.0 0.0 0.0 1.0 0.3654 2.5152 0.3654 2.5152

0.3 0.3 10 10 0.0 0.0 0.0 0.0 1.0 0.1355 2.6088 0.1355 2.6088

0.4 0.4 10 10 0.0 0.0 0.0 0.0 1.0 0.0495 2.6038 0.0495 2.6038

0.5 0.5 10 10 0.0 0.0 0.0 0.0 1.0 0.0179 2.5731 0.0179 2.5731

Table 2: Variations of reduced Nusselt number, reduced Sherwood number, and skin-friction coefficient.

Nb Nt Pr Le M λ δ N m −θ′(0) −φ′(0) Cf x

0.1 0.1 0.71 10 0.1 1.0 1.0 1.0 0.5 0.3399 2.3369 0.6148

0.5 0.1 0.71 10 0.1 1.0 1.0 1.0 0.5 0.3004 2.3976 0.6021

0.1 0.5 0.71 10 0.1 1.0 1.0 1.0 0.5 0.3131 2.1134 0.6473

0.1 0.1 7.00 10 0.1 1.0 1.0 1.0 0.5 0.8824 2.0780 0.8870

0.1 0.1 0.71 25 0.1 1.0 1.0 1.0 0.5 0.3418 3.8356 0.5647

0.1 0.1 0.71 10 2.0 1.0 1.0 1.0 0.5 0.2393 2.1222 1.6688

0.1 0.1 0.71 10 0.1 3.0 1.0 1.0 0.5 0.4042 2.4740 −0.1679

0.1 0.1 0.71 10 0.1 1.0 4.0 1.0 0.5 0.3265 2.2761 1.0759

0.1 0.1 0.71 10 0.1 1.0 1.0 6.0 0.5 0.1817 2.4120 0.4856

0.1 0.1 0.71 10 0.1 1.0 1.0 1.0 5.0 0.2804 2.2294 1.1273
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Figure 1: Variations of velocity profiles with η for different values
of Pr, M, λ, δ, N , and m.

However, it is found that −φ′(0) decreases for large values
of Nt, Pr, M, δ, and m and increases for increasing values of
Nb, Le, λ, and N . It is further observed from this table that
Cf x is an increasing function of Nt, Pr, M, δ, and m and a
decreasing one with respect to Nb, Le, λ, and N .

In order to get physical insight into the problem,
convergence of plots for dimensionless velocity, temperature
and concentration profiles for different flow parameters are
provided in Figures 1–3. Furthermore, the variations of the
reduced Nusselt number, the reduced Sherwood number,
and skin-friction coefficient as a function of λ and δ are
shown in Figures 4–9. All these graphs are plotted for fixed
values of Nb = Nt = 0.1 and Le = 10.

It is evident from Figure 1 that an increase in Pr results in
a decrease in the velocity, whereas velocity increases for the
increasing values of λ and N . The effect of increasing values
of M results in a decrease of momentum boundary layer

Curve Nb Nt Le Pr M N m

10

10

10

10

10

10

0.71

0.71

0.71

0.71

0.71

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

I

II

III

IV

V

VI

1

1

1

1

1.5

1

1

1

1

1

1

1

1.5

1

1

1

1

1

1

10 0.710.1 0.10.1VII 1 1

δ

1

1

1

1

4

1

1 5

λ

0 2 4 6 8 10 12 14
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

θ
(η

)

I
II

III

IV
V

VI
VII

Figure 2: Variations of temperature profiles with η for different
values of Pr, M, λ, δ, N , and m.

thickness which reduces the dimensionless stream function
and the velocity of nanofluid. Physically, it is possible due
to the fact that an increase in Pr makes the fluid to be
more viscous, which leads to decrease in the velocity for
increasing values of Hartmann number and increase the
frictional force which reduce the fluid velocity to slow down
the fluid motion. Further, it is found that velocity decreases
with increasing values of δ and m.

Figure 2 is plotted to analyze the heat transfer for
combined effects of Pr,M, λ, δ,N , andm on the temperature
profiles. This figure indicates that an increase in Pr and λ
results in a decrease in the temperature profiles, whereas
these profiles increase for the increasing values of δ, N ,
and m. The radiation parameter N is very effective for the
thickening of the thermal boundary layer which releases the
heat energy from the flow region and causes the cooling of
the system. Physically, it is true due to the fact that temper-
ature increases by increasing the Rosseland approximation.
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Figure 3: Variations of concentration profiles with η for different
values of Pr, M, λ, δ, N , and m.
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Figure 4: Variations of reduced Nusselt number with λ for different
values of Pr, M, λ, δ, N , and m.

Increasing values of M cause the temperature to rise up.
This is due to the fact that nanoparticles dissipate energy in
the form of heat which causes the thermal boundary layer
thickness to increase in the case of nanofluids and ultimately
a localized rise in temperature of the fluid occurs.

