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Abstract. 
Multiple built-in cameras and the small size of mobile phones are underexploited assets for creating novel applications that are ideal for pocket size devices, but may not make much sense with laptops. In this paper we present two vision-based methods for the control of mobile user interfaces based on motion tracking and recognition. In the first case the motion is extracted by estimating the movement of the device held in the user's hand. In the second it is produced from tracking the motion of the user's finger in front of the device. In both alternatives sequences of motion are classified using Hidden Markov Models. The results of the classification are filtered using a likelihood ratio and the velocity entropy to reject possibly incorrect sequences. Our hypothesis here is that incorrect measurements are characterised by a higher entropy value for their velocity histogram denoting more random movements by the user. We also show that using the same filtering criteria we can control unsupervised Maximum A Posteriori adaptation. Experiments conducted on a recognition task involving simple control gestures for mobile phones clearly demonstrate the potential usage of our approaches and may provide for ingredients for new user interface designs.

1. Introduction
Designing comfortable user interfaces for mobile phones is a challenging problem, given the limited amount of interaction hardware and the small size of the device. Touch sensitive technology has already enabled new ways for users to interact with handheld devices. Recent touch screens provide an intuitive interface for navigating content but this equipment still imposes some limitations: the user's fingertip size can decrease pointing accuracy, the area of interest can be occluded by fingers, and most importantly the operation area is restricted. Moreover, the amount of functionalities in mobile devices is likely to keep increasing due to the forthcoming 3D user interfaces and applications. Going forward we will see also multiple sensors in portable devices that can enrich the mobile user experience by allowing control through gestures and other types of movement. Studies into alternatives to mobile user interaction have, therefore, become a very active research area in recent years.
Much of the work in mobile interaction has been in direct manipulation interfaces, such as screen navigation by scrolling or pointing and clicking. In particular, it has been shown that different sensors provide viable alternatives to conventional user interaction. For example, tilting interfaces can be implemented with gyroscopes [1] and accelerometers [2]. Using both tilt and buttons, the device itself is used as input for navigating menus and maps. During the operation, only one hand is required for manipulation. Several devices employ a detachable stylus in which interaction is done by tapping the touch screen to activate buttons or menu choices. Interestingly, Apple's products make use of the same technology in a different way. In the iPhone, users are allowed to zoom in and out by performing multiple fingers gestures on the touch screen. In addition, a proximity sensor shuts off the display in certain situations to save battery power, and an accelerometer senses the orientation of the phone and changes the screen accordingly.
On the other hand, many of the current mobile phones have also two cameras built-in, one for capturing high-resolution photography and the other for lower-resolution video telephony. Even the most recent devices have not yet utilised these unique input capabilities enabled by cameras for purposes other than just photographing. With appropriate computer vision methods, information provided by images allow us to create new self-intuitive user interface concepts. In our work we have focused on what could be described as indirect interfaces, where an abstract shape is recognised, and this is then interpreted as a command by the mobile device.
In this paper we investigate two specific approaches for creating patterns of motion: firstly the estimation of the egomotion of the device itself using the inbuilt camera now available on most mobile devices and also the use of this camera for tracking the motion of an external object, in our case the user's finger. These motion trajectory sequences are then modelled using  Hidden Markov Models (HMMs). In order to improve the initial, we propose to automatically filter incorrectly classified sequences from the final result. This filtering is based on two criteria: entropy and likelihood ratio. The first, entropy, is a measure of the data itself, whilst the second, likelihood ratio, is a measure of the confidence in the classification result. In our case the entropy measure is used to characterise the randomness of the velocity of the motion sequence. Our hypothesis is that sequences with more random velocity are more likely to be incorrectly classified, as opposed to a sequence with a more constant velocity. The likelihood ratio is the ratio between the most likely sequence and the second most likely sequence. This ratio can be seen as a confidence measure of the classification result.
In the following section, Section 2, we look at previous approaches to vision-based control of mobile user interfaces. In Section 3, we present two methods used for producing motion information from image sequences. In Section 4, we describe the HMMs used for sequence classification and the use of  Maximum A Posteriori (MAP) adaptation in adapting these models. In Section 5, we demonstrate in two sets of experiments how the criteria of entropy and likelihood ratio can be used to filter the results of a recognition task and also how the same criteria can be used to select data for performing unsupervised adaptation of HMMs using MAP adaptation. Finally we present our conclusion in Section 6.
2. Related Work
  Much of the previous work on vision-based user interaction with mobile phones has utilised measured motion information directly for controlling purposes. In these systems the user can operate the phone through a series of hand movements whilst holding the phone to perform actions on the screen of the device such as scrolling or pointing and clicking [3]. For example, Siemens introduced an augmented reality game called Mozzies developed for their SX1 cell phone in 2003. This was the first mobile phone application utilizing the camera as a sensor. The goal of the game was to shoot down the synthetic flying mosquitoes projected onto a real-time background image by moving the phone around and clicking at the right moment. During user movements, the motion of the phone is recorded using a simple optical flow technique.
