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A study of mixed convection, in a shallow lid-driven rectangular cavity filled with water-based nanofluids and subjected to uniform
heat flux along the vertical side walls, has been performed numerically by solving the full governing equations via the finite volume
method and the SIMPLER algorithm. In the limit of a shallow enclosure, these equations have been considerably reduced by using
the parallel flow approximation. Solutions, for the flow and temperature fields, and the heat transfer rate, have been obtained
as functions of the governing parameters, namely, the Reynolds (Re) and the Richardson (Ri) numbers and the solid volume
fraction of nanoparticles (Φ). A good agreement has been obtained between the results of the two approaches for a wide range
of the governing parameters. Moreover, it has been found that the addition of Cu-nanoparticles, into the pure water, leads to an
enhancement or a degradation of heat transfer depending on the values of Re and Ri.

1. Introduction

With conventional fluids, such as water and oil, heat transfer
is limited because of their poor thermal conductivity. This
is a crucial problem that should be challenging. Also,
current design solutions already push available technology
to its limits, and an innovative way should be taken. In
such a context, Choi [1], of Argonne National Laboratory,
developed the novel concept of nanofluids as a route to
improve the performances of heat transfer fluids currently
available. This new class of advanced heat transfer fluids
is engineered by dispersing solid nanoparticles (metallic,
nonmetallic, or polymeric), smaller than 100 nm in diameter,
in base fluids (aqueous or organic host liquids), which
confers a large thermal conductivity on these ones and makes

them potentially useful in engineering equipments involving
heat transfer. To know about nanoparticles, nanofluids, their
production and applications, see for instance the report of Yu
et al. [2], currently available in http://www.osti.gov/bridge.

During the last decade, nanofluids have attracted lots
of researchers encouraged by their critical importance and
promising role, as new advanced heat transfer fluids, to take
up challenges. Therefore, numerous studies, on convection
heat transfer, have been conducted, and most of them have
dealt with forced convection, indicating that nanoparticle
suspensions have unquestionably a great potential for heat
transfer enhancement, as reported in a recent paper by Cor-
cione [3]. In contrast, although the investigations concerned
with buoyancy-driven convection are relatively few, they have
known a gradual increase lately, leading to contradictory
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findings, thus leaving still unanswered the question if the use
of nanoparticle suspensions for natural convection applica-
tions is actually advantageous with respect to pure liquids
[3]. At the same time, mixed convection has not received
either less attention in view of the number of the related
works recently done. Among them, flow and heat transfer
problem in lid-driven cavities, which finds applications in
industrial processes such as food processing, float glass
production [4], thermal hydraulics of nuclear reactors [5],
dynamics of lakes [6], crystal growth, flow and heat transfer
in solar ponds [7], and lubrication technologies [8]. The
interaction of the shear-driven flow due to the lid motion
and natural convective flow due to the buoyancy effect is
quite complex, which necessitates a comprehensive analysis
to understand the physics of the resulting flow and heat
transfer process. In this respect, different configurations
and combinations of thermal and dynamical boundary
conditions have been considered and analysed by some
investigators. The contributions can be divided in two cases.

(i) Steady state case where all boundary conditions are
time independent. In this regard, it is advisable to
mention the work of Tiwari and Das [8], who stud-
ied heat transfer enhancement in a nanofluid-filled
square cavity, with the vertical sides moving and
differentially heated, while the horizontal ones are
insulated and motionless. Three situations, depend-
ing on the direction of the moving walls, were
examined, and a model taking into account the solid
volume fraction of nanoparticles was developed to
analyse the nanofluids behaviour. With only one
uniformly moving wall, from left to right, first, it is
to bring up the research of Abu-Nada and Chamkha
[9] dealing with mixed convection flow in an inclined
square enclosure filled with a nanofluid. The left
and right walls are kept insulated while the bottom
and the moving top ones are maintained at constant
cold and hot temperatures, respectively. It was found
that significant heat transfer enhancement can be
obtained due to the presence of nanoparticles and
that this is accentuated by inclination of the enclosure
at moderate and large Richardson numbers. Mah-
moodi [10] investigated mixed convection fluid flow
and heat transfer in rectangular enclosures filled with
a nanofluid. The left and right walls as well as the top
one are maintained at a constant cold temperature.
The moving bottom is kept at a constant hot
temperature. A parametric study was performed and
the effects of the Richardson number, the aspect
ratio of the enclosure and the volume fraction of the
nanoparticles on the fluid flow and heat transfer were
analysed. It was found that, for the selected values of
the Richardson number, the average Nusselt number
increases with the nanoparticles volume fraction
and seems to be higher with tall enclosures than
with shallow ones. In the case of a nanofluid-filled
square cavity with cold sides, a partially heated (with
constant heat flux heater) and insulated bottom, and
a moving cold top, Mansour et al. [11] examined

