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The present paper deals with the theoretical investigation of thermodynamical and structural properties like internal energy (E),
entropy (S), Helmholtz free energy (F), isothermal compressibility (χT), specific Heat (CV ), structure factor S(q), and long wave
length limit S(0) of structure factor of 3d liquid transition metals. To describe electron-ion interaction we have used our newly
constructed parameter free model potential. To perform this task, we have used different reference systems like Percus Yevick
Hard Sphere (PYHS), One Component Plasma (OCP), and Charged Hard Sphere (CHS) reference systems. We have also seen the
influence of different local field correction functions like Hartree (HR), Taylor (TR), and Sarkar et al. (SR) on thermodynamical
properties of 3d liquid transition metals. Finally we conclude that the proper choice of the model potential along with reference
system plays a vital role in the study of thermodynamical and structural properties of 3d liquid transition metals.

1. Introduction

The structure and thermodynamics of liquid metals have
been widely studied with an increasing sophistication in
the modelling of the interionic forces and in the classical
statistical mechanics treatment of ionic correlations [1–48].
This study has drawn much theoretical attention both for its
intrinsic interest and for the relevance to an understanding
of electronic properties. The calculations of the atomic
interactions in bonded metals have mainly been based on the
density dependent pairwise potentials derived from electron-
ion pseudopotential with the linear response theory and
second order perturbation theory. The statistical mechanics
side of the problem has been calculated with perturbation
theory integral equations and computer simulations [1–10].
Although a lot of work has been done on both the structure
and thermodynamics, still some questions await a definite
answer. The limitations of linear response theory based
interactions are well known. It is also possible to consider the

interactions based on second order perturbation theory as
effective pairwise potentials [11, 12]. However, in such case
one would expect that a combined study of the structural
and thermodynamic consequences of the interaction could
illuminate in a quantitative way the relevance of such effec-
tive model interactions for the explanation of the physical
and chemical properties of the liquid metals. We believe that
only a combined analysis of structural and thermodynamic
data should be able to assess the quality of any model for the
interionic forces. However, only a few studies have been made
addressing simultaneously these two problems.

In all these attempts the use of pseudopotential approach
is found a remarkable success. But many existing studies
have been limited to local model potentials with empirically
determined parameters [13–15]. Also it is found in our
literature survey [1–50] that some abinitio pseudopotentials
suitable for the perturbation theory of the ionic interac-
tions were generated. In general, the pseudopotentials like
Ashcroft empty core model (AS) [16–19], Heine-Abarenkov
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model (HA) [17, 20, 21], harmonic model potential (HMP)
[17, 20, 21], generalized nonlocal model potential (GNMP)
[22–24], energy independent nonlocal model potential
(EINMP) [25, 26] and so forth. have been applied to study
the structure and thermodynamics of liquids.

On the other side of the treatment of the atomic cor-
relations, computer simulation has a precision limited only
by numerical errors. However, when focusing on trends of
thermodynamic quantities, approximate but reliable theories
aimed at modelling the free energy are still very useful tools.
The simplest of such method is Gibbs-Bogoliubov (GB)
approach [24, 27, 28].

The general idea underlying the GB [24, 27, 28]
inequality is that the true Helmholtz free energy of a
liquid metal is bounded from above by the free energy of
a suitably chosen reference system plus the difference in
average potential energy between the actual and the reference
system, calculated using the distribution functions of the
reference systems. Thus the choice of the reference system
is clearly very important. Ideally the basis for choosing
the best reference system is that one expects it to give the
lowest free energy and the expressions required for the
thermodynamic and structure can be expressed possibly in
an analytic form. People have applied popular reference
system like Percus-Yevick Hard Sphere (PYHS) [23, 29–
38], One Component Plasma (OCP) [37–44], Charged Hard
Sphere (CHS) [29, 30, 45–48], Hard Sphere Yukawa (HSY)
[49, 50], Optimized Random Phase Approximation (ORPA)
[24], and Soft Sphere (SS) systems [23].

Thus it is highly desirable to search a better reference sys-
tem which gives good explanation of various properties when
it is used with a particular model potential. Hence proper
combination of a model potential and a reference system is
one of the basic requirement in explaining various structure
and thermodynamics of liquid metals. So, we thought it
worthwhile to study the structure and thermodynamics of
liquid transition metals using our own model potential using
different reference systems.