Figure 3 is prepared to study the effects of incorporated
different flow parameters on concentration profiles. It results
that the increasing values of λ and N cause a decrease in the
mass transfer. However, the concentration increases for large
values of Pr, M, δ, and m. Physically, the variations of Pr, M,
λ, δ, andm are important in the boundary layer flow and play
a significant role in shortening the concentration boundary
layer for the mass fraction. All profiles discussed above
descend smoothly in the free stream satisfying boundary
conditions. This ensures the accuracy of the obtained
numerical results.

The variations of the reduced Nusselt number, reduced
Sherwood number, and skin-fiction coefficient as functions
of λ for the different values of Pr, M, δ, N , and m are
shown in Figures 4–6. From Figure 4, we observed that the
reduced Nusselt number increases for increasing values of
Pr and decreases for increasing values of M, δ, N , and
m. This increase in the heat transfer rate at the surface
of the sheet is due to the reason that nanofluids with
high viscosities have large values of Prandtl number which
results for relatively low thermal conductivities to reduce
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Figure 5: Variations of reduced Sherwood number with λ for
different values of Pr, M, λ, δ, N , and m.
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Figure 6: Variations of skin-friction coefficient with λ for different
values of Pr, M, λ, δ, N , and m.

the conduction phenomenon [7]. Physically, this behaviour
is meaningful due to the fact that with increasing viscosity
of the base fluid, the thermal boundary layer thickness
decreases because of less colloidal forces between the base
fluid and suspended nanoparticles. So the thermal conduc-
tivities of nanofluids play an important role to increase the
heat transfer coefficient between the heat transfer medium
and heat transfer surface. Further, Figure 5 shows that the
reduced Sherwood number decreases for increasing values
of Pr but increases for increasing values of N , M, δ, and m.
It is clearly seen from Figure 6 that the dimensionless skin-
friction coefficient along λ increases with increasing values
of Pr, M, δ, and m but decreases with increasing values of N .

Finally, Figures 7–9 show the variation in the reduced
Nusselt number, the reduced Sherwood number, and skin-
fiction coefficient along δ for different values of Pr, M, λ, N ,
and m. It is found from Figure 7 that the reduced Nusselt
number decreases for increasing values of M, N , and m and
increases for increasing values of Pr and λ. The reduced
Sherwood number increases for large values of λ and N but
decreases when the values of Pr, M, and m are increased as
shown in Figure 8. Further, Figure 9 shows that skin-friction
coefficient increases for the larger values of Pr,M, andm and
decreases with regard to λ and N . It is clearly seen that the
influence of these parameters on the local Sherwood number
and skin-fiction coefficient with λ and δ is quite opposite to
each other.
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Figure 7: Variations of reduced Nusselt number with δ for different
values of Pr, M, λ, δ, N , and m.
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Figure 8: Variations of reduced Sherwood number with δ for
different values of Pr, M, λ, δ, N , and m.
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Figure 9: Variations of skin-friction coefficient with δ for different
values of Pr, M, λ, δ, N , and m.

4. Conclsions

In the present study we have investigated the conjugate effects
of thermal radiation flux on double diffusive MHD free
convection boundary layer flow of a nanofluid over a non-
linear stretching sheet. The model used here for nanofluid
incorporates the effects of thermophoresis parameter Nb,
Brownian motion parameter Nt, Prandtl number Pr, Lewis
number Le, Hartmann number M, buoyancy parameter
λ, solutal buoyancy parameter δ, radiation parameter N ,
and nonlinear stretching parameter m. The governing non-
linear partial differential equations are numerically solved

using implicit finite difference scheme known as Keller-box
method. Numerical solutions depending upon all parameters
are presented in tables and figures. The physical interpre-
tations provided by the authors reflect some important
characteristics of free convection flow of a nanofluid over
a power law stretching sheet and play a significant role in
the concentration boundary layer for the mass fraction. The
following main results are concluded from this study.

(1) The reduced Nusselt number −θ′(0) is a decreasing
function ofNb,Nt,M, δ,N , andm whereas increases
with increasing values of Pr, Le, and λ.

(2) The reduced Sherwood number −φ′(0) decreases for
large values of Nt, Pr, M, δ, and m and increases for
increasing values of Nb, Le, λ, and N .

(3) The skin-friction coefficient Cf x is an increasing
function of Nt, Pr, M, δ, and m and a decreasing one
with respect to Nb, Le, λ, and N .

(4) The velocity of nanofluid decreases for increasing Pr
whereas increases for the increasing values of λ and
N.

(5) The temperature of nanofluid decreases when Pr and
λ are increased whereas increases for large values of
M, δ, and m.

(6) The species concentration of nanofluid decreases
for large values of λ and N whereas increases for
increasing values of Pr, M, δ, and m.

(7) The reduced Nusselt number versus λ increases for
Pr and decreases for M, δ, N , and m whereas the
reduced Nusselt number against δ decreases for M,
N , and m while increases for Pr and λ. However,
the reduced Sherwood number and skin-friction
coefficient versus λ and δ are found to be opposite
in nature.
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