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Abstract. 
Let 
	
		
			

				𝑘
			

		
	
 be a positive integer, and let 
	
		
			

				𝐺
			

		
	
 be a graph with minimum degree at least 
	
		
			

				𝑘
			

		
	
. In their study (2010), Henning and Kazemi defined the 
	
		
			

				𝑘
			

		
	
-tuple total domination number 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 as the minimum cardinality of a 
	
		
			

				𝑘
			

		
	
-tuple total dominating set of 
	
		
			

				𝐺
			

		
	
, which is a vertex set such that every vertex of 
	
		
			

				𝐺
			

		
	
 is adjacent to at least 
	
		
			

				𝑘
			

		
	
 vertices in it. If 
	
		
			
				
			
			

				𝐺
			

		
	
 is the complement of 
	
		
			

				𝐺
			

		
	
, the complementary prism 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is the graph formed from the disjoint union of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				
			
			

				𝐺
			

		
	
 by adding the edges of a perfect matching between the corresponding vertices of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				
			
			

				𝐺
			

		
	
. In this paper, we extend
some of the results of Haynes et al. (2009) for the 
	
		
			

				𝑘
			

		
	
-tuple total domination number
and also obtain some other new results. Also we find the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of the
complementary prism of a cycle, a path, or a complete multipartite graph.


1. Introduction
In this paper, 
	
		
			
				𝐺
				=
				(
				𝑉
				,
				𝐸
				)
			

		
	
 is a simple graph with the vertex set 
	
		
			

				𝑉
			

		
	
 and the edge set 
	
		
			

				𝐸
			

		
	
. The order 
	
		
			
				|
				𝑉
				|
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is denoted by 
	
		
			
				𝑛
				=
				𝑛
				(
				𝐺
				)
			

		
	
. The open neighborhood and the closed neighborhood of a vertex 
	
		
			
				𝑣
				∈
				𝑉
			

		
	
 are 
	
		
			

				𝑁
			

			

				𝐺
			

			
				(
				𝑣
				)
				=
				{
				𝑢
				∈
				𝑉
				(
				𝐺
				)
				∣
				𝑢
				𝑣
				∈
				𝐸
				(
				𝐺
				)
				}
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝐺
			

			
				[
				𝑣
				]
				=
				𝑁
			

			

				𝐺
			

			
				(
				𝑣
				)
				∪
				{
				𝑣
				}
			

		
	
, respectively. Also the degree of 
	
		
			

				𝑣
			

		
	
 is 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
				)
				=
				|
				𝑁
			

			

				𝐺
			

			
				(
				𝑣
				)
				|
			

		
	
. Similarly, the open neighborhood and the closed neighborhood of a set 
	
		
			
				𝑆
				⊆
				𝑉
			

		
	
 are 
	
		
			

				𝑁
			

			

				𝐺
			

			
				⋃
				(
				𝑆
				)
				=
			

			
				𝑣
				∈
				𝑆
			

			
				𝑁
				(
				𝑣
				)
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝐺
			

			
				[
				𝑆
				]
				=
				𝑁
			

			

				𝐺
			

			
				(
				𝑆
				)
				∪
				𝑆
			

		
	
, respectively. The complement of 
	
		
			

				𝐺
			

		
	
 is the graph 
	
		
			
				
			
			

				𝐺
			

		
	
 with the vertex set 
	
		
			
				𝑉
				(
			

			
				
			
			
				𝐺
				)
				=
				𝑉
				(
				𝐺
				)
			

		
	
 and the edge set 
	
		
			
				𝐸
				(
			

			
				
			
			
				𝐺
				)
				=
				{
				𝑢
				𝑣
				∣
				𝑢
				𝑣
				∉
				𝐸
				(
				𝐺
				)
				}
			

		
	
. The minimum and maximum degree of 
	
		
			

				𝐺
			

		
	
 are denoted by 
	
		
			
				𝛿
				=
				𝛿
				(
				𝐺
				)
			

		
	
 and 
	
		
			
				Δ
				=
				Δ
				(
				𝐺
				)
			

		
	
, respectively. We also write 
	
		
			

				𝐾
			

			

				𝑛
			

		
	