In the last two decades, the considerable efforts have been
made to understand the structure and thermodynamics of
several simple liquid metals, liquid transition metals, liquid
rare-earth metals, and their alloys [1–50]. The interatomic
potentials of simple metals [24, 37–39, 45–49, 51–55] have
been fully investigated and their thermodynamic properties
could be derived with sufficient accuracy, but in the case
of transition metals the hybridization of d electron with s
electron makes the things complex. Computer experiments
are always intended to propose a plausible interpretation of
experimental results in some cases to give the solution to an
experimentally inaccessible problem. Despite the success of
the theory in the solid state, results for the structure factor of
liquid transition metals using molecular dynamics and other
complicated liquid state theories have not been so reliable
[1–10]. The reliability of the predicted values, however,
entirely depends on the validity of a given interatomic
potential and the model used. Compare to simple liquid
metals only a few attempts are made on liquid transition
metals [2–10, 50, 55–58]. Therefore, the present paper deals
with the computation of thermodynamical and structural

properties like internal energy (E), entropy (S), Helmholtz
free energy (F), isothermal compressibility (χT), specific heat
(CV ), structure factor S(q), and long wave length limit of
structure factor S(0) of 3d liquid transition metals using our
newly constructed parameter free model potential [43, 59,
60] with different reference systems like Percus-Yevick Hard
Sphere (PYHS) [23, 29–38], One Component Plasma (OCP)
[37–44], and Charged Hard Sphere (CHS) [29, 30, 45–48]
systems.

An important application of pseudopotential is the
calculation of structural properties of disordered materials
such as liquid, amorphous, and their alloys. The problem
with model pseudopotential is that of their transferability,
because still there is no accurate method to obtain the
form factor by which all the properties of liquid metals
may be successfully investigated. It is found that a particular
pseudopotential may be suitable for some properties of some
metals and unsuitable for other properties of other metals.
The usefulness of any model potential depends on how many
number of parameters it involves. Generally, the potential
involving less number of parameters is considered to be,
comparatively a better one than that involving more number
of parameters because it avoids more complexities in the
calculation. It has been observed that a unique method of
the determination of the potential parameter has not been
pointed out so far. A number of investigators have used
fitting procedure in which the potential parameters are fitted
in such a way that a good agreement with experimental
findings is to be obtained. Such a procedure will generally
give good results for a certain property, but the same set of
parameters will not give good results for other properties.
Hence, we thought it worthwhile to construct a parameter
free model potential which, by employing, explains the
physical as well as chemical properties of condensed matter.

A pseudopotential method employing a simple model
of a solid composed of atomic cores and valence electrons
can predict the existence and properties of new solids and
their properties [61]. By implementing this idea we have
constructed a new model potential which is splitted into
three regions [43, 59, 60],

WB(r) =

⎧
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Basically, this is the modified version of the Ashcroft’s
empty core model [62]. Here we have considered actual
core of an ion as an empty core rather than pseudizing it.
The whole effective region is splitted into three parts. The
effective weak potential felt by an electron is sandwiched
between empty core and long range coulomb potential which
is continuous at r = ra and is considered between the ionic
radius (ri) and atomic radius (ra).

In the reciprocal space, the corresponding bare-ion form
factor of the present model potential is given by [43, 59, 60]
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Here Z, e, Ω, q, ri, and ra are the valency, electronic charge,
atomic volume, wave vector, ionic radius, and atomic radius,
respectively. The local field correction functions like Hartree
(HR) [63], Taylor (TR) [64], and Sarkar et al. (SR) [65] have
been applied to see the influence of exchange and correlation
effect on thermodynamical properties of liquid transition
metals.

2. Theory

The Helmholtz free energy (F) lies at the heart of the
pseudopotential perturbation scheme to calculate the ther-
modynamical properties of liquid metals. The Helmholtz
free energy of the system is defined by the use of the GB
inequality as follow:

F ≤ F0 +
〈
H − H0〉, (3)

where F0 is the Helmholtz free energy (per ion) of the
reference system, H and H0 denote the Hamiltonians of the
real and reference system, respectively.

Again,

F = E − TS (4)

with E, S, and T are internal energy, entropy, and absolute
temperature respectively.

The internal energy of reference system is given by

E = 3
2
kBT + F1 + FEG + FBS + FM. (5)

F1 is the first order electronic term arising from the average
interaction of the valence electron with noncoulombic part
of the bare ion pseudopotential. One has

F1 = lim
q→ 0

{
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(
q
)
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}
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Ω
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FEG is the free energy of the electron gas. One has
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{

3
10

k2
F −

3
4π

kF − 0.0474

−0.0155 ln kF − 1
12

k2
BT

2N(EF)
}

.

(7)

Here N(EF) is the density of the states per unit volume at
Fermi energy. FBS is the band structure energy and is given
in terms of FN (q), the normalized energy wave number char-
acteristic incorporating exchange and correlation corrections
as,

FBS = −z2

π

∫∞

0
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Here S(q) is the structure factor of reference system.
FN (q) is the normalized energy wave number characteristic.
It is expressed as
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Here ε(q) is called the modified dielectric function. It
includes exchange and correlation effect in the screening
through local field correction function f (q). WB(q) is the
unscreened form factor. It depends on the core-ion pseu-
dopotential and hence allows us to investigate its effect on the
thermodynamics function. Here ε(q) is the modified Hartree
dielectric screening function which takes into account the
conduction electron interaction

ε
(
q
) = 1 +

[
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(
q
)][

1− f
(
q
)]

(10)

εH(q) is the static dielectric function and f (q) is the
correction factor for the exchange and correlated motion of
the conduction electrons. FM is the Madelung energy and it
can be written as follows.