the effects of the Reynolds number, the type of
nanofluids, the size and location of the heater and
the volume fraction of the nanoparticles in their
study related to mixed convection. They observed
that the heat transfer enhances with all the above-
mentioned parameters. Muthtamilselvan et al. [12]
studied heat transfer enhancement of nanofluids
in rectangular enclosures, where the moving top
is at higher constant temperature than the bottom
whereas the left and right boundaries are insulated.
They found that at higher aspect ratios, the heat
transfer rate increases strongly with the nanoparticles
volume fraction. Nemati et al. [13] investigated heat
transfer performances of a moving top square cavity,
filled with nanofluids and subject to different side
wall temperatures. They reported that an increase of
nanoparticles volume fraction enhances heat trans-
fer, but such an effect reduces with the Reynolds
number. As for Talebi et al. [14], they conducted
an investigation on mixed convection flows in a
square lid-driven cavity, having left and right sides
heated and cooled, respectively, and moving top
and bottom both adiabatic, utilising nanofluids.
These authors showed that, at given Rayleigh and
Reynolds numbers, an increase of the nanoparticles
concentration favours the flow and heat transfer.
Finally, like Tiwari and Das [8], Sheikhzadeh et al.
[15] were interested in laminar mixed convection
of a nanofluid in two-sided lid-driven enclosures.
The moving left and right walls are maintained at
constant cold and hot temperatures, respectively,
while the horizontal ones are insulated. The effect
of moving direction of walls on mixed convection
is studied for various Richardson numbers, aspect
ratios, and nanoparticles volume fractions and was
found to affect mainly the flow field, temperature
gradient, and heat transfer. In addition, increasing
the volume fraction of nanoparticles resulted in a
linear increase of the average Nusselt number, as an
index of heat transfer rate improvement, for all the
considered cases.

(ii) Unsteady state case, where some boundary condi-
tions are time dependent as in the only work done,
in this subject, by Karimipour et al. [16], where
periodic mixed convection of a nanofluid inside a
rectangular cavity, with insulted vertical sides and hot
temperature bottom kept at rest and cold tempera-
ture top horizontally oscillating, was carried out. The
effects of Richardson number and volume fraction of
nanoparticles on the flow and thermal behaviour of
the nanofluid were examined. It was observed that
the best heat transfer is obtained with a Richardson
number lower than unit and that the higher value of
this parameter corresponds to the lower amplitude of
the oscillation of the heat transfer rate in the steady
periodic state. In addition, heat transfer was found to
be improved by nanoparticles presence.
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All the above-mentioned studies are of numerical nature,
using a finite volume method (for the most), a finite
difference method, or Lattice Boltzmann method to solve
the governing equations and various single-phase models to
describe effective conductivity and viscosity of the consid-
ered nanofluids, which are principally Al2O3 or Cu-water.

As we know, the problem of mixed convection heat trans-
fer of nanofluids in a lead-driven enclosure subjected to ther-
mal boundary conditions of Neumann type (i.e., heat fluxes
imposed to the boundaries) is not yet examined. So, in order
to know more about the effect of the boundary conditions
kind on flow and heat transfer within confined nanofluids,
the present paper deals with such a problem within a two-
dimensional shallow rectangular enclosure, filled with Cu-
water nanofluids, whose short vertical sides are submitted to
uniform heat fluxes while the long horizontal ones are main-
tained adiabatic with the top moving in the direction of the
imposed heat flux. A numerical solution of the full governing
equations has been obtained via a finite volume method.
An analytical one, based on the parallel flow approximation,
has been also proposed. The results are presented, in terms
of streamlines, isotherms, stream function and temperature
profiles and heat transfer rates, and discussed for various
values of the dimensionless parameters, controlling the
problem, which are the Reynolds, Re, and Richardson, Ri,
numbers, and the solid volume fraction of nanoparticles, Φ.

