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Consider a sequence of an mth-order Autoregressive (AR) stationary discrete-time process and assume that at least m − 1
consecutive neighboring samples of an unknown sample are available. It is not important that the neighbors are from one side
or are from both the left and right sides. In this paper, we find explicit solutions for the optimal linear estimation of the unknown
sample in terms of the neighbors. We write the estimation errors as the linear combination of innovation noises. We also calculate
the corresponding mean square errors (MSE). To the best of our knowledge, there is no explicit solution for this problem. The
known solutions are the implicit ones through orthogonality equations. Also, there are no explicit solutions when fewer than m−1
samples are available. The order of the process (m) and the feedback coefficients are assumed to be known.

1. Introduction

Estimation has many applications in different areas including
compression and equalization [1, 2]. The linear estimation
is more common due to its mathematical simplicity. The
optimal linear estimation of a random variable x in terms
of y1, y2, and yn is the following linear combination

x̂ � ̂E
{

x | y1, y2, . . . , yn
} =

n
∑

i=1

Aiyi, (1)

where the coefficients Ai must be chosen to minimize the
MSE E{(x − x̂)2} and E{·} stands for the expected value.
To minimize the MSE, we must choose Ai’s to satisfy the
orthogonality principle as follows:

E
{

(x − x̂)yi
} = 0, i = 1, 2, . . . ,n. (2)

We also write the above condition as

x − x̂ ⊥ yi, i = 1, 2, . . . ,n. (3)

Therefore, in the optimal linear estimation, we search for the
coefficients such that the error is orthogonal to the data.

A common model for many signals including image,
speech, and biological signals is the AR model [1, 3–5].

This model has applications in different areas including
detection [6, 7], traffic modeling [8], channel modeling [9],
and forecasting [10]. An AR process is the output of an
all-pole causal filter whose input is a white sequence called
innovation noise [11]. We introduce another model for the
process using an all-pole anticausal filter as well. The optimal
linear estimation of an AR process is accomplished through
the recursive solution of Yule-Walker (YW) equations using
Levinson-Durbin algorithm [12]. This solution is recursive
and implicit. As we will see in some cases the equation
coefficients do not form a Toeplitz matrix and we cannot
enjoy the complexity reduction advantage of Levinson
algorithm.

To the best of our knowledge, there is no explicit solution
for YW equations. Most of the focus of researchers is
on model parameters estimation from observations. When
researchers arrive at YW equations, they stop, since they
consider the solution as known through Levinson recur-
sion. Broersen in his method for autocorrelation function
estimation form observations points to YW equations and
mainly concentrates on bias reduction in estimation using
finite set of observations [13, 14]. He does not attempt to
find the solution for YW equations. Fattah et al. try to
estimate the autocorrelation function of an ARMA model
from noisy data; they again refer to YW equation set and
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its solution using matrix inversion and no explicit solution
is proposed [15]. Xia and Kamel propose an optimization
method to estimate AR model parameters from noisy data
[16]. Noise is not necessarily Gaussian. The method finds a
minimum for a cost function and exploits a neural-network
algorithm. Again, the explicit solution of the orthogonality
equations is not the goal of the paper. Hsiao proposes an
algorithm to estimate the parameters of a time-varying AR
system [17]. He considers the feedback coefficients of a
time-varying AR process as random variables. The proposed
algorithm maximizes a posteriori probabilities conditioned
on the data. The recursive algorithm is compared to Monte
Carlo simulation in terms of accuracy and complexity. In
this paper, the aim is parameter estimation from data and
not the analytic solution of orthogonality equations. In [18],
a sequence of Gaussian AR vector is considered. As the
sequence elements are vectors rather than scalars, the AR
model is defined by matrix feedback coefficients rather than
scalar feedback coefficients. The estimation here is more
complex, and some independence conditions are assumed.
The method is based on convex optimization, and no exact
answer can be provided. Mahmoudi and Karimi propose an
LS-based method to estimate AR parameters from noisy data
[19]. The method exploites YW equations, but this method
also does not provide the explicit solution to the equations.
Another LS-based estimation method can be seen in [20].