For PYHS systems
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For OCP system
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The constants A, B, C, and D are−0.89752, 0.94544, 0.17954,
and −0.80049, respectively. Γ∗ is effective plasma parameter,
Γ∗ = Z2e2β/rs, rs is the radius of the atomic sphere, rs =
(3Ω/4π)3. β = kBt, where kB and t are Boltzmann constant
and absolute temperature, respectively.

For CHS systems
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where ζ = (1− η)3/(1 + 2η)2 and k = (12η2/3Γ)
1/2

.
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Table 1: The input parameters used in the present computations.

Metal Z T (K) [65, 66] Density n (gm/cm3) [65, 66] ri ( ´̊A) ra ( ´̊A)

Sc 1.50 1833 2.92 0.81 1.61

Ti 1.50 1973 4.15 0.68 1.45

V 1.50 2173 5.36 0.59 1.31

Cr 1.50 2173 6.26 0.64 1.25

Mn 1.50 1533 5.96 0.80 1.37

Fe 1.50 1823 7.00 0.64 1.24

Co 1.50 1823 7.71 0.74 1.25

Ni 1.50 1773 7.71 0.72 1.25

Cu 1.50 1423 7.96 0.72 1.28

The computation of the entropy is more straight forward
and computed using S = Sgas + Selec + Si with,

Sgas = 5
2
kB + kB ln

{
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kBT
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)1/2
}
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(
π2k2

BT

k2
F

)

,

(14)

where Si term represents the contribution from the different
reference system.

For PYHS system
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)

(
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)2 . (15)

For OCP system
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For CHS system
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For a given number density ρ, packing fraction η (HS,
CHS, and SS reference systems) and plasma parameter Γ
(OCP reference system) are varied to obtain a minimum
variational upper bound for the Helmholtz free energy (F).

The long wave length limit of structure factor S(q) is
defined as follows.

For PYHS
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For CHS system

S(0) = lim
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The isothermal compressibility χT and specific heat CV at
constant volume can be expressed as

χT = S(0)
ρkBT

,
CV

kB
= t

kB

∂S

∂t
. (21)

3. Results and Discussion

The thermodynamical variational properties of 3d series
of liquid transition metals elements have been investigated
without any adjustable parameter. Table 1 represents the
input parameters used in the present computation. Self-
consistent calculations by Moriarty [73] indicate that ele-
ments whose properties are affected by d bands, the valency
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Table 2: Calculated variational parameter (packing fraction η and plasma parameter Γ) due to different local field correction functions like
Hartree (HR) [63], Taylor (TR) [64], and Sarkar et al. (SR) [65] of 3d liquid transition metals.

Metal S(q)
Packing fraction (η) Plasma parameter (Γ)

HR [63] TR [64] SR [65] Others [34, 45, 48, 50] Expt. [67] HR [63] TR [64] SR [65] Others [44, 45, 56]