After this work, we have seen many other image motion based approaches. Möhring et al. [4] presented a tracking system for augmented reality on a mobile phone to estimate 3D camera pose using special colour coded markers. Other marker-based methods use a printed or hand-drawn circle [5], a hand-held target [6], and a set of squares [7] to facilitate the control task. One new solution was presented by Pears [8]. The idea of this approach was to use a camera on the mobile device to track markers on the computer display. This technique can compute which part of the display is viewed and the 6-DOF position of the camera with respect to the display.
An alternative to markers is to estimate motion between successive image frames with similar methods to those commonly used in video coding. Rohs [9] divided incoming frames into the fixed number of blocks and then determined the relative 
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, and rotational motion using a simple block matching technique in order to to interact with an RFID tag. Another possibility is to extract distinctive features such as edges and corners from images which exist naturally in the scene. Haro et al. [10] have proposed a feature-based method to estimate movement direction and magnitude, so the user can navigate the device screen in 2D. Instead of using local features, some approaches extract global features such as integral projections from the image [11].
Some recent and generally interesting directions for mobile interaction are to combine information from several different sensors. In their feasibility study, Hwang et al. [12] combined forward and backward movement and rotation around the 
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-axis from the 3-axis accelerometer. Also, a technique to couple wide area, absolute, and low resolution global data from a GPS receiver with local tracking using feature-based motion estimation was presented by DiVerdi and Höllerer [13].
Recently, the motion input was also applied for more advanced indirect interaction such as recognising signs. This increases the flexibility of the control system as the abstract signs can be used to represent any command, such as controls for a music player. A number of authors have examined the possibility of using phone motion to draw alphanumeric characters. Liu et al. [14] show examples of Latin and Chinese characters drawn using the ego-motion of a mobile device, although these characters are not recognised or used for control. Kratz and Ballagas [15] propose using a simple set of motions to interact with the external environment through the mobile device. In their case there are four symbols, consisting of a three-sided square in four different orientations, and due to the small size of the symbol set they report good performance with no user training.
The other solution studied in this paper, vision-based finger tracking, is well studied problem on desktop computers with numerous applications [16, 17]. On mobile devices, Henrysson et al. [18] considered how a front-facing camera on the phone can be used for 3-D augmented reality interaction. They compared finger gesture input to tangible input, keypad interaction, and phone tilting in user interface tasks. However, in their work finger tracking was performed by using simple frame differencing method. Similar system called Finteraction was introduced by Jenabi and Reiterer [19] but they do not provide much detail of the tracking method. Davis et al. [20] presented a real-time algorithm for finger pointing. The method is based on skin detection which makes it susceptible to illumination changes and noise. In experiments, they evaluate the method in a picture browsing task achieving promising results. Recently, Terajima et al. [21] presented another template-based finger tracking system for recognizing motion made by the user. They achieve real-time performance but they do not provide any quantitative analysis of the algorithm.
3. Motion Feature Extraction
  In our contribution, we propose two alternative solutions to extract motion information from successive images which can be used as a feature for classification. In the first approach, the ego-motion of the device is estimated while the user operates the phone through a series of hand movements. The second technique is to move an object such as a finger in front of the camera and simultaneously track the object during gestures. Both these approaches utilise the feature-based motion analysis as a subtask where a sparse set of image features are first selected from one image and then their displacements are determined. In order to improve accuracy of the motion information, an uncertainty of these features is also analysed.
3.1. Feature Motion Analysis
  Feature motion analysis begins with the selection of image features from the first frame. The goal is to ensure that the features are distributed over the image so that the probability of sufficient presentation of overall image motion is high. We use a computationally straightforward way where the image area is split to nonoverlapping regions and one feature is selected from each region [22].
Another goal is to select some distinctive features which guarantee high precision in the estimation of the displacement vectors. Various criteria for selecting such features typically analyse the richness of texture within an image area [23]. One approach is to consider first-order image derivatives in the horizontal and vertical directions. The sum of squared derivatives provides a computationally simple criterion. An alternative approach we have used is eigenvalue analysis of 
	
		
			
				2
				×
				2
			

		
	
 normal matrice which can give better features, but has slightly higher computational complexity.
To estimate the displacement of the features 
	
		
			

				𝑖
			

		
	
, a block matching measure is evaluated exhaustively for a suitable range of integer displacements in both 
	
		
			

				𝑥
			

		
	
- and 
	
		
			

				𝑦
			

		
	