As mentioned above, we could not see the final solution
to YW orthogonality equations in the literature. In this
work we have derived explicit solutions for orthogonality
equations for different cases. Consider a stationary mth
order AR process. The order and the feedback coefficients
of the process are assumed to be known, and the model
parameter estimation is out of the scope of this paper.
The main goal of this paper is finding the solution for
the orthogonality equations. We will find the the optimal
linear estimation of a sample in terms of the neighbors
where at least m − 1 consecutive neighbors are available.
The consecutive neighbors include the situations where
all the m − 1 or more neighbors are in one side, or
some of them are left neighbors and the others are right
neighbors. We will show that no more that m consecutive
neighbors in each side are needed. Our approach is to find
orthogonal estimation errors that are linear combinations
of data. We use the well-known causal LTI AR model as
well as our anticausal model to form orthogonal errors.
The errors are formed as a linear combination of causal
and anticausal innovation (process) noises. Beginning from
suitable errors that are both orthogonal to the data and are
linear combination of data, we arrive at linear estimations.
We seek LTI system approach rather than trying to directly
solve the orthogonality equations. The results of this paper
for different cases can be important in situations where the
equation matrices are ill-posed and the matrix inversion and
other recursive algorithms become unstable.

This paper is organized as follows. In Section 2, the causal
model is reviewed and the anticausal model is introduced.
In Section 3, we review the forward prediction problem. We
state the problem symmetries in Section 4. We see how we
can use the similarities between two problems to exploit the

In
H(z)

sn

Figure 1: The causal model.

solution of one problem to find the solution of the other
problem. In Section 5, we extract a number of relations for
cross-correlation functions that will be used later. We find
the interpolation formulae when infinite data are available
in Section 6. We find the prediction and interpolation with
finite data in Sections 7 and 8, respectively. In Section 9,
we present a detailed example to show that our relations
and the matrix solution of the orthogonality principle result
in the same coefficients. Finally, we conclude the work in
Section 10.

2. Causal and Anticausal Models

A discrete-time stationary AR process sn of order m is
modeled as follows.

sn + a1sn−1 + a2sn−2 + · · · + amsn−m = In, n ∈ Z. (4)

The above equation is meant for a causal LTI system. In, the
input of the system, is called the innovation noise and is a
stationary white sequence with the zero expected value, that
is, E{InIk} = σ2δ[n− k] and E{In} = 0, where σ is a positive
constant. δ[0] = 1 and δ[i] = 0 elsewhere. The system is
causal. Therefore sn, the output of the system in the time
index n, is a linear combination of the inputs in the time
index n and before. So, we can write

sn = h0In + h1In−1 + h2In−2 + · · · =
∞
∑

i=0

hiIn−i. (5)

In the above equation, hn is the impulse response of the
system. Assuming the causal system model, we have hn = 0
for n < 0. Paying attention to the whiteness of the sequence
{In} and from (5) we get the following result.

In+k ⊥ sn, k > 0, n ∈ Z. (6)

Figure 1 is the causal model of the AR process. H(z) is the
Z-transform of hn, which is defined as

H(z) =
∞
∑

k=−∞
hkz

−k. (7)

For the system defined by (4), we have

H(z) = 1
A(z)

= 1
1 + a1z−1 + · · · + amz−m

. (8)

Assuming a stable causal system, we conclude that the
roots of A(z) = 0 must be inside the unit circle |z| = 1. The
power spectral density function (PSDF) of a process is the Z-
transform of its autocorrelation function. The PSDF of sn is
[11]

Ss(z) = SI(z)H(z)H
(

z−1) = σ2H(z)H
(

z−1). (9)
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H−1(z−1)
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Figure 2: Generation of another innovation noise.

sn
H(z) = H(z−1)

In

Figure 3: Anticausal model.

In the above equation Ss(z) is the PSDF of sn and SI(z) is the
PSDF of In.

We now present the anticausal model. If we apply the
sequence sn to an LTI system with the transfer function
H−1(z−1), we get another innovation noise called I′n. Figure 2
demonstrates the generation of the new innovation noise. To
see the whiteness of the sequence I′n, note that the PSDF of I′n
by using Figure 2 and (9) is as follows.

SI′(z) = Ss(z)H−1(z−1)H−1(z)

= σ2H(z)H
(

z−1)H−1(z−1)H−1(z) = σ2.
(10)

Equivalently we can apply I′n to the inverse system
with the transfer function H′(z) = H(z−1) to get sn. The
generation of sn from I′n is depicted in Figure 3.

We have

H′(z) = H
(

z−1) = 1
A(z−1)

. (11)

Therefore h′n = h−n. Noting that hn = 0 for n < 0, we see
that h′n = 0 for n > 0. Also note that the roots of A(z−1) = 0
are outside the unit circle, as we had the roots of A(z) = 0
inside the unit circle. Regarding these points, we know that
the system with the transfer function H′(z) is stable and
anticausal. We have

H′(z) = 1
1 + a1z + a2z2 + · · · + amzm

. (12)

Using the above equation and Figure 3, we get

sn + a1sn+1 + a2sn+2 + · · · + amsn+m = I′n, n ∈ Z. (13)

Also, note that

sn =
∞
∑

i=−∞
h′i I

′
n−i = h′0I

′
n + h′−1I

′
n+1 + h′−2I

′
n+2 + · · ·

= h0I
′
n + h1I

′
n+1 + · · · =

∞
∑

i=0

hiI
′
n+i.