Sc
PYHS 0.4395 0.4295 0.4292

0.353, 0.330, 0.325, 0.430 0.43 66 68 68 —
CHS 0.4302 0.4294 0.4299

Ti
PYHS 0.4323 0.4317 0.4314

0.415, 0.415, 0.418, 0.362 0.44 70 72 72 110, 105
CHS 0.4330 0.4348 0.4337

V
PYHS 0.4442 0.4338 0.4335

0.418, 0.420, 0.425, 0.374 0.44 64 64 64 110, 105
CHS 0.4312 0.4291 0.4316

Cr
PYHS 0.4406 0.4389 0.4394

0.443, 0.445, 0.445, 0.380 0.45 68 68 66 110, 105
CHS 0.4347 0.4365 0.4349

Mn
PYHS 0.4662 0.4665 0.4658

0.500, 0.508, 0.515, 0.404 0.45 96 96 96 110, 105
CHS 0.4648 0.4619 0.4630

Fe
PYHS 0.4551 0.4549 0.4553

0.435, 0.430, 0.389, 0.411 0.44 86 86 88 110, 105
CHS 0.4585 0.4581 0.4569

Co
PYHS 0.4547 0.4548 0.4540

0.420, 0.405, 0.400, 0.370 0.45 74 74 72 110, 105
CHS 0.4582 0.4606 0.4630

Ni
PYHS 0.4572 0.4562 0.4566

0.405, 0.380, 0.373, 0.351 0.45 88 88 88 110, 105
CHS 0.4614 0.4631 0.4619

Cu
PYHS 0.4764 0.4766 0.4758

0.418, 0.383, 0.370, 0.450 0.46 106 106 106 —
CHS 0.4842 0.4840 0.4845

(Z) lie in a narrow range 1.1 < Z < 1.7. By implementing
this concept, we have taken Z = 1.5 for 3d liquid transition
metals, respectively. Therefore the number of d electrons,
which do not participate to conduction, is fixed since Zs +
Zd is constant. We have displaced in Table 2 the values of
the variational parameter with Hartree (HR) [63], Taylor
(TR) [64] and Sarkar et al. (SR) [65] local field correction
functions using Percus-Yevick Hard Sphere (PYHS) [23, 29–
38], One Component Plasma (OCP) [37–44], and Charged
Hard Sphere (CHS) [29, 30, 45–48] reference systems for 3d
liquid transition metals. The present results of variational
parameter η are quite good in agreement with experimental
data [67] as well as other theoretical data [36, 45, 48, 50]
whereas in the case of plasma parameter (Γ) the experimental
data is not available, but with other theoretical data [44,
45, 56] it is reasonable because we have taken actual plasma
parameter (Γ) rather than fitting it as done by others [45]. We
have noticed that the effect of local field correction function
on variational parameters (η and Γ) is very small. It is also
found that the largest values of variational parameter (η
and Γ) are obtained when the d band is filled to a large
extent, while lowest values are obtained when the d band
is nearly empty in the case of 3d liquid transition metal.
This is clearly related to the strongest bonding which occurs
when only the bonding but not the antibonding states are
occupied. Figure 1 represents the variational parameters (η
and Γ) with Hartree (HR) [63] local field correction for 3d
liquid transition metals using different reference systems.

Figure 2 represents the Helmholtz free energy versus
variational parameter of Cu liquid transition metals due
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Figure 1: Packing fraction (η) and plasma parameter (Γ) obtained
from the variational method for 3d liquid transition metals.

to Sarkar et al. (SR) [65] local field correction function.
The OCP system gives the lowest Helmholtz free energy
compared to other reference systems. Figure 2 represents
Helmholtz free energy versus variational parameter of liquid
Cu for different local field correction function due to CHS
system, which indicates that Taylor (TR) [64] local field
correction function gives the lowest Helmholtz free energy,
while Hartree (HR) [63] gives maximum Helmholtz free
energy.
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Figure 2: Helmhotz free energy versus variational parameters (packing fraction (η) and Plasma parameter (Γ)) for different reference systems
due to Sarkar et al. (SR) [65] local field correction function and for different local field correction function due to CHS system of Cu liquid
metals.
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Figure 3: Calculated first order electronic energy (F1) and free energy of the electron gas (FEG) of liquid transition metals.

Figure 3 shows calculated F1 and FEG terms of 3d liquid
transition metals. F1 and FEG terms are independent of
the reference system and influence of local field correction
function so that they remain constant for each system.
Figure 4 represents Band structure energy FBS and the effect
of local field correction on FBS term of 3d liquid transition
metals. FBS depends upon both reference system and local
field correction functions. The OCP system gives the lowest

value of Band structure energy. The maximum value of FBS

is obtained for 3d series for liquid Co. The deviation of
local field correction on FB is going on increasing from Sc
to Cu as the d shell is going to fill up (or atomic number
is going on increasing). The Taylor (TR) [64] shows less
deviation of FBS while Sarkar et al. (SR) [65] shows much
deviation from Hartree (HR) [63] for CHS system. Figure 5
represents calculated value of Madelung energy FM term



ISRN Thermodynamics 7

Sc Ti V Cr Mn Fe Co Ni Cu

PYHS

CHS
OCP

0.0008

0.0006

0.0004

0.0002

0

3d liquid transition metals

F
B

S
(a

.u
.)

(a)

Sc Ti V Cr Mn Fe Co Ni Cu

0.004

0.003

0.002

0.001

0

−0.001

Hartree (H)
Taylor (T)
Sarkar (S)

3d liquid transition metals
F

B
S

(b)

Figure 4: Calculated band structure energy (FBS) of 3d liquid transition metals for different reference system with Sarkar et al. (SR)
[65] local field correction function and for different local field correction functions along with charged hard sphere (CHS) reference
system.
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Figure 5: Calculated Madelung energy (FM) of 3d liquid transition metals for different reference system with Sarkar et al. (SR)
[65] local field correction function and for different local field correction functions along with charged hard sphere (CHS) reference
system.
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Table 3: Calculated internal energy (E) due to different local field correction functions like Hartree (HR) [63], Taylor (TR) [64], and
Sarkar et al. (SR) [65] of 3d liquid transition metals.