2. Mathematical Formulation

The studied configuration is sketched in Figure 1. It is a
shallow rectangular enclosure of height H′ and length L′,
filled with Cu-water nanofluids. The long horizontal walls
are adiabatic, while the vertical short ones are submitted
to a uniform density of heat flux, q′. All these boundaries
are rigid, impermeable, and motionless apart from the top
one which moves in its own plane from left to right at
uniform velocity. The main assumptions made here are those
commonly used, that is

(i) the base fluid and the nanoparticles are in thermal
equilibrium and they flow at the same velocity (i.e.,
no slip occurs between them or the nanoparticles are
uniformly dispersed within the base fluid so that the
resulting nanofluid can be considered a single-phase
fluid);

(ii) the nanoparticles are spherical;

(iii) the nanofluid is Newtonian and incompressible;

(iv) the thermophysical properties of the considered
nanofluids are constant except for the density in
the buoyancy term, which obeys the Boussinesq
approximation;

(v) the flow is two-dimensional, laminar, and steady;

(vi) the radiation heat transfer between the sides of the
cavity is negligible when compared with the other
mode of heat transfer.

Therefore, the equations describing the conservation of
mass (1), momentum (2)-(3), and energy (4), written in

terms of velocity components (u′, v′), pressure (p′), and
temperature (T′), are

∂u′

∂x′
+
∂v′

∂y′
= 0, (1)

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= − 1

ρn f

∂P′

∂x′
+
μn f
ρn f

(
∂2u

′

∂x
′2 +

∂2u
′

∂y
′2

)
,

(2)

∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
= − 1

ρn f

∂P′

∂y′
+
μn f
ρn f

(
∂2v

′

∂x
′2 +

∂2v
′

∂y
′2

)

+
1
ρn f

(
ρβ
)
n f g
(
T′ − T′0

)
,

(3)

∂T′

∂t′
+ u′

∂T′

∂x′
+ v′

∂T′

∂y′
= αn f

(
∂2T

′

∂x
′2 +

∂2T
′

∂y
′2

)
. (4)

To close the problem, the following appropriate bound-
ary conditions are applied:

u′ = v′ = 0,
∂T′

∂x′
+

q′

kn f
= 0 for x′ = 0, x′ = L′,

u′ = v′ = 0,
∂T′

∂y′
= 0 for y′ = 0,

u′ −U ′
0 = v′ = 0,

∂T′

∂y′
= 0 for y′ = H′.

(5)

To model the effective physical properties of the nano-
fluid, appearing in the above equations, the following for-
mulas are used:

ρn f = (1−Φ)ρ f + Φρnp (6)

for the effective density, as shown in [2];

μn f =
μ f

(1−Φ)2.5 (7)

for the effective dynamic viscosity, which is due to Brinkman,
[2]; (

ρβ
)
n f = (1−Φ)

(
ρβ
)
f + Φ

(
ρβ
)
np (8)

for the thermal expansion coefficient [17];(
ρCp

)
n f = (1−Φ)

(
ρCp

)
f + Φ

(
ρCp

)
np (9)

for the heat capacity [2];

kn f
k f

=
knp + 2k f − 2Φ

(
k f − knp

)
knp + 2k f + Φ

(
k f − knp

) (10)

for the effective thermal conductivity, due to Maxwell-
Garnett, which is a restriction of the Hamilton-Crosser
model to spherical nanoparticles [2];

αn f =
kn f(

ρCp
)
n f

(11)

for the thermal diffusivity [18].
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Figure 1: Schematic view of the geometry and coordinates system.

On the other hand, using the characteristic scales
H′, ρ f U ′2

0 , H′/U ′
0, U ′

0, and q′H′/k f , corresponding to
length, pressure, time, velocity, and temperature, respec-
tively, the dimensionless governing equations and the corre-
sponding boundary conditions are

∂u

∂x
+
∂v

∂y
= 0, (12)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+

ν

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+

ν

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+
β

ρ
RiT ,

(14)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

Pe

(
∂2T

∂x2
+
∂2T

∂y2

)
, (15)

u = v = ∂T

∂x
+

1

k
= 0 for x = 0,A, (16)

u = v = ∂T

∂y
= 0 for y = 0, (17)

u− 1 = v = ∂T

∂y
= 0 for y = 1, (18)

where k = kn f /k f , α = αn f /α f , ν = νn f /ν f , β =
(ρβ)n f /(ρβ) f , and ρ = ρn f /ρ f are parameters depending on
Φ, according to models given above. In addition, to analysis
the flow structure, the stream function, ψ, related to the
velocity components via

u = ∂ψ

∂y
, v = −∂ψ

∂x

(
with ψ = 0 on all boundaries

)
(19)

is used.
The above equations give rise to some dimensionless

parameters that govern the problem, namely, the solid
volume fraction Φ, the aspect ratio of the enclosure, A, the
Peclet, Pe, Reynolds, Re, and Richardson, Ri, numbers. For
the last four, the expressions are