, 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
, and 
	
		
			

				𝑃
			

			

				𝑛
			

		
	
 for the complete graph, cycle, and path of order 
	
		
			

				𝑛
			

		
	
, respectively, while 
	
		
			
				𝐺
				[
				𝑆
				]
			

		
	
 and 
	
		
			

				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 denote the subgraph induced on 
	
		
			

				𝐺
			

		
	
 by a vertex set 
	
		
			

				𝑆
			

		
	
, and the complete 
	
		
			

				𝑝
			

		
	
-partite graph, respectively.
Haynes et al. in [1] have defined complementary product of two graphs that generalizes the Cartesian product of two graphs. Let 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐻
			

		
	
 be two graphs. For each 
	
		
			
				𝑅
				⊆
				𝑉
				(
				𝐺
				)
			

		
	
 and 
	
		
			
				𝑆
				⊆
				𝑉
				(
				𝐻
				)
			

		
	
, the complementary product 
	
		
			
				𝐺
				(
				𝑅
				)
				□
				𝐻
				(
				𝑆
				)
			

		
	
 is a graph with the vertex set 
	
		
			
				{
				(
				𝑢
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				)
				∣
				𝑢
			

			

				𝑖
			

			
				∈
				𝑉
				(
				𝐺
				)
				,
				𝑣
			

			

				𝑖
			

			
				∈
				𝑉
				(
				𝐻
				)
				}
			

		
	
 and 
	
		
			
				(
				𝑢
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				)
				(
				𝑢
			

			

				ℎ
			

			
				,
				𝑣
			

			

				𝑘
			

			

				)
			

		
	
 is an edge in 
	
		
			
				𝐸
				(
				𝐺
				(
				𝑅
				)
				□
				𝐻
				(
				𝑆
				)
				)
			

		
	
(1)if 
	
		
			
				𝑖
				=
				ℎ
			

		
	
, 
	
		
			

				𝑢
			

			

				𝑖
			

			
				∈
				𝑅
			

		
	
, and 
	
		
			

				𝑣
			

			

				𝑗
			

			

				𝑣
			

			

				𝑘
			

			
				∈
				𝐸
				(
				𝐻
				)
			

		
	
 or if 
	
		
			
				𝑖
				=
				ℎ
			

		
	
, 
	
		
			

				𝑢
			

			

				𝑖
			

			
				∉
				𝑅
			

		
	
, and 
	
		
			

				𝑣
			

			

				𝑗
			

			

				𝑣
			

			

				𝑘
			

			
				∉
				𝐸
				(
				𝐻
				)
			

		
	
, or(2)if 
	
		
			
				𝑗
				=
				𝑘
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑗
			

			
				∈
				𝑆
			

		
	
, and 
	
		
			

				𝑢
			

			

				𝑖
			

			

				𝑢
			

			

				ℎ
			

			
				∈
				𝐸
				(
				𝐺
				)
			

		
	
 or if 
	
		
			
				𝑗
				=
				𝑘
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑗
			

			
				∉
				𝑆
			

		
	
, and 
	
		
			

				𝑢
			

			

				𝑖
			

			

				𝑢
			

			

				ℎ
			

			
				∉
				𝐸
				(
				𝐺
				)
			

		
	
.

				In other words, for each 
	
		
			

				𝑢
			

			

				𝑖
			

			
				∈
				𝑉
				(
				𝐺
				)
			

		
	
, we replace 
	
		
			

				𝑢
			

			

				𝑖
			

		
	
 by a copy of 
	
		
			

				𝐻
			

		
	
 if 
	
		
			

				𝑢
			

			

				𝑖
			

		
	
 is in 
	
		
			

				𝑅
			

		
	
 and by a copy of its complement 
	
		
			
				
			
			

				𝐻
			

		
	
 if 
	
		
			

				𝑢
			

			

				𝑖
			

		
	
 is not in 
	
		
			

				𝑅
			

		
	
, and for each 
	
		
			

				𝑣
			

			

				𝑗
			

			
				∈
				𝑉
				(
				𝐻
				)
			

		
	
, we replace each 
	
		
			

				𝑣
			

			