(14)

From (14) and Figure 3, we see that sn is a linear
combination of I′n and the inputs after that. The whiteness
of the sequence {I′n} gives then

I′n−k ⊥ sn, n ∈ Z, k > 0. (15)

3. Forward Prediction

Forward prediction can be accomplished by using the
whitening filter [11]. The data are whitened, and we use
the equivalent white data to achieve the prediction. As an
example, consider the 1-step forward prediction of sn. It is
seen that sn is estimated as

ŝn = ̂E{sn | sn−k, k > 0} = −
m
∑

k=1

aksn−k

= −a1sn−1 − a2sn−2 − · · · − amsn−m.

(16)

It can bee seen from (4) that the error sn − ŝn is equal to In
and therefore, from (6), it is orthogonal to sn−k for k > 0. It
proves the optimality of (16).

The 2-step prediction can be done as [11]

ŝn = ̂E{sn | sn−k, k ≥ 2} = −a1 ŝn−1 −
m
∑

i=2

aisn−i. (17)

In the above equation, ŝn−1 is the prediction of sn−1 from
its previous data (1-step prediction) and is obtained by
replacing n by n− 1 in (16).

ŝn−1 = ̂E{sn−1 | sn−k, k ≥ 2} = −
m
∑

k=1

aksn−k−1

= −a1sn−2 − a2sn−3 − · · · − amsn−m−1.

(18)

From (17), (18), and (4), the estimation error is

en = sn +
m
∑

i=2

aisn−i − a1

m
∑

k=1

aksn−k−1

= In − a1sn−1 − a1

m
∑

k=1

aksn−k−1 = In − a1In−1.

(19)

From (6), it is clear that In and In−1 are orthogonal to sn−k for
k ≥ 2. It proves the optimality of (17).

The higher-order predictions can be obtained in the same
manner. As the final example of this section, consider the 3-
step forward prediction that is accomplished as follows.

ŝn = ̂E{sn | sn−k, k ≥ 3}

= −a1 ŝn−1 − a2 ŝn−2 −
m
∑

k=3

aksn−k.
(20)

In the above equation, ŝn−1 and ŝn−2 are the 2-step and 1-step
predictions of sn−1 and sn−2, respectively, and are obtained
from (17) and (16). The error is

en = sn + a1 ŝn−1 + a2 ŝn−2 +
m
∑

i=3

aisn−i

= In − a1sn−1 − a2sn−2 + a1 ŝn−1 + a2 ŝn−2

= In − a1(sn−1 − ŝn−1)− a2(sn−2 − ŝn−2)

= In − a1(In−1 − a1In−2)− a2In−2.

(21)
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4. The Problem Symmetries

Consider the following linear interpolation of sn from the
data around it:

ŝn = ̂E
{

sn | sn−k1 , sn−k1+1, . . . , sn−1, sn+1, . . . , sn+k2

}

= a′−k1
sn−k1 + a′−k1+1sn−k1+1 + · · · + a′k2

sn+k2 .
(22)

The orthogonality principle gives

E
{(

sn−a′−k1
sn−k1−a′−k1+1sn−k1+1 − · · · − a′k2

sn+k2

)

sn+i

}

=0, i =−k1,−k1 +1, . . . , k2, i /= 0.
(23)

The above equations become

Rs[i + k1]a′−k1
+ Rs[i + k1 − 1]a′−k1+1 + · · · + Rs[i− k2]a′k2

= Rs[i], i = −k1,−k1 + 1, . . . , k2, i /= 0.
(24)

In the above equations, Rs[i] = E{snsn−i}.
Now, consider the following estimation.

ŝn = ̂E
{

sn | sn−k2 , sn−k2+1, . . . , sn−1, sn+1, . . . , sn+k1

}

= a′′k1
sn+k1 + a′′k1−1sn+k1−1 + · · · + a′′−k2

sn−k2 .
(25)

The orthogonality of error to the data gives

E
{(

sn − a′′k1
sn+k1 − a′′k1−1sn+k1−1 − · · · − a′′−k2

sn−k2

)

sn+i

}

= 0, i = k1, k1 − 1, . . . ,−k2, i /= 0.
(26)

They become

Rs[i− k1]a′′k1
+ Rs[i− k1 + 1]a′′k1−1 + · · · + Rs[i + k2]a′′k2

= Rs[i], i = k1, k1 − 1, . . . ,−k2, i /= 0.
(27)

Regarding that the Rs[·] is an even function, we notice that
the set of equations (24) and the set of equations (27) are
exactly the same. Therefore,

a′−k1
= a′′k1

, a′−k1+1 = a′′k1−1, . . . , a′k2
= a′′−k2

. (28)

As an example, consider the following backward predic-
tion.