Metal S(q)
Internal energy (E) in au

HR [63] TR [64] SR [65] Other [10, 35]

Sc

PYHS −0.4897 −0.4887 −0.4886

−0.7180OCP −0.5433 −0.5437 −0.5436

CHS −0.5570 −0.5548 −0.5580

Ti

PYHS −0.5286 −0.5299 −0.5290

−0.7247, −0.6593OCP −0.5906 −0.5909 −0.5906

CHS −0.6053 −0.6064 −0.6063

V

PYHS −0.5653 −0.5645 −0.5634

−0.7638, −0.7193OCP −0.6268 −0.6271 −0.6267

CHS −0.6458 −0.6439 −0.6445

Cr

PYHS −0.5544 −0.5570 −0.5550

−0.7841, −0.7162OCP −0.6219 −0.6223 −0.6221

CHS −0.6397 −0.6409 −0.6408

Mn

PYHS −0.4976 −0.5010 −0.4989

−0.7305, −0.6717OCP −0.5699 −0.5702 −0.5700

CHS −0.5790 −0.5781 −0.5772

Fe

PYHS −0.5594 −0.5627 −0.5606

−0.7284, −0.7088OCP −0.6313 −0.6349 −0.6324

CHS −0.6501 −0.6528 −0.6508

Co

PYHS −0.5138 −0.5187 −0.5156

−0.6649, −0.7134OCP −0.4866 −0.4865 −0.4867

CHS −0.6042 −0.6114 −0.6078

Ni

PYHS −0.5241 −0.5289 −0.5261

−0.7971, −0.7257, −0.812OCP −0.5983 −0.6031 −0.6001

CHS −0.6190 −0.6198 −0.6200

Cu

PYHS −0.5312 −0.5353 −0.5327

−0.3779OCP −0.6088 −0.6094 −0.6091

CHS −0.6273 −0.6281 −0.6281
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Figure 6: Calculated internal energy (E) of 3d liquid transition metals for different reference system with Sarkar et al. (SR) [65] local field
correction function.
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Table 4: Calculated entropy (S/kB) due to different local field correction functions like Hartree (HR) [63], Taylor (TR) [64], and Sarkar et al.
(SR) [65] of liquid transition metals.

Metal S(q)
Entropy (S/kB) in au

HR [63] TR [64] SR [65] Other [8, 10, 35, 45, 56] Expt. [50, 68]

Sc
PYHS 10.67 10.85 10.81

11.48,11.56, 11.87 12.05OCP 12.75 12.72 12.72

CHS 11.02 11.04 11.00

Ti
PYHS 10.68 10.67 10.68

12.42, 12.04, 11.28, 11.55, 11.06 12.01OCP 12.44 12.41 12.41

CHS 10.86 10.85 10.85

V
PYHS 10.51 10.70 10.70

12.15, 12.06, 11.35, 11.61, 11.24 12.08OCP 12.57 12.57 12.57

CHS 10.92 10.95 10.94

Cr
PYHS 10.45 10.47 10.47

12.00, 11.94, 11.13, 11.34, 10.95 11.58OCP 12.38 12.41 12.38

CHS 10.74 10.73 10.73

Mn
PYHS 9.57 9.58 9.58

11.14, 11.37, 10.65, 10.87, 10.41 12.05OCP 11.62 11.62 11.62

CHS 9.86 9.87 9.88

Fe
PYHS 9.95 9.94 9.94

11.93, 11.84, 11.11, 11.39, 10.98 12.11OCP 11.90 11.88 11.90

CHS 10.14 10.15 10.14

Co
PYHS 9.99 9.98 10.00

12.44, 11.98, 11.19, 11.49, 10.98 12.08OCP 12.09 12.12 12.09

CHS 10.17 10.14 10.14

Ni
PYHS 9.88 9.87 9.86

12.76, 12.06, 11.27, 11.56, 11.08, 11.21 11.69OCP 11.85 11.85 11.85

CHS 10.05 10.04 10.04

Cu
PYHS 9.30 9.31 9.32

12.06, 11.08, 10.04, 10.26, 9.68, 10.21 10.27OCP 11.44 11.44 11.44

CHS 9.45 9.45 9.45
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Figure 7: Calculated Sgas and Selec of liquid transition metals.
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Table 5: Calculated Helmholtz free energy (F) due to different local field correction functions like Hartree (HR) [63], Taylor (TR) [64], and
Sarkar et al. (SR) [65] of liquid transition metals.

Metal S(q)
Helmholtz free energy (F) in au

HR [63] TR [64] SR [65] Others [24, 34, 50]