				𝑗
			

		
	
 by a copy of 
	
		
			

				𝐺
			

		
	
 if 
	
		
			

				𝑣
			

			

				𝑗
			

			
				∈
				𝑆
			

		
	
 and by a copy of 
	
		
			
				
			
			

				𝐺
			

		
	
 if 
	
		
			

				𝑣
			

			

				𝑗
			

			
				∉
				𝑆
			

		
	
. If 
	
		
			
				𝑅
				=
				𝑉
				(
				𝐺
				)
			

		
	
 (resp., 
	
		
			
				𝑆
				=
				𝑉
				(
				𝐻
				)
			

		
	
), we write simply 
	
		
			
				𝐺
				□
				𝐻
				(
				𝑆
				)
			

		
	
 (resp., 
	
		
			
				𝐺
				(
				𝑅
				)
				□
				𝐻
			

		
	
). Thus, 
	
		
			
				𝐺
				□
				𝐻
				(
				𝑆
				)
			

		
	
 is the graph obtained by replacing each vertex 
	
		
			

				𝑣
			

		
	
 of 
	
		
			

				𝐻
			

		
	
 by a copy of 
	
		
			

				𝐺
			

		
	
 if 
	
		
			
				𝑣
				∈
				𝑆
			

		
	
 and by a copy of 
	
		
			
				
			
			

				𝐺
			

		
	
 if 
	
		
			
				𝑣
				∉
				𝑆
			

		
	
 and replacing each vertex 
	
		
			

				𝑢
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 by a copy of 
	
		
			

				𝐻
			

		
	
. We recall that the Cartesian product 
	
		
			
				𝐺
				□
				𝐻
			

		
	
 of two graphs 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐻
			

		
	
 is the complementary product 
	
		
			
				𝐺
				(
				𝑉
				(
				𝐺
				)
				)
				□
				𝐻
				(
				𝑉
				(
				𝐻
				)
				)
			

		
	
. The special complementary product 
	
		
			
				𝐺
				□
				𝐾
			

			

				2
			

			
				(
				𝑆
				)
			

		
	
, where 
	
		
			
				|
				𝑆
				|
				=
				1
			

		
	
, is called the complementary prism of 
	
		
			

				𝐺
			

		
	
 and denoted by 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
. For example, the graph 
	
		
			

				𝐶
			

			

				5
			

			
				
			
			

				𝐶
			

			

				5
			

		
	
 is the Petersen graph. Also, if 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

		
	
, the graph 
	
		
			

				𝐾
			

			

				𝑛
			

			
				
			
			

				𝐾
			

			

				𝑛
			

		
	
 is the corona 
	
		
			

				𝐾
			

			

				𝑛
			

			
				∘
				𝐾
			

			

				1
			

		
	
, where the corona 
	
		
			
				𝐺
				∘
				𝐾
			

			

				1
			

		
	
 of a graph 
	
		
			

				𝐺
			

		
	
 is the graph obtained from 
	
		
			

				𝐺
			

		
	
 by attaching a pendant edge to each vertex of 
	
		
			

				𝐺
			

		
	
. We notice that 
	
		
			
				𝛿
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				m
				i
				n
				{
				𝛿
				(
				𝐺
				)
				,
				𝛿
				(
			

			
				
			
			
				𝐺
				)
				}
				+
				1
			

		
	
.
In [2], Henning and Kazemi introduced the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of graphs. Let 
	
		
			

				𝑘
			

		
	
 be a positive integer. A subset 
	
		
			

				𝑆
			

		
	
 of 
	
		
			

				𝑉
			

		
	
 is a 
	
		
			

				𝑘
			

		
	
-tuple total dominating set of 
	
		
			

				𝐺
			

		
	
, abbreviated kTDS, if for every vertex 
	
		
			
				𝑣
				∈
				𝑉
			

		
	
,  
	
		
			
				|
				𝑁
				(
				𝑣
				)
				∩
				𝑆
				|
				≥
				𝑘
			

		
	
, that is, 
	
		
			

				𝑆
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

		
	
 if every vertex of 
	
		
			

				𝑉
			

		
	
 has at least 
	
		
			