ŝn = ̂E{sn | sn+k, k > 0}. (29)

Using (16) and the symmetry, we get

ŝn = ̂E{sn | sn+k, k > 0} = −
m
∑

k=1

aksn+k

= −a1sn+1 − a2sn+2 − · · · − amsn+m.

(30)

The validity of the solution can also be confirmed as from
(13), it is seen that the estimation error is

sn + a1sn+1 + a2sn+2 + · · · + amsn+m = I′n. (31)

Using (15), it is clear that the error is orthogonal to the data.
It proves the optimality of (30).

5. Cross-Correlation Functions

In this section, we derive a number of properties for the
cross-correlations between innovation noises and the AR
process. We will exploit these properties to prove our
solutions.

We define RsI[k] = E{snIn−k} and RI′s[k] = E{I′nsn−k}.
The first simple property follows from (6) and (15) as
follows.

RsI[k] = RI′s[k] = 0, k < 0. (32)

Now, consider Figure 1. In this figure In is the input and sn
is the output. The impulse response of system is hn � h[n].
Therefore, we have [11]

RsI[k] = RI[k]∗ h[k] = σ2δ[k]∗ h[k] = σ2h[k]. (33)

In this equation, RI[k] = E{InIn−k} and the “∗” operator is
the discrete convolution. Taking the Z-transform from both
sides of (33) and using (8), we get

SsI(z) = σ2H(z) = σ2

1 + a1z−1 + · · · + amz−m
. (34)

Or equivalently

SsI(z)
(

1 + a1z
−1 + · · · + amz

−m) = σ2. (35)

Taking inverse Z-transform from this equation, we have

RsI[k] + a1RsI[k − 1] + · · · + amRsI[k −m] = σ2δ[k]. (36)

The right side of (36) is zero for k /= 0.
Referring to Figure 3, we have [11]

RI′s[k] = RI′[k]∗ h′[−k] = σ2δ[k]∗ h′[−k]

= σ2h′[−k] = σ2h[k].
(37)

Again, we conclude that

RI′s[k] + a1RI′s[k − 1] + · · · + amRI′s[k −m] = σ2δ[k].
(38)

6. Interpolation Using an Infinite Set of Data

In this section, we assume that infinite number of data are
available. However, we will see that only a finite number of
data are sufficient.

6.1. Infinite Data on the Left Side. We want to obtain the
following estimation.

ŝn = ̂E{sn | sn+i, i ≤ k1, i /= 0}. (39)
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k1 is a positive integer constant not greater than m. There
are k1 data available on the right side of sn and infinite data
on the left side. Define a0 � 1. We are going to prove the
following:

ŝn = ̂E{sn | sn+i, i ≤ k1, i /= 0}

=− 1
∑k1

k=0 a
2
k

⎛

⎝

k1
∑

k=1

⎛

⎝

k1−k
∑

p=0

apap+k

⎞

⎠sn+k+
m−k1
∑

k=1

⎛

⎝

k1
∑

p=0

apap+k

⎞

⎠sn−k

+
m
∑

k=m−k1+1

⎛

⎝

m−k
∑

p=0

apap+k

⎞

⎠sn−k

⎞

⎠.

(40)

Observe from (40) that although there are infinite data on
the left side of sn, only m data sn−1 to sn−m participate in
the estimation. Indeed, (40) is the optimal linear estimation
solution for ŝn = ̂E{sn | sn+i, −k2 ≤ i ≤ k1, i /= 0}, where k2

can be any integer greater than or equal to m.
To prove the optimality of (40), we must show that

the estimation error is orthogonal to the data. Firstly the
estimation error can be calculated by inserting ŝn from (40)
in en = sn − ŝn. Secondly, by extending the innovation noises
using (4) we can confirm that

en = sn − ŝn = 1
∑k1

k=0 a
2
k

(

In + a1In+1 + · · · + ak1 In+k1

)

. (41)

Indeed, we have obtained (40) from (41). The motivation
is that the estimation error has to possess two essential
conditions: (1) it must be orthogonal to the data and (2)
it must be only a linear combination of the data and the
variable to be estimated. It remains to prove that the right
side of (41) is orthogonal to the data.