A = L′

H′ , Pe = U ′
0H

′

α f
, Re = U ′

0H
′

ν f
,

Ri = gβ f q′H′2

k f U
′2
0

.

(20)

Note that

Pe = Pr Re, Ri = Gr
Re2 =

Ra
Pe Re

, (21)

where

Gr =
gβ′f q

′H′4

ν2
f
k f

, Pr = ν f

α f
, Ra = Pr Gr (22)

are the Grashof, Prandtl, and Rayleigh numbers, respectively.
The local heat transfer, through the nanofluid-filled

cavity, can be expressed in terms of the local Nusselt number
defined as

Nu
(
y
) = hL′

k f
= q′

ΔT′
L′

k f
= L′

H′
ΔT∗

ΔT′
= A

ΔT
= 1

ΔT/A
,

(23)

where h is the heat exchange coefficient, ΔT∗ = q′H′/k f a
characteristic temperature, and ΔT = T(0, y) − T(A, y) the
side-to-side dimensionless local temperature difference. This
definition is based on the thermal conductivity of the base
fluid, k f , which seems logical since, according to Corcione
[3], Nu that would describe the thermal performance of the
enclosure, with immediacy, should vary in the same manner
as h and vice versa. However, (23) is notoriously inaccurate
owing to the uncertainty of the temperature values evaluated
at the two vertical walls (edge effects). Instead, Nu is
calculated on the basis of a temperature difference between
two vertical sections, far from the end sides, as suggested
by Lamsaadi et al. [19]. Thus, by analogy with (23), and
considering two infinitesimally close sections, Nu can be
expressed by

Nu
(
y
) = lim

δx→ 0

δx

δT
= lim

δx→ 0

1
(δT/δx)

= − 1
(∂T/∂x)x=A/2

,

(24)

where δx is the distance between two symmetrical sections
with respect to the central one. The corresponding average
Nusselt number is calculated, at different locations, from

Nu =
∫ 1

0
Nu
(
y
)
dy. (25)
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3. Numerics

Equations (12)–(15) associated with (16)–(18) have been
solved by using a finite volume method and SIMPLER
algorithm in a staggered uniform grid system [20]. A
second order backwards finite difference scheme has been
employed to discretize the temporal terms appearing in
(13)–(15). A line-by-line tridiagonal matrix algorithm with
relaxation has been used in conjunction with iterations to
solve the nonlinear discretized equations. The convergence
has been considered as reached when

∑
i, j | f k+1

i, j − f ki, j| <

10−5
∑

i, j | f k+1
i, j |, where f ki, j stands for the value of u, v, p,

or T at the kth iteration level and grid location (i, j) in
the plane (x, y). The mesh size has been chosen so that
a best compromise between running time and accuracy of
the results may be found. The procedure has been based
on grid refinement until the numerical results agree, within
reasonable accuracy, with the analytical ones, obtained from
the parallel flow approach developed in the next section.
Hence, as shown in Table 1, a uniform grid of 140 × 40
has been selected for A = 8 (value used for the numerical
computations) and has been estimated sufficient to model
accurately the flow and temperature fields within the cavity.
The time step size, δt, has been varied in the range 10−7 ≤
δt ≤ 10−4, depending on the values of the governing
parameters.