				𝑘
			

		
	
 neighbors in 
	
		
			

				𝑆
			

		
	
. The 
	
		
			

				𝑘
			

		
	
-tuple total domination number 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is the minimum cardinality of a kTDS of 
	
		
			

				𝐺
			

		
	
. We remark that a 1-tuple total domination is the well-studied total domination number. Thus, 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
				=
				𝛾
			

			
				×
				1
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
. For a graph to have a 
	
		
			

				𝑘
			

		
	
-tuple total dominating set, its minimum degree is at least 
	
		
			

				𝑘
			

		
	
. Since every 
	
		
			
				(
				𝑘
				+
				1
				)
			

		
	
-tuple total dominating set is also a 
	
		
			

				𝑘
			

		
	
-tuple total dominating set, we note that 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				≤
				𝛾
			

			
				×
				(
				𝑘
				+
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
 for all graphs with minimum degree at least 
	
		
			
				𝑘
				+
				1
			

		
	
. A kTDS of cardinality 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
 is called a 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
-set. When 
	
		
			
				𝑘
				=
				2
			

		
	
, a 2-tuple total dominating set is called a double total dominating set, abbreviated DTDS, and the 2-tuple total domination number is called the double total domination number. The redundancy involved in 
	
		
			

				𝑘
			

		
	
-tuple total domination makes it useful in many applications. The paper in [3] gives more information about the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of a graph.
In [4], Haynes et al. discussed the domination and total domination number of complementary prisms. In this paper, we extend some of their results for the 
	
		
			

				𝑘
			

		
	
-tuple total domination number and obtain some other results. More exactly, we find some useful lower and upper bounds for the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of the complementary prism 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 in terms on the order of 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
, 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
			

		
	
, 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
, and 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
			

		
	
, in which some of the bounds are sharp. Also we find this number for 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, when 
	
		
			

				𝐺
			

		
	
 is a cycle, a path, or a complete multipartite graph.
Through of this paper, 
	
		
			

				𝑘
			

		
	
 is a positive integer, and for simplicity, we assume that 
	
		
			
				𝑉
				(
				𝐺
			

			
				
			
			
				𝐺
				)
			

		
	
 is the disjoint union 
	
		
			
				𝑉
				(
				𝐺
				)
				∪
				𝑉
				(
			

			
				
			
			
				𝐺
				)
			

		
	
 with 
	
		
			
				𝑉
				(
			

			
				
			
			
				𝐺
				)
				=
				{
			

			
				
			
			
				𝑣
				∣
				𝑣
				∈
				𝑉
				(
				𝐺
				)
				}
			

		
	
 and 
	
		
			
				𝐸
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝐸
				(
				𝐺
				)
				∪
				𝐸
				(
			

			
				
			
			
				𝐺
				)
				∪
				{
				𝑣
			

			
				
			
			
				𝑣
				∣
				𝑣
				∈
				𝑉
				(
				𝐺
				)
				}
			

		
	
 such that 
	
		
			
				𝐸
				(
			

			
				
			
			
				𝐺
				)
				=
				{
			

			
				
			
			

				𝑢
			

			
				
			
			
				𝑣
				∣
				𝑢
				𝑣
				∉
				𝐸
				(
				𝐺
				)
				}
			

		
	
. The vertices 
	
		
			

				𝑣
			

		
	
 and 
	
		
			
				
			
			

				𝑣
			

		
	
 are called the corresponding vertices. Also for a subset 
	
		
			
				𝑋
				⊆
				𝑉
				(
				𝐺
				)
			

		
	
, we show its corresponding subset in 
	
		
			
				
			
			

				𝐺
			

		
	
 with 
	
		
			
				
			
			

				𝑋
			

		
	
. The next known results are useful for our investigations.
Proposition A (Haynes et al. [2]).  If 
	
		
			

				𝐺
			

		
	
 is a path or a cycle of order 
	
		
			
				𝑛
				≥
				5
			

		
	
 such that 
	
		
			
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
			

		
	
 or is the corona graph 
	
		
			

				𝐾
			

			

				𝑛
			

			
				∘
				𝐾
			

			

				1
			

		
	
, where 
	
		
			