Using (6), it is quite clear that In to In+k1 are orthog-
onal to sn−k for k > 0, and so is en in (41). Further,
we have

E
{

sn+i
(

In + a1In+1 + · · · + ak1 In+k1

)}

= RsI[i] + a1RsI[i− 1] + · · · + ak1RsI[i− k1]

= RsI[i] + a1RsI[i− 1] + · · · + aiRsI[0], 1 ≤ i ≤ k1.
(42)

The last equation of (42) is justified as we have RsI[k] = 0
for k < 0 from (32). Using (32), (36), (41), and (42) it is seen
that

E
{(

In + a1In+1 + · · · + ak1 In+k1

)

sn+i
} = 0, 1 ≤ i ≤ k1.

(43)

This completes the proof.

The MSE is

E
{

e2
n

} = 1
(

∑k1
k=0 a

2
k

)2 · E
{

(

In + a1In+1 + · · · + ak1 In+k1

)2
}

= 1
(

∑k1
k=0 a

2
k

)2

·
(

E
{

I2
n

}

+ a2
1E
{

I2
n+1

}

+ · · · + a2
k1
E
{

I2
n+k1

})

= 1
(

∑k1
k=0 a

2
k

)2 ·
(

σ2 + a2
1σ

2 + · · · + a2
k1
σ2
)

.

(44)

Therefore,

E
{

e2
n

} = σ2

∑k1
k=0 a

2
k

. (45)

6.2. Infinite Data on the Right Side. By symmetry, and
replacing sn−k by sn+k in (40), the following estimation is
derived.

ŝn = ̂E{sn | sn−i, i ≤ k1, i /= 0}

=− 1
∑k1

k=0 a
2
k

⎛

⎝

k1
∑

k=1

⎛

⎝

k1−k
∑

p=0

apap+k

⎞

⎠sn−k

+
m−k1
∑

k=1

⎛

⎝

k1
∑

p=0

apap+k

⎞

⎠sn+k

+
m
∑

k=m−k1+1

⎛

⎝

m−k
∑

p=0

apap+k

⎞

⎠sn+k

⎞

⎠.

(46)

Again, only m data sn+1 to sn+m on the right side of sn
participate in the interpolation, and the data after them are
not needed. Therefore, (46) is the solution for all the optimal
linear interpolations ŝn = ̂E{sn | sn−i, −k2 ≤ i ≤ k1, i /= 0},
where k2 can be any integer greater than or equal to m.

The validity of (46) can also be proved as follows. The
error is calculated as en = sn − ŝn, where ŝn is from (46). By
extending the innovation noises from (13), it can be verified
that

en = sn − ŝn = 1
∑k1

k=0 a
2
k

(

I′n + a1I
′
n−1 + · · · + ak1 I

′
n−k1

)

. (47)

Using (15), it is quite clear that I′n−k1
to I′n are orthogonal to

sn+k for k > 0, and so is en in (47). Further, we have

E
{

sn−i
(

I′n + a1I
′
n−1 + · · · + ak1 I

′
n−k1

)}

= RI′s[i] + a1RI′s[i− 1] + · · · + ak1RI′s[i− k1]

= RI′s[i] + a1RI′s[i− 1] + · · · + aiRI′s[0], 1 ≤ i ≤ k1.
(48)

The last equation of (48) is justified as we have RI′s[k] = 0
for k < 0 from (32). Using (32), (38), (47), and (48), it is seen
that E{ensn−i} = 0 for 1 ≤ i ≤ k1. This completes the proof.

The MSE is the same as in (45).
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6.3. Infinite Data on Both Sides. Now, we want to estimate
sn from all the data around it. We will see that only m data
on each side are needed and as is expected, the data with the
same distance from sn participate with the same weight. We
have

ŝn = ̂E{sn | sn−i, i /= 0}

= − 1
∑m

k=0 a
2
k

·
⎛

⎝

m
∑

k=1

⎛

⎝

m−k
∑

p=0

apap+k

⎞

⎠(sn−k + sn+k)

⎞

⎠.
(49)

This estimation can also be obtained by letting k1 = m in
(40) or (46). Again, note that (49) is the optimal solution for
the problems ŝn = ̂E{sn | sn−i, i /= 0, −k1 ≤ i ≤ k2}, where k1

and k2 can be any integer greater than or equal to m.
The validity of (49) can also be proved as follows. The

error is calculated as en = sn − ŝn, where ŝn is from (49). By
extending the innovation noises from (4), it can be verified
that

en = sn − ŝn = 1
∑m

k=0 a
2
k

(In + a1In+1 + · · · + amIn+m). (50)

Using (6) it is quite clear that In to In+m are orthogonal to sn−k
for k > 0, and so is en in (50). Further, we have

E{sn+i(In + a1In+1 + · · · + amIn+m)}
= RsI[i] + a1RsI[i− 1] + · · · + amRsI[i−m], i > 0.

(51)

Using (32), (36), (50), and (51), it is seen that E{ensn+i} = 0
for i > 0. This completes the proof.