4. Approximate Parallel Flow
Analytical Solution

As can be seen from Figures 2–4, displaying streamlines (left)
and isotherms (right), the flow and temperature fields exhibit
a parallel aspect and a linear stratification, respectively, in the
most part of the cavity, for A = 8 and various values of Re,
Ri, and Φ. Accordingly, the following simplifications

u
(
x, y

) = u
(
y
)
, v

(
x, y

) = 0,

ψ
(
x, y

) = ψ
(
y
)
, T

(
x, y

) = C
(
x − A

2

)
+ θ
(
y
)
,

(26)

where C is unknown constant temperature gradient in the
x-direction, are possible, which leads to the ordinary nondi-
mensional governing equations:

d3u

dy3
= αΩRe Ri

∂T

∂x
= αΩRe RiC, (27)

α

Pe
d2θ

dy2
= Cu (28)

with

u− 1 = dθ

dy
= 0 for y = 0 , 1 (29)

∫ 1

0
u
(
y
)
dy = 0, (30)

∫ 1

0
θ
(
y
)
dy = 0 (31)

Table 1: Accuracy tests conducted with A = 8, Re = 1, Ri = 103

and various values of Φ.

Grids (160× 20)

Φ ψc Nu

0.0 0.5211 6.7808

0.1 0.5029 5.2170

0.2 0.4653 4.1567

Grids (120× 40) (160× 40) (200× 40)

Φ ψc Nu ψc Nu ψc Nu

0.0 0.51980 6.7012601 0.5198 6.7011 0.51979 6.7011

0.1 0.50492 5.2191711 0.5012 5.2092 0.50514 5.2112

0.2 0.47111 4.2029914 0.4626 4.1963 0.47123 4.2028

Grids (160× 60)

Φ ψc Nu

0.0 0.51955 6.6877509

0.1 0.50477 5.2089050

0.2 0.47102 4.1959088

as boundary, return flow, and mean temperature conditions,
respectively.

Using such an approach, the solution of (27) and (28),
satisfying (29), (30), and (31), is

u
(
y
) = α

12
ΩRe RiC

(
2y3 − 3y2 + y

)
+
(
3y2 − 2y

)
(32)

θ
(
y
) = 1

12
ΩRaC2

(
y5

10
− y4

4
+
y3

6
− 1

120

)

+
PeC
α

(
y4

4
− y3

3
+

1
30

)
.

(33)

The expression of the stream function, ψ(y), can be
deduced by integration of (19), taking into account the
corresponding boundary conditions and (32), which gives

ψ
(
y
) = α

12
ΩRe RiC

(
y4

2
− y3 +

y2

2

)
+
(
y3 − y2), (34)

where Ω = β/ρ α ν. Therefore, the flow intensity is

ψc =
∣∣ψmin

∣∣. (35)

It corresponds to the maximum value of |ψ(y)| in the central
vertical section of the enclosure (x = A/2).

On the other hand, according to Bejan [22], the energy
balance in x-direction is

∫ 1

0
−∂T
∂x

dy +
Pe
α

∫ 1

0
uTdy =

∫ 1

0
−
(
∂T

∂x

)
x=0 or A

dy. (36)

In particular, in the parallel flow region and with the
application of (16), (36) becomes

−C +
Pe
α

∫ 1

0
uθdy = 1

k
(37)
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Figure 2: Streamlines (left) and isotherms (right) for A = 8, Re = 0.1 and various values of Φ ((a) Φ = 0, (b) Φ = 0.1, and (c) Φ = 0.2) and
Ri ((1) Ri = 10, (2) Ri = 102, and (3) Ri = 103).

which, when substituted to (32) and (33), gives the following
transcendental equation:

1

k
+

(
1 +

Pe2

105α2

)
C − ΩPe Ra

3360α
C2 +

Ω2Ra2

362880
C3 = 0 (38)

whose solution, via Newton-Raphson method, for given Pe,
Ra, and Φ, leads to C.

Finally, taking into account (24) and (25), the Nusselt
number is constant and can be expressed as

Nu = Nu = − 1
C
. (39)

5. Results and Discussion

The results presented in this paper are limited to copper-
(Cu-) water nanofluid, whose thermophysical properties of
Cu and water are given in Table 2 [21]. On the other hand,
with thermal boundary conditions of uniform heat flux
type, the flow field, thermal field, and thermoconvective
characteristics become parallel, stratified, and independent
on A, respectively, in the limit of the explored values of Re,
Ri, Φ, and Pr, when A is large enough. This is the case for
A = 8, 0.1 ≤ Re ≤ 10, 10−3 ≤ Ri ≤ 106, 0 ≤ Φ ≤ 0.2, and
Pr = 7 (water-based mixtures). Therefore, the problem of

Table 2: Thermophysical properties of base fluid (H2O) and
nanoparticles (Cu) [21].