Sc

PYHS −0.6136 −0.6145 −0.6140

−0.735, −0.755, −0.756OCP −0.6913 −0.6914 −0.6913

CHS −0.6848 −0.6830 −0.6857

Ti

PYHS −0.6620 −0.6632 −0.6624

−0.704, −0.730, −0.734, −0.733, −0.731OCP −0.7460 −0.7460 −0.7457

CHS −0.7409 −0.7419 −0.7418

V

PYHS −0.7098 −0.7117 −0.7106

−0.765, −0.798, −0.803, −0.768, −0.765OCP −0.7997 −0.8000 −0.7996

CHS −0.7961 −0.7945 −0.7950

Cr

PYHS −0.6982 −0.7011 −0.6992

−0.757, −0.794, −0.799, −0.786, −0.783OCP −0.7922 −0.7931 −0.7924

CHS −0.7875 −0.7886 −0.7885

Mn

PYHS −0.5905 −0.5940 −0.5919

−0.686, −0.721, −0.726, −0.736, −0.735OCP −0.6827 −0.6830 −0.6828

CHS −0.6747 −0.6739 −0.6732

Fe

PYHS −0.6749 −0.6781 −0.6760

−0.743, −0.776, −0.778, −0.755, −0.754OCP −0.7695 −0.7728 −0.7706

CHS −0.7678 −0.7706 −0.7684

Co

PYHS −0.6290 −0.6340 −0.6310

−0.752, −0.785, −0.785, −0.757, −0.756OCP −0.6262 −0.6264 −0.6263

CHS −0.7215 −0.7284 −0.7249

Ni

PYHS −0.6350 −0.6397 −0.6368

−0.756, −0.790, −0.791, −0.751, −0.750OCP −0.7313 −0.7361 −0.7331

CHS −0.7318 −0.7325 −0.7327

Cu

PYHS −0.6150 −0.6192 −0.6166

−0.746, −0.780, −0.783, −0.730, −0.726OCP −0.7119 −0.7125 −0.7121

CHS −0.7125 −0.7132 −0.7132

and effect of local field correction functions on 3d liquid
transition metals for CHS system. The CHS system gives
the lowest value of FM term while OCP system gives the
highest values of FM term for liquid transition metals. From
Figure 5, it is clear that FM term is not much sensitive to
the choice of local field correction function. The calculated
value of internal energy (E) of 3d liquid transition metals is
tabulated in Table 3 along with other available data [10, 35]
and also plotted in Figure 6 for Sarkar et al. (SR) [65] local
field correction function. From these, it is clear that CHS
system gives a lower internal energy (E) compares to other
systems for all liquid transition metals. It is also noticed that
the value of internal energy has not been much affected by
the influence of local field correction functions. The FM and
FEG give negative contribution to internal energy (E) while
F1and FBS give positive contribution to internal energy (E).
F1 term includes the electron-ion interaction through model

potential. In this calculation major contribution comes from
the term FM while contribution of FBS is very small.

The calculated entropy of liquid transition metals is
presented in Table 4. The minimum numerical values have
been obtained due to the PYHS system while the maximum
due to the OCP system. From the present results, we have
observed that the OCP system gives excellent agreement
with present results and experimental data [50, 68] for
entropy compared to other reference system for 3d liquid
transition metals (except Cu). A good agreement has been
found with experimental data [50, 68] for liquid Ti, V, and
Mn due to Sarkar et al. (SR) [65] local field correction
function for OCP system while for liquid Fe, Co, and Ni
due to Hartree (HR) [63] local field correction function for
OCP system. The different contributions of entropy (S), are
plotted in Figures 7–9 along with Sarkar et al. (SR) [65]
local field correction function of 3d liquid transition metals.
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Table 6: Calculated long wave length limit of structure factor S(0) due to different local field correction functions like Hartree (HR) [63],
Taylor (TR) [64], and Sarkar et al. (SR) [65] of 3d liquid transition metals.

Metal S(q)
Long wave length limit of structure factor S(0)

HR [63] TR [64] SR [65] Other [69, 70] Expt. [71, 72]