The MSE is

E
{

e2
n

} = 1
(

∑m
k=0 a

2
k

)2 · E
{

(In + a1In+1 + · · · + amIn+m)2
}

= σ2
∑m

k=0 a
2
k

.

(52)

7. Prediction with Finite Data

Assume that only m − 1 consecutive data sn−1 to sn−m+1 are
available. We want to prove the following.

ŝn = ̂E{sn | sn−k , 1 ≤ k ≤ m− 1}

= − 1
1− a2

m

m−1
∑

k=1

(ak − amam−k)sn−k.
(53)

The above estimation can be obtained as follows. Since
sn−m is not available we can estimate it from data sn−1 to
sn−m+1. The estimated value can be now used to predict sn
using (16).

ŝn = ̂E{sn | sn−k, 1 ≤ k ≤ m− 1}

= −
m−1
∑

k=1

aksn−k − amŝn−m

= −a1sn−1 − a2sn−2 − · · · − am−1sn−m+1 − amŝn−m.

(54)

On the other hand, sn−m can be backward predicted using
(30) as

ŝn−m = ̂E{sn−m | sn−k, 1 ≤ k ≤ m− 1}

= −a1sn−m+1 − a2sn−m+2 − · · · − am−1sn−1 − amŝn.
(55)

Now we have two equations (54) and (55) with two
unknowns ŝn and ŝn−m. Solving these equations, we get (53).
The optimality of (53) can also be proved by seeing that the
estimation error is equal to

en = In − amI′n−m
1− a2

m
. (56)

To derive the above equation, we has used (4) and (13). It is
easily seen from (6) and (15) that In and I′n−m are orthogonal
to data sn−1 to sn−m+1. This proves the optimality of (53). To
calculate the MSE, we note that

E
{

e2
n

} = E
{

en(sn − ŝn)
} = E{ensn}. (57)

The last equation is justified, as the error is orthogonal to the
data and to the estimation which is a linear combination of
the data. Inserting (56) in (57), we get

E{ensn} = 1
1− a2

m
· E{(In − amI

′
n−m

)

sn
}

= 1
1− a2

m
· (RsI[0]− amRI′s[−m]).

(58)

Finally, using (58), (32), and (36), we have

E
{

e2
n

} = σ2

1− a2
m
. (59)

Higher-order predictions with m−1 data can be obtained
from (53). As an example, we have

ŝn = ̂E{sn | sn−k, 2 ≤ k ≤ m}

= −a1 ŝn−1 −
m
∑

k=2

aksn−k ,
(60)

where ŝn−1 is derived by replacing n by n− 1 in (53).
We could not derive a simple general form for the

estimation with less than m− 1 data.
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8. Interpolation with Finite Data

We now derive the linear interpolation with less than m data
on each side. More clearly we allege

ŝn = ̂E{sn | sn+k , −k2 ≤ k ≤ k1, k /= 0}

= − 1
∑k1

k=0 a
2
k −

∑m
k=k2+1 a

2
k

×
⎛

⎝

k1
∑

k=m−k2

⎛

⎝

k1−k
∑

p=0

apap+k

⎞

⎠sn+k

+
m−k2−1
∑

k=1

⎛

⎝

k1−k
∑

p=0

apap+k −
m−k
∑

p=k2+1

apap+k

⎞

⎠sn+k

+
m−k1−1
∑

k=1

⎛

⎝

k1
∑

p=0

apap+k −
m−k
∑

p=k2−k+1

apap+k

⎞

⎠sn−k

+
k2
∑

k=m−k1

⎛

⎝

k2−k
∑

p=0

apap+k

⎞

⎠sn−k

⎞

⎠.

(61)

In (61) we must have k1 + k2 ≥ m− 1 and k1 ≤ k2 ≤ m− 1.
It means that the distance between sn and the farthest data
on the right side is less than the distance between sn and
the farthest data on the left side. The optimality of (61) can
be seen as we can verify that from (61), (4), and (13) the
estimation error is

en = 1
∑k1

k=0 a
2
k −

∑m
k=k2+1 a

2
k

· (In + a1In+1 + · · · + ak1 In+k1 − amI
′
n−m

−am−1I
′
n−m+1 − · · · − ak2+1I

′
n−k2−1

)

.

(62)

It remains to prove that (62) is orthogonal to the data.

(1) It is clear from (6) and (15) that In to In+k1 and I′n−m
to I′n−k2−1 are orthogonal to the data sn−1 to sn−k2 .
Therefore the error in (62) is orthogonal to sn−k for
1 ≤ k ≤ k2.