				𝑛
				≥
				3
			

		
	
, then 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
			

		
	
.
Proposition B (Henning and Kazemi [4]).  Let 
	
		
			
				𝑝
				≥
				2
			

		
	
 be an integer, and let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph, where 
	
		
			

				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. (i)If 
	
		
			
				𝑘
				<
				𝑝
			

		
	
, then 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				=
				𝑘
				+
				1
			

		
	
,(ii)if 
	
		
			
				𝑘
				=
				𝑝
			

		
	
 and 
	
		
			

				∑
			

			
				𝑘
				−
				1
				𝑖
				=
				1
			

			

				𝑛
			

			

				𝑖
			

			
				≥
				𝑘
			

		
	
, then 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				=
				𝑘
				+
				2
			

		
	
,(iii)if 
	
		
			
				2
				≤
				𝑝
				<
				𝑘
			

		
	
 and 
	
		
			
				⌈
				𝑘
				/
				(
				𝑝
				−
				1
				)
				⌉
				≤
				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
, then 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				=
				⌈
				𝑘
				𝑝
				/
				(
				𝑝
				−
				1
				)
				⌉
			

		
	
.
Proposition C (Henning and Kazemi [5]).  Let 
	
		
			

				𝐺
			

		
	
 be a graph of order 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				𝛿
				(
				𝐺
				)
				≥
				𝑘
			

		
	
. Then
							
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				
				(
				𝐺
				)
				≥
				m
				a
				x
				𝑘
				+
				1
				,
				𝑘
				𝑛
			

			
				
			
			
				.
				Δ
				(
				𝐺
				)
				
				
			

		
	

Proposition D (Henning and Kazemi [5]).  Let 
	
		
			

				𝐺
			

		
	
 be a graph of order 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				𝛿
				(
				𝐺
				)
				≥
				𝑘
			

		
	
, and let 
	
		
			

				𝑆
			

		
	
 be a kTDS of 
	
		
			

				𝐺
			

		
	
. Then for every vertex 
	
		
			

				𝑣
			

		
	
 of degree 
	
		
			

				𝑘
			

		
	
 in 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				𝑁
			

			

				𝐺
			

			
				(
				𝑣
				)
				⊆
				𝑆
			

		
	
.
2. Some Bounds
The next two theorems state some lower and upper bounds for 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
			

		
	
.
Theorem 2.1.  If 
	
		
			

				𝐺
			

		
	
 is a graph of order 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				2
				≤
				𝑘
				≤
				m
				i
				n
				{
				𝛿
				(
				𝐺
				)
				,
				𝛿
				(
			

			
				
			
			
				𝐺
				)
				}
			

		
	
, then
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				
				𝛾
				≤
				m
				i
				n
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				
				+
				𝑛
				.
			

		
	

Proof. Since for every 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
-set 
	
		
			

				𝐷
			

		
	
 the set 
	
		
			
				𝐷
				∪
				𝑉
				(
			

			
				
			
			
				𝐺
				)
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, we get 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				≤
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝑛
			

		
	
. Similarly, we have 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				≤
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				+
				𝑛
			

		
	
. Therefore
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				
				𝛾
				≤
				m
				i
				n
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				
				+
				𝑛
				.
			

		
	
For proving 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
			

		
	
, let 
	
		
			

				𝐷
			

		
	
 be a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
. Then 
	
		
			
				𝐷
				∩
				𝑉
				(
				𝐺
				)
			

		
	
 is a (
	
		
			
				𝑘
				−
				1
			

		
	
)TDS of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				𝐷
				∩
				𝑉
				(
			

			
				
			
			
				𝐺
				)
			

		
	
 is a (
	
		
			
				𝑘
				−
				1
			

		
	
)TDS of 
	
		
			
				
			
			

				𝐺
			

		
	
. Since every vertex of 
	
		
			
				𝑉
				(
				𝐺
				)
			

		
	
 (resp., 
	
		
			
				𝑉
				(
			

			
				
			
			
				𝐺
				)
			

		
	
) is adjacent to only one vertex of 
	
		
			
				𝑉
				(
			

			
				
			
			
				𝐺
				)
			

		
	
 (resp., 
	
		
			
				𝑉
				(
				𝐺
				)
			

		
	
). Therefore
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				≤
				|
				|
				|
				|
				+
				|
				|
				|
				
				𝐷
				∩
				𝑉
				(
				𝐺
				)
				𝐷
				∩
				𝑉
			

			
				
			
			
				𝐺
				
				|
				|
				|
				=
				|
				|
				𝐷
				|
				|
				=
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				.
			