-directions. As a matching measure, we use either the sum of squared differences (SSDs) measure or its variant, zero-mean sum of squared differences (ZSSDs). The latter measure is more robust to lighting changes which can be crucial in some applications. Exhaustive evaluation of either of these measures gives a motion profile. The displacement that minimizes the criterion provides a feature motion estimate 
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 which can be refined to subpixel accuracy via quadratic interpolation of the motion profile values.
Uncertainty of the obtained estimate is analysed by detecting those displacements that may be close to the true displacement according to the matching measure value. Selection of the set of those displacements is based on gradient-based thresholding of the motion profile. The result of this analysis is summarized as a covariance matrix 
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As a result of these computational steps, we obtain a set of  motion features. A motion feature 
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 consists of the feature centroid location in the first image, 
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). Device motion estimation and object tracking use this information as an input.
3.2. Device Motion Estimation
A mobile user interface system controlled through a series of hand movements requires a method for estimating the ego-motion of the device's camera [22]. Camera ego-motion is often estimated from 2-D image motion measured between two successive frames. As the observed motion in an image sequence may consist of multiple motions due to moving objects in a scene and motion parallax, one must consider solutions that estimate the dominant motion.
The ego-motion estimation generally refers to the computation of 6-DOF motion. However, the choice of a model and the number of parameters for the computation are application dependent. For simplicity we use a four-parameter similarity motion model which represents the displacement 
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The global motion describing the device motion is estimated using those motion features which pass an outlier analysis stage. Such analysis is necessary as feature displacement estimates can be erroneous due to image noise, or there may be several independent motions in the scene. It is assumed that the majority of motion features are associated with the global motion we want to estimate. To select those inlier features, we use an RANSAC-based scheme where pairs of motion features are used to instantiate motion model hypotheses, which are then voted for by other features.
A feature votes for a hypothesis if the displacement instantiated from the hypothesis is close to the estimated displacement. The covariance matrix 
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 provides information about the feature motion uncertainty in different directions, and the calculation of votes uses 
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-based Mahalanobis distance measure. Once inlier features have been selected, a weighted least squares approach is used to compute the estimate of the device motion. Primarily, weighting is based on measured uncertainties.
3.3. Object Tracking
The goal of object tracking is to estimate the motion of an object such as a finger which can then be used as a feature for recognising gestures [24]. With hand-held devices the camera also moves slightly when the user is operating the device. The problem is therefore formulated as a task of estimating two distinct motion components, the camera motion and the object motion. However, we are not so interested in segmenting the observed displacements into coherent regions in an image.
One way to track multiple object motions and cope with multimodal distribution is combinatorial data association methods [25]. In many tracking problems there is more than one measurement at the same time step available. Data association is a process to assign each of measurements to the appropriate objects or motion. Assigning measurements can be effective in the case of incoherent motion. Methods of this kind often perform data association and estimation separately by first assigning the measurements and then estimating the state. In the following, we review our method that is able to track multiple motions using a sparse set of motion features. One benefit compared to previous approaches is that no iterations are needed, making the algorithm computationally efficient.
In our model, we assume that the background and foreground motions are constant but subject to random perturbations. Translational models are considered as sufficient approximations, and then the state-space model of the camera (
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Object tracking uses motion features described in Section 3.1 and illustrated in Figure 1(a) as an input. Observed displacements of those features, 
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Figure 1: (a) Motion features. Estimates of feature displacements (lines) and associated error covariances (ellipses). (b) Assignment of motion measurements to two components. Weightings are illustrated using colors (red : background (
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To estimate the motions we use a technique where the Kalman filter [26] and the EM algorithm [27] are combined. The basic assumption is that the motion measurements 
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Soft assignments are then used in the computation of the Kalman gains which are needed to get the filtered estimates of 
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To describe the algorithm in more detail, we denote the estimate of the state 
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.(5)Update  a priori probabilities for assignments with a recursive filter
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									where 
	
		
			
				𝑎
				<
				1
			

		
	
 is a constant learning rate.
Figure 2 shows some frames of the sequence 1 with motion features observed during tracking. The weightings for each feature are illustrated using colors. The red and blue colors depict the background motion and the finger motion, respectively. It can be seen that most of the features are correctly associated. In Figure 2(b) all features are associated to the background because the finger motion is negligible. In our experimental tracker, 100 motion features are used, the image feature size is 5 by 5 pixels, and the maximum displacement is 12 pixels. We assume that the majority of features are extracted from the background. Therefore, the initial probabilities 
	
		
			

				𝜋
			

			

				1
			

		
	
 and 
	
		
			

				𝜋
			

			

				2
			

		
	
 (see (6)) for the background and the finger motion were set to 0.7 and 0.3, respectively. The learning rate 
	
		
			

				𝑎
			

		
	
 in (11) was set to 0.95 that guarantees a decent change in the proportion of mixture components.
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