(2) Further from (43) and regarding that I′n−m to I′n−k2−1
are orthogonal to the data sn+1 to sn+k1 according to
(15), we see that the error in (62) is orthogonal to
sn+k for 1 ≤ k ≤ k1.

Therefore the error is orthogonal to the data and the proof is
completed.

From (32), (36), and (62), the MSE is

E
{

e2
n

} = E{ensn} = 1
∑k1

k=0 a
2
k −

∑m
k=k2+1 a

2
k

· (RsI[0] + a1RsI[−1] + · · · + RsI[−k1]

− amRI′s[−m]− am−1RI′s[−m + 1] · · ·

−ak2+1RI′s[−k2 − 1]
)

= σ2

∑k1
k=0 a

2
k −

∑m
k=k2+1 a

2
k

.

(63)

For the case k1 = k2, 2k1 ≥ m− 1, k1 ≤ m− 1, we can replace
k2 by k1 in (61) to achieve the following.

ŝn = ̂E{sn | sn+k, −k1 ≤ k ≤ k1, k /= 0}

= − 1
∑k1

k=0 a
2
k −

∑m
k=k1+1 a

2
k

·
⎛

⎝

k1
∑

k=m−k1

⎛

⎝

k1−k
∑

p=0

apap+k

⎞

⎠(sn−k + sn+k)

+
m−k1−1
∑

k=1

⎛

⎝

k1−k
∑

p=0

apap+k −
m−k
∑

p=k1+1

apap+k

⎞

⎠(sn−k + sn+k)

⎞

⎠.

(64)

As expected, we see that the data with the same distance from
sn participate with the same weight.

Now, consider the case that the distance between sn and
the farthest data on the right side is more than the distance
between sn and the farthest data on the left side. It can be
handled by the symmetry of the problem. More clearly, if
we replace sn−k by sn+k and vice versa in (61), we get the
following.

ŝn = ̂E{sn | sn−k, −k2 ≤ k ≤ k1, k /= 0}

= − 1
∑k1

k=0 a
2
k −

∑m
k=k2+1 a

2
k

×
⎛

⎝

k1
∑

k=m−k2

⎛

⎝

k1−k
∑

p=0

apap+k

⎞

⎠sn−k

+
m−k2−1
∑

k=1

⎛

⎝

k1−k
∑

p=0

apap+k −
m−k
∑

p=k2+1

apap+k

⎞

⎠sn−k

+
m−k1−1
∑

k=1

⎛

⎝

k1
∑

p=0

apap+k −
m−k
∑

p=k2−k+1

apap+k

⎞

⎠sn+k

+
k2
∑

k=m−k1

⎛

⎝

k2−k
∑

p=0

apap+k

⎞

⎠sn+k

⎞

⎠.

(65)



8 ISRN Signal Processing

Again in (65), k1 ≤ k2 ≤ m − 1 and k1 + k2 ≥ m − 1. The
estimation error in this case is

en = 1
∑k1

k=0 a
2
k −

∑m
k=k2+1 a

2
k

·
(

I′n + a1I
′
n−1 + · · · + ak1 I

′
n−k1

−amIn+m − am−1In+m−1 − · · · − ak2+1In+k2+1
)

.

(66)

The MSE is the same as (63). We could not find a simple
general form for the case k1 + k2 < m− 1.

9. A Detailed Example

In this section we deal with a detailed example. The optimal
linear estimation of the following process is desired.

sn + 0.8sn−1 + 0.3sn−2 − 0.1sn−3 = In. (67)

In is the innovation noise with the unit variance σ = 1. We
have a1 = 0.8, a2 = 0.3 and a3 = −0.1. The process is the
response of the following 3rd order (m = 3) all-pole filter to
the innovation noise.

H(z) = 1
1 + 0.8z−1 + 0.3z−2 − 0.1z−3

. (68)

The poles of this system are p1 = 0.2 and p2,3 = −0.5± j0.5.
Taking inverse Z-transform from Ss(z) = H(z)H(z−1), we
get the following autocorrelation function.

Rs[k] = rk = E{snsn−k}

= 625
13542

× 5−|n| +
40

2257

× 2−|n|/2
(

103 cos
(

3π
4
n
)

− 26 sin
(

3π
4
|n|
))

.

(69)

From (69), we have r0 = 1.8716, r1 = −1.1339, r2 = 0.2322,
r3 = 0.3415, r4 = −0.4563, r5 = 0.2858, and r6 = −0.0576.
Now, we consider different cases.