Sc

PYHS 0.0280 0.0307 0.0300

— 0.036OCP 0.0252 0.0362 0.0340

CHS 0.0346 0.0349 0.0341

Ti

PYHS 0.0299 0.0297 0.0299

0.0226, 0.0236, 0.0228 0.020OCP 0.0264 0.0386 0.0363

CHS 0.0337 0.0331 0.0332

V

PYHS 0.0268 0.0295 0.0295

0.0234, 0.0243, 0.0236 0.025OCP 0.0283 0.0410 0.0387

CHS 0.0342 0.0344 0.0343

Cr

PYHS 0.0277 0.0280 0.0281

0.0205, 0.0212, 0.0207 0.021OCP 0.0236 0.0316 0.0308

CHS 0.0329 0.0325 0.0325

Mn

PYHS 0.0217 0.0218 0.0218

0.0231, 0.0242, 0.0233 0.024OCP 0.0136 0.0173 0.0167

CHS 0.0245 0.0244 0.0245

Fe

PYHS 0.0242 0.0240 0.0240

0.0202, 0.0210, 0.0204 0.020OCP 0.0197 0.0273 0.0257

CHS 0.0265 0.0265 0.0264

Co

PYHS 0.0243 0.0242 0.0244

0.0199, 0.0207, 0.0201 0.019OCP 0.0146 0.0180 0.0177

CHS 0.0264 0.0257 0.0259

Ni

PYHS 0.0237 0.0236 0.0234

0.0199, 0.0207, 0.0201 0.020OCP 0.0154 0.0197 0.0191

CHS 0.0256 0.0253 0.0253

Cu

PYHS 0.0197 0.0198 0.0199

0.0172, 0.0179, 0.0173 0.018OCP 0.0128 0.0165 0.0159

CHS 0.0207 0.0205 0.0205

Among three contributions, only Si depends on structure and
potential terms while Sgas and Selec depend only on density
and are independent of reference system and local field
correction functions. The numerical value of Sgas is much
larger than Si. The Sgas increases the absolute value of entropy
whereas Si tends to decrease the total entropy of system. From
Figures 7–9, it is clear that PYHS system gives the lowest value
of Si term while OCP system gives the highest numerical
value of Si term of liquid transition metals. It is also noticed
that Si term is not much sensitive to the use of different local
field correction function. We have compared our results with
available theoretical data [10, 35]. The minimum numerical
values of entropy (S) have been obtained due to the PYHS
system while the maximum due to the OCP system.

Table 5 represents Helmholtz free energy of 3d liquid
transition metals. Figure 10 represents calculated Helmholtz
free energy F of 3d liquid transition metals due to Sarkar et al.

(SR) [65] local field correction function. The OCP system
gives minimum Helmholtz free energy compared to other
reference system for liquid transition metals (except Co and
Cu). For Co and Cu, the CHS system gives the minimum
Helmholtz free energy. The values of Helmholtz free energy
have not been much affected by the influence of local
field correction functions. Hence we say that structure and
potential are responsible to lower the free energy of the
system. Therefore OCP and CHS systems show a lower
Helmholtz free energy than PYHS. Among them OCP gives
a lower Helmholtz free energy than other systems.

In our previous [60] attempt, we have thermodynam-
ical properties like entropy (S), internal energy (E), and
Helmholtz free energy (F) of 3d liquid transition metals
using variational principle based on the Gibbs-Bogolyubov
inequality with Percus-Yevick hard sphere reference system.
But, here we have used three different reference systems
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Figure 8: Calculated Si of 3d liquid transition metals for different reference systems with Sarkar et al. (SR) [65] local field correction function
and for charged hard sphere (CHS) reference systems with different local field correction functions.

Table 7: Calculated isothermal compressibility (χT) due to different local field correction functions like Hartree (HR) [63], Taylor (TR) [64],
and Sarkar et al. (SR) [65] of 3d liquid transition metals.

Metal S(q)
Isothermal compressibility χT × 10−12 cm2/dyne

HR [63] TR [64] SR [65] Others [45] Expt. [45, 71]

Sc
PYHS 2.83 3.10 3.03

2.25, 2.31, 1.91 3.64OCP 2.55 3.66 3.44
CHS 3.50 3.53 3.45

Ti
PYHS 2.10 2.09 2.11

1.56, 1.28 1.48, 1.40OCP 1.86 2.72 2.56
CHS 2.37 2.33 2.34

V
PYHS 1.41 1.56 1.55

1.25, 1.23, 1.01 1.10, 1.31OCP 1.49 2.16 2.04
CHS 1.80 1.81 1.80

Cr
PYHS 1.27 1.29 1.29

1.07, 1.01, 0.82 1.06, 1.10OCP 1.09 1.45 1.41
CHS 1.51 1.49 1.49

Mn
PYHS 1.57 1.57 1.57

1.63, 1.52, 1.23 1.73OCP 0.98 1.25 1.21
CHS 1.77 1.76 1.77

Fe
PYHS 1.26 1.26 1.26

1.29, 1.26, 1.02 1.04, 1.05OCP 1.03 1.43 1.34
CHS 1.38 1.38 1.38

Co
PYHS 1.23 1.23 1.23

1.29, 1.23, 0.98 0.97, 0.96OCP 0.74 0.91 0.89
CHS 1.33 1.30 1.31

Ni
PYHS 1.22 1.22 1.21

1.21, 1.26, 1.00 0.98, 1.03OCP 0.80 1.02 0.99
CHS 1.32 1.31 1.30

Cu
PYHS 1.33 1.34 1.34

1.58 1.51, 1.45OCP 0.86 1.11 1.07
CHS 1.39 1.38 1.38
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Table 8: Calculated specific heat (CV/kB) due to different local field correction functions like Hartree (HR) [63], Taylor (TR) [64], and
Sarkar et al. (SR) [65] of 3d liquid transition metals.