ρ CP k β × 105

kgm−3 J kg−1K−1 Wm−1K−1 K−1

H2O 997.1 4179 0.613 21

Cu 8933 385 401 1.67

mixed convection in the enclosure is governed only by three
dimensionless parameters, namely, Re, Ri, and Φ, whose
effects are largely discussed below.

5.1. Dynamical and Thermal Structures. Typical streamlines
(left) and isotherms (right) are displayed in Figures 2–4 for
each value of Re and different values of Ri and Φ. First of
all, it is interesting to observe that the flow is unicellular
and clockwise, as a result of cooperating aspect of buoyancy
and shear effects, which act together from left to right. Also,
as mentioned in Section 4, except for the end sides where
the flow undergoes a rotation of 180◦, this one is parallel
to the horizontal boundaries and the temperature is linearly
stratified in the horizontal direction. In addition to that, the
symmetry of the flow, observed for a dominant buoyancy
effect, is generally broken by the shear one. On the other
hand, as shown in Figure 2, corresponding to Re = 0.1,
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Figure 3: Streamlines (left) and isotherms (right) for A = 8, Re = 1 and various values of Φ ((a) Φ = 0, (b) Φ = 0.1 and (c) Φ = 0.2) and
Ri ((1) Ri = 10, (2) Ri = 102 and (3) Ri = 103).

the roles of Ri and Φ are felt only from Ri = 103, but
with much more effect for Ri than for Φ, as can be clearly
seen from the isotherms, whose inclination with respect
to the vertical direction increases importantly with Ri and
decreases slightly with Φ. Below this value, both effects
are not sufficient to promote strong convection, and the
regime is pseudoconductive with isotherms almost vertical.
For Re = 1 (Figure 3), the shear effect is so important
that the flow symmetry, expressing the buoyancy effect
domination, necessitates an important increase of Ri. In fact
an augmentation of Ri leads to streamlines less crowded
near the top moving wall and isotherms more tilted. In
such a situation, the effect of Φ does not clearly appear
on the streamlines, but the isotherms seem affected since
their inclination gets lesser with increasing Φ. Hence, the
two parameters seem to act oppositely. Finally, for Re =
10 (Figure 4), as before, a progressive increase of Ri makes
stronger buoyancy effect, giving rise to an almost symmetric
flow characterised by streamlines quasi-equally spaced. Here
also, the effect of Φ cannot be readily detected, from the
streamlines. However, the isotherms show a big change with
Ri, expressed by an almost flat zone in the most part of the
cavity and a boundary layer near the left wall, where they
are crowded. In this case, it is easy to see that an increase
of Φ reduces the isotherms inclination and makes thicker the
thermal boundary layer, particularly for a small value of Ri.

On the other hand, it is to note that the similarity notion
is not respected in the present problem since, for the same

values of Ri and Φ, a change of Re may affect significantly
streamlines and isotherms.

5.2. Validation of the Approximate Analytical Solution. To
check the validity of the approximate analytical solution,
the numerical results (full circles) are compared to those
obtained analytically (solid lines), as displayed in Figures 5,
6, and 7 giving stream function (left) and temperature (right)
profiles along y-axis at the mid length of the cavity, ψ(A/2, y)
and T(A/2, y), respectively. As can be seen, the two types
of results agree well, which confirms the existence of an
analytical solution and validates mutually the parallel flow
approximation and the computing code.

In addition, analytical and numerical values of the stream
function at the vertical central section of the cavity, ψc, and
mean Nusselt number, Nu, presented in Figures 8, 9, 10, 11,
12, and 13, show also a perfect agreement, when compared
to each other, for various values of Re and wide ranges of Ri
and Φ.

Let us mention here that the maximum difference
between numerical and analytical results does not exceed 1%,
for all the explored values of the governing parameters, which
makes Figures 5–13 difficult to read. Therefore, there is no
need to represent the relative differences and point toward
the domains (or conditions) where the error is the largest.

5.3. Stream Function and Temperature Distributions along the
Vertical Central Section. Although Figures 5–7 are related to
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Figure 4: Streamlines (left) and isotherms (right) for A = 8, Re = 10 and various values of Φ ((a) Φ = 0, (b) Φ = 0.1, and (c) Φ = 0.2) and
Ri ((1) Ri = 10, (2) Ri = 102, and (3) Ri = 103).

the parallel flow region, they provide enough information
on the flow and temperature fields behaviours. Thus, the
presence of a single relative minimum in the stream function
profile, in all cases, indicates that the flow is unicellular clock-
wise, driven by both lid and buoyancy cooperating effects.
Moreover, the temperature profile presents, in general, two
portions, with negative and positive signs, whose amplitude
depends on the magnitude of the above-mentioned aiding
effects. In fact, the resulting clockwise flow makes warm the
top, by transporting the heat from the left hot side, and
cold the bottom, after passing near the right cold one, which
explains why the sign of the lower portion is negative and
that of the upper one is of positive.