9.1. Prediction with Finite Data. We want to derive the
following optimal linear prediction.

ŝn = ̂E{sn | sn−1, sn−2} = A1sn−1 + A2sn−2. (70)

Using (53), we have

ŝn = − 1
1− 0.01

[(0.8 + 0.1× 0.3)sn−1 + (0.3 + 0.1× 0.8)sn−2]

= −0.8384sn−1 − 0.3838sn−2.
(71)

If we want to verify the solution using the orthogonality
equations, we have

E{(sn − A1sn−1 − A2sn−2)sn−k} = 0, k = 1, 2. (72)

Expanding (72), we get

r0A1 + r1A2 = r1,

r1A1 + r0A2 = r2,
(73)

where rk’s come from (69). Replacing rk’s from (69) in (73),
we get

1.8716A1 − 1.1339A2 = −1.1339,

−1.1339A1 + 1.8716A2 = 0.2322,
(74)

Solving (74), we get the same result as (71).

9.2. Interpolation with Finite Data. Consider the following
problem.

ŝn = ̂E{sn | sn−1, sn+1} = A1sn−1 + A′1sn+1 (75)

It is the symmetric case of k1 = k2 = 1 and we have 2k1 =
2 = m− 1. Using (64), we have

ŝn = − [1× 0.8− 0.3× (−0.1)]
1 + 0.64− 0.09− 0.01

(sn−1 + sn+1)

= −0.5390(sn−1 + sn+1).

(76)

Let us rederive the solution of (75) using the orthogonality
conditions. We have

E
{(

sn − A1sn−1 − A′1sn+1
)

sn−k
} = 0, k = 1,−1. (77)

Expanding (77), we get the following.

r0A1 + r2A
′
1 = r1,

r2A1 + r0A
′
1 = r1.

(78)

Solving (78), we get the same answer as (76).
Now, consider the nonsymmetric following problem.

ŝn = ̂E{sn | sn−2, sn−1, sn+1} = A1sn+1 + A′1sn−1 + A′2sn−2

(79)

which is the case of k1 = 1 < k2 = 2 ≤ m− 1, and k1 + k2 ≥
m− 1. From (61), we get the following results.

ŝn = − 1
1 + 0.64− 0.01

· (1× 0.8sn+1 + (1× 0.8 + 0.8× 0.3− 0.3× (−0.1))

×sn−1 + 1× 0.3sn−2)

= −0.4908sn+1 − 0.6564sn−1 − 0.1840sn−2.
(80)

Now, we want to obtain the solution of (79) using the
matrix equations and we expect the same answer as (80). The
orthogonality condition is

E
{(

sn − A1sn+1 − A′1sn−1 − A′2sn−2
)

sn−k
} = 0,

k = −1, 1, 2.
(81)
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It follows that

r0A1 + r2A
′
1 + r3A

′
2 = r1,

r2A1 + r0A
′
1 + r1A

′
2 = r1,

r3A1 + r1A
′
1 + r0A

′
2 = r2.

(82)

The result of (82) is the same as (80).

9.3. Interpolation with Infinite Data on the Left Side. We want
to obtain the following estimation.

ŝn = ̂E{sn | sn+i, i ≤ 1, i /= 0}
= A1sn+1 + A′1sn−1 + A′2sn−2 + A′3sn−3.

(83)

We can do it if we let k1 = 1 in (40). It follows that

ŝn = − 1
1 + 0.64

· (1× 0.8sn+1 + (1× 0.8 + 0.8× 0.3)sn−1

+(1× 0.3 + 0.8× (−0.1))sn−2 + 1× (−0.1)sn−3)

= −0.4878sn+1 − 0.6341sn−1 − 0.1341sn−2 + 0.0610sn−3.
(84)

Now we verity (84) using the orthogonality conditions.

E
{(

sn − A1sn+1 − A′1sn−1 − A′2sn−2 − A′3sn−3
)

sn−k
} = 0,

k = −1, 1, 2, 3.
(85)

The following set of equations is obtained

r0A1 + r2A
′
1 + r3A

′
2 + r4A

′
3 = r1,

r2A1 + r0A
′
1 + r1A

′
2 + r2A

′
3 = r1,

r3A1 + r1A
′
1 + r0A

′
2 + r1A

′
3 = r2,

r4A1 + r2A
′
1 + r1A

′
2 + r0A

′
3 = r3.

(86)

Note that the coefficient matrix of (86) is not Toeplitz.
The result of (86) is the same as (84).

10. Conclusion

We introduced anticausal LTI model besides the known
causal LTI model for AR processes. Using these models and
the related innovation noises, we achieved the optimal linear
interpolations for different cases. Specifically, we extracted
the formulae when there are infinite data on the right, or the
left sides of the variable to be estimated. We also obtained
the linear prediction or interpolation with finite data. The
number of data must be at least the order of the process
minus one. We could not find a general simple form when
fewer data are available. For the proofs of our solutions,
the innovation noises and the orthogonality principle are
essential.
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