Metal S(q)
Specific heat (CV/kB)

HR [63] TR [64] SR [65] Others [45] Expt. [45]

Sc
PYHS 3.63 3.55 3.57

3.72, 3.91, 4.75 4.39OCP 2.78 2.79 2.79

CHS 3.84 3.80 3.83

Ti
PYHS 3.57 3.58 3.57

3.56, 3.85, 4.90 3.53OCP 2.77 2.79 2.79

CHS 3.86 3.84 3.85

V
PYHS 3.67 3.58 3.58

3.59, 3.87, 5.17 4.15OCP 2.73 2.73 2.73

CHS 3.84 3.80 3.81

Cr
PYHS 3.64 3.63 3.62

3.46, 3.88, 5.26 3.90OCP 2.74 2.72 2.74

CHS 3.85 3.84 3.84

Mn
PYHS 3.86 3.85 3.85

3.27, 3.75, 4.33 4.56OCP 2.82 2.82 2.82

CHS 4.11 4.07 4.07

Fe
PYHS 3.76 3.76 3.76

3.63, 3.94, 4.84 4.38OCP 2.79 2.80 2.79

CHS 4.09 4.06 4.07

Co
PYHS 3.75 3.75 3.75

3.61. 4.01, 4.93 4.00OCP 2.72 2.71 2.72

CHS 4.07 4.07 4.07

Ni
PYHS 3.78 3.78 3.79

3.76, 4.13, 4.99 4.46OCP 2.79 2.79 2.79

CHS 4.10 4.09 4.10

Cu
PYHS 3.95 3.95 3.94

2.67, 3.18, 3.58 3.04OCP 2.84 2.84 2.84

CHS 4.36 4.35 4.36

like Percus-Yevick Hard Sphere (PYHS) [23, 29–38], One
Component Plasma (OCP) [37–44], and Charged Hard
Sphere (CHS) [29, 30, 45–48]. Our present results for
thermodynamical properties are improved compared to our
previous attempt [60]. Thus in present investigation, we
have seen the influence of structure factor S(q) and different
local field correction functions on thermodynamical and
structural properties of 3d liquid transition metals. It plays
much more crucial role in the study of thermodynamical and
structural properties of 3d liquid transition metals compare
to our previous studies [60].

The structure factor S(q) obtained from the variational
parameter (η and Γ) is illustrated in Figure 11. It is observed
that in most of the cases overestimated the magnitude of
the first peak, although in those cases the locations of the
maxima and minima are reasonable predicted. We have
explained the slight overestimation of our S(q) value when
compared with experiment in cases where they occur, as
being that in those cases where η is greater than 0.45 (which is

the value expected from liquid state theory). The implication
of this is that effective hard sphere diameter is too large and
by interference, the repulsive part of the pair potential in
polyvalent metals extends too far [30]. CHS systems gives
better results for structure factor S(q) compared to OCP
system. OCP system gives much high peak in the structure
factor compare to CHS system.

Table 6 represents calculated long wave length limit of
structure factor S(0) of 3d liquid transition metals using
our obtained variation parameters. The present results of
long wave length limit S(0) is also compared with available
experimental [71, 72] as well as other data [69, 70]. The
present results are in a good agreement with available
experimental data [71, 72] for Ti, V, Cr, Fe, and Cu liquid
metals due to PYHS system, whereas for Sc and Mn due
to CHS system and for Co and Ni liquid metals it is
due to OCP system. Tables 7 and 8 show the calculated
isothermal compressibility, (χT) and specific heat (CV ) of
3d liquid transition metals, respectively, along with available
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Figure 9: Calculated Entropy (S) of 3d liquid transition metals for
different reference systems with Sarkar et al. (SR) [65] local field
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Figure 10: Calculated Hemlholtz free energy (F) of 3d liquid
transition metals for different reference systems with Sarkar et al.
(SR) [65] local field correction function.

experimental data [45, 71] and other theoretical data [45].
The good agreement with available experimental data [45,
71] has been obtained for isothermal compressibility (χT)
due to CHS for Mn and Cu liquid metals, OCP for Sc, Co,
and Ni liquid metals and PYHS for V and Cr liquid metals.
It is found that good agreement with available experimental
data [45] have been achieved for specific heat (CV ) of Sc, V,
Cr, Fe, Co, Ni liquid metals due to CHS system, whereas for
Ti and Cu liquid metals it is due to PYHS and OCP systems
respectively. So that overall CHS system is best suitable
for calculating structural and thermodynamical properties
of liquid transition metals along with our model potential
compared to other reference system. This combination
can be used to calculate other properties like electronic,
magnetic, transport, and vibrational properties of liquid
metals.
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Figure 11: Structure factor S(q) of 3d liquid transition metals for
Sarkar et al. (SR) [65] local field correction function.

4. Summary and Conclusions

(i) The thermodynamical and structural properties of
liquid transition metals have been successfully inves-
tigated along with our newly constructed parameter
free model potential.

(ii) These properties are very sensitive to the choice of
reference systems. The good qualitative and quan-
titative data of the thermodynamical and structural
properties of liquid transition metals have been
obtained and would be beneficial to the other
theoreticians as well as experimentalists working in
the same field.

(iii) These properties of liquid metals are not sensitive
to the use of the different local field correction
functions.

(iv) Thus the application of our newly proposed model
potential in the present study definitely adds new
contribution to understand the thermodynamical
and structural properties of transition metals in
liquid state.
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(v) Thus the proper choice of the model potential along
with the reference system plays a vital role in the study
of the thermodynamical and structural properties of
3d liquid transition metals.
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