		
	

The given bounds in Theorem 2.1 are sharp. Let 
	
		
			

				𝐺
			

		
	
 be a 
	
		
			
				(
				𝑘
				−
				1
				)
			

		
	
-regular graph of odd order 
	
		
			
				𝑛
				=
				2
				𝑘
				−
				1
			

		
	
. Then 
	
		
			
				
			
			

				𝐺
			

		
	
 and 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 are (
	
		
			
				𝑘
				−
				1
			

		
	
)- and 
	
		
			

				𝑘
			

		
	
-regular, respectively, and Proposition D implies 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				2
				𝑛
			

		
	
 and 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				=
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				=
				𝑛
			

		
	
. Therefore
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				=
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				
				𝛾
				=
				m
				i
				n
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				
				+
				𝑛
				.
			

		
	

					The Harary graphs 
	
		
			

				𝐻
			

			
				2
				𝑚
				,
				4
				𝑚
				+
				1
			

		
	
 [6] are a family of this kind of graphs. We recall that the Harary graph 
	
		
			

				𝐻
			

			
				2
				𝑚
				,
				𝑛
			

		
	
 is a 
	
		
			
				2
				𝑚
			

		
	
-regular graph with the vertex set 
	
		
			
				{
				𝑖
				∣
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
 and every vertex 
	
		
			

				𝑖
			

		
	
 is adjacent to the 
	
		
			
				2
				𝑚
			

		
	
 vertices in the set
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
				𝜎
			

			
				𝑖
				𝑗
			

			
				∣
				𝜎
			

			
				𝑖
				𝑗
			

			
				≡
				𝑖
				+
				𝑗
				(
				m
				o
				d
				𝑛
				)
			

			
				o
				r
			

			

				𝜎
			

			
				𝑖
				𝑗
			

			
				≡
				𝑖
				−
				𝑗
				(
				m
				o
				d
				𝑛
				)
				,
			

			
				f
				o
				r
			

			
				
				.
				1
				≤
				𝑗
				≤
				𝑚
			

		
	

Theorem 2.2.  If 
	
		
			

				𝐺
			

		
	
 is a graph of order 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				1
				≤
				𝑘
				≤
				m
				i
				n
				{
				𝛿
				(
				𝐺
				)
				,
				𝛿
				(
			

			
				
			
			
				𝐺
				)
				}
			

		
	
, then
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
				𝛾
				m
				a
				x
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				,
			

		
	

						and the lower bound is sharp for 
	
		
			
				𝑘
				=
				1
			

		
	
.
Proof. Trivially 
	
		
			
				m
				a
				x
				{
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				}
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
			

		
	
. Let 
	
		
			

				𝑆
			

		
	
 be a kTDS of 
	
		
			

				𝐺
			

		
	
, and let 
	
		
			

				𝑆
			

			

				
			

		
	
 be a kTDS of 
	
		
			
				
			
			

				𝐺
			

		
	
. Then 
	
		
			
				𝑆
				∪
				𝑆
			

			

				
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and so
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				≤
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				.
			

		
	

						Proposition A implies that, if 
	
		
			
				𝑘
				=
				1
			

		
	
, then the lower bound is sharp for all paths and cycles of order 
	
		
			
				𝑛
				≥
				5
			

		
	
, where 
	
		
			
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
			

		
	
, and for the corona graph 
	
		
			

				𝐾
			

			

				𝑛
			

			
				∘
				𝐾
			

			

				1
			

		
	
, where 
	
		
			
				𝑛
				≥
				3
			

		
	
.
In special case 
	
		
			
				𝑘
				=
				1
			

		
	
, we get the following result in [1].
Corollary 2.3 (see [1]).  If 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				
			
			

				𝐺
			

		
	
 have no isolated vertices, then
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				
				𝛾
				m
				a
				x
			

			

				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			

				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				≤
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			

				𝑡
			

			

				
			

			
				
			
			
				𝐺
				
				.
			