These results show, also, the opposing roles of Ri and Φ,
expressed by an increase of |ψ(A/2, y)| and |T(A/2, y)| with
Ri and a decrease of these quantities with Φ, except for Re =
10 (Figure 7) where the role of Φ becomes insignificant due
to the mixing effect induced by the increase of Re (the forced
convection neutralises the effect of the effective viscosity
caused by the addition of the nanoparticles).

5.4. Flow Intensity and Heat Transfer Rate. The evolution
of the flow intensity, ψc (top), and heat transfer rate, Nu
(bottom), which are reported, against Ri, in Figures 8–10,

for each Re and various Φ, reveal in general two distinct
convection regimes as follows.

(i) A weak convection regime, where ψc and Nu are
nearly constant up to Ri ≈ 10. This is related
essentially to the fact that the viscosity effect is still
dominant for an enclosure of large aspect ratio (shal-
low enclosure) that inhibits the inertia effects and
favours, at the same time, diffusions of momentum
and heat.

It should also be noted that the effect of Φ on ψc, in
this regime, is negligible, because of its low circulation, as
explained above. In fact, an increase of Φ leads to an increase
of the effective viscosity, which makes more negligible the
inertia effects and justifies all this independence of the flow
intensity on the concentration of nanoparticles in such a
regime. In contrast, increasing Φ increases Nu, due to the
fact that the thermal conductivity of nanoparticles is higher
than that of the base fluid, but this last finding is valid only
for Re = 0.1 and 1 (i.e., weak and moderate lid-driven
effects). For Re = 10, where shear-driven effects are manifest,
the tendency is reversed since, this time, Nu decreases with
Φ. Indeed, the increase of the viscosity with the nanopar-
ticles concentration results in the increase of the thermal
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Figure 5: Stream function (left) and temperature (right) profiles at mid length of the cavity, along the vertical coordinate for A = 8, Re = 0.1
and various values of Φ and Ri.
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Figure 6: Stream function (left) and temperature (right) profiles at mid length of the cavity, along the vertical coordinate for A = 8, Re = 1
and various values of Φ and Ri.
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Figure 7: Stream function (left) and temperature (right) profiles at mid length of the cavity, along the vertical coordinate for A = 8, Re = 10
and various values of Φ and Ri.
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Figure 8: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Ri, for A = 8, Re = 0.1 and
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Figure 9: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Ri, for A = 8, Re = 1 and
various values of Φ.

boundary layer thickness, which in its turn is responsible
for the diminution of the temperature gradient and thus
the augmentation of the thermal resistance, reducing heat
transfer accordingly.

(ii) A second regime, dominated by convection, that
manifests itself from a value of Ri > 10, depending,
generally, on both Φ and Re. Such a regime is
characterised by an increase of ψc and Nu with Ri,
which starts slowly to reach an asymptotic linear
trend from a certain value of Ri, because buoyancy
becomes, gradually, the main driving force for the

fluid motion with an increasing Ri. Such particular
value of Ri diminishes with Re whatever the value of
Φ.

The effect of Φ is such that an increase of this parameter
leads to a decrease of ψc and Nu. For ψc, the reason is that
the addition of nanoparticles, in the base fluid, augments
the viscosity whose slowing-down role of the motion is
well known. This occurs only for a range of Ri whose
expanse reduces with Re. Beyond this range, the inertia
of the nanoparticles becomes comparable with that of the
fluid, due to large values of Ri, and the effect of Φ tends to
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Figure 10: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Ri, for A = 8, Re = 10
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Figure 11: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Φ, for A = 8, Re = 0.1
and various values of Ri.

be increasingly insignificant, which explains the meeting of
the curves of ψc in such a situation. For Nu, the decrease
with Φ is the consequence of the conflict between effective
conductivity and viscosity. In fact, the former tends to
enhance heat transfer while the latter tends to reduce it,
indirectly, by slowing down the fluid motion, particularly
near the thermally active walls, whose role in terms of heat
transport is crucial.

Moreover, it is interesting to see that, for Ri > 10, an
increase of Re leads to a decrease of ψc and an increase of
Nu, which means that the shear effect weakens the flow and
improves the heat transfer owing to its mixing role.

Another way to examine the effect of Φ on ψc (top) and
Nu (bottom) is to plot these quantities against Φ for each
value of Re and given values of Ri, as shown in Figures 11–13.
Hence, for Re = 0.1 (Figure 11), the decrease of ψc with Φ
becomes pronounced while increasing Ri, but such a decrease
tends to be lesser (very weak slop) for Re = 1 (Figure 12)
and ends to disappear for Re = 10 (Figure 13) since ψc stops
depending on Φ. As for Nu, the tendency is such that Nu
starts to increase with Φ for Re = 0.1 (Figure 11), tends
to decrease with Φ, depending gradually on Ri, for Re =
1 (Figure 12), and finishes to decrease completely with Φ,
whatever the selected value of Ri, for Re = 10 (Figure 13).
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Figure 12: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Φ, for A = 8, Re = 1 and
various values of Ri.
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Figure 13: Evolution of the stream function (a) and the Nusselt number (b), in the central part of the cavity, with Φ, for A = 8, Re = 10 and
various values of Ri.

Consequently, the dependence of ψc and Nu on Φ changes
with Re and Ri.

6. Conclusion

In this paper a numerical and analytical study on mixed con-
vection in a two-dimensional horizontal shallow enclosure,
of aspect ratio A = 8, filled with a nanofluid, has been
conducted in the case where both short vertical sides are
submitted to uniform heat fluxes while the long horizontal
ones are assumed adiabatic, with the top one uniformly
moving in the same direction to heat flux.

The full partial differential equations, governing the
problem, have been solved numerically using a finite volume
method. The computations, which have been limited to Cu-
water mixtures, with Pr = 7, have been carried out with
governing parameters, Re, Ri, and Φ, varying, respectively, in

the ranges 0.1 ≤ Re ≤ 10, 10−3 ≤ Ri ≤ 106, and 0 ≤ Φ ≤ 0.2.
Analytical solution is derived on the basis of a parallel flow
assumption in the core region of the enclosure.

It emerges, essentially, from such a study that results
related to heat transfer in nanofluids lead to contradictory
conclusions, depending on the flow nature, thus leaving
still unanswered the question if the use of nanoparticle
suspensions for mixed convection applications is actually
advantageous with respect to pure liquids. This is para-
doxical, when nanofluids are expected to improve heat
transfer, and can be, probably, related to the conflict between
effective conductivity and viscosity with the complicity of the
cavity aspect ratio, which is large and favours the effect of
viscosity and disfavours that of conductivity. Therefore, more
investigations are called for in order to find out the reasons
that lead to heat transfer deterioration in nanofluids.
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Nomenclature

A : Aspect ratio of the cavity
C: Dimensionless temperature gradient in

the x-direction
G: Gravitational acceleration
Gr: Grashof number
H′: Height of the enclosure
H : Heat exchange coefficient
k: Thermal conductivity of fluid
k: Dimensionless parameter
L′: Length of the rectangular enclosure
Nu: Local Nusselt number
Nu: Average Nusselt number
Pr: Prandtl number
q′: Constant heat flux per unit area
Re: Reynolds number
Ri: Richardson number
t: Dimensionless time
T : Dimensionless temperature
T′c : Reference temperature at the geometric

centre of the enclosure
ΔT∗: Characteristic temperature
(u, v): Dimensionless axial and transverse

velocities
U ′

0: Lidvelocity
(x, y): Dimensionless axial and transverse

coordinates.

Greek Symbols

α: Thermal diffusivity
α: Dimensionless parameter
β: Thermal expansion coefficient
β: Dimensionless parameter
ν: Kinematic viscosity
ν: Dimensionless parameter
μ: Dynamic viscosity
ρ: Density of base fluid
Φ: Nanoparticle volume fraction
ψ: Dimensionless stream function
Ω: Dimensionless parameter.

Superscripts

′: Dimensional variable.

Subscripts

c: Value relative to the centre of the
enclosure or critical value

f : Base fluid
m: Minimum value.
n f : Nanofluid
np: Nanoparticle
∗: Characteristic variable.
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