		
	

3. The Complementary Prism of Some Graphs
In this section, we calculate the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of the complementary prism 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, when 
	
		
			

				𝐺
			

		
	
 is a complete multipartite graph, a cycle, or a path. First let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with the vertex partition 
	
		
			
				𝑉
				(
				𝐺
				)
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				𝑝
			

		
	
 such that for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
, 
	
		
			
				|
				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑛
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. Then 
	
		
			
				𝑉
				(
				𝐺
			

			
				
			
			
				⋃
				𝐺
				)
				=
			

			
				1
				≤
				𝑖
				≤
				𝑝
			

			
				(
				𝑋
			

			

				𝑖
			

			

				∪
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			

				)
			

		
	
, where 
	
		
			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
 denotes the corresponding set of 
	
		
			

				𝑋
			

			

				𝑖
			

		
	
. Trivially for 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 to have 
	
		
			

				𝑘
			

		
	
-tuple total domination number we should have 
	
		
			
				𝑘
				≤
				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. In the next five propositions, we calculate this number for the complementary prism of the complete 
	
		
			

				𝑝
			

		
	
-partite graph 
	
		
			

				𝐺
			

		
	
. First we state the following key lemma which has an easy proof that is left to the reader.
Lemma 3.1.  Let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				𝑉
				(
				𝐺
			

			
				
			
			
				⋃
				𝐺
				)
				=
			

			
				1
				≤
				𝑖
				≤
				𝑝
			

			
				(
				𝑋
			

			

				𝑖
			

			

				∪
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			

				)
			

		
	
. If 
	
		
			

				𝑆
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, then for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
, 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
			

		
	
. Furthermore, if 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
			

		
	
 for some 
	
		
			

				𝑖
			

		
	
, then 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
			

		
	
.
Proposition 3.2.  Let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				1
				≤
				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. Then
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				=
				2
				𝑝
				−
				𝛼
				,
			

		
	

						where 
	
		
			
				𝛼
				=
				|
				{
				𝑖
				∣
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
, and 
	
		
			

				𝑛
			

			

				𝑖
			

			
				=
				1
				}
				|
			

		
	
.
Proof. Let 
	
		
			

				𝑆
			

		
	
 be an arbitrary kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and let 
	
		
			

				𝑛
			

			

				1
			

			
				=
				𝑛
			

			

				2
			

			
				=
				⋯
				=
				𝑛
			

			

				𝛼
			

			
				=
				1
				<
				𝑛
			

			
				𝛼
				+
				1
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. Proposition D implies that for every 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
, 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≥
				2
			

		
	
 or 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
 and 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				≥
				1
			

		
	
. Also if 
	
		
			

				|
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
 and 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				0
			

		
	
, it implies 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
. Therefore 
	
		
			
				|
				𝑆
				|
				≥
				𝛼
				+
				2
				(
				𝑝
				−
				𝛼
				)
				=
				2
				𝑝
				−
				𝛼
			

		
	
, and hence 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				≥
				2
				𝑝
				−
				𝛼
			

		
	
. Now we set 
	
		
			

				𝐴
			

		
	
 as a 
	
		
			

				𝑝
			

		
	
-set such that 
	
		
			
				|
				𝐴
				∩
				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
. Since 
	
		
			
				𝐴
				∪
				{
			

			
				
			
			

				𝑥
			

			

				𝑖
			

			
				∣
				𝑥
			

			

				𝑖
			

			
				∈
				𝐴
			

			
				a
				n
				d
			

			
				𝛼
				+
				1
				≤
				𝑖
				≤
				𝑝
				}
			

		
	
 is a TDS of 
	
		
			

				𝐺
			

		
	
 of cardinality 
	
		
			
				2
				𝑝
				−
				𝛼
			

		
	
, we get 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				2
				𝑝
				−
				𝛼
			

		
	
.
Corollary 3.3 (see [1]).  If 
	
		
			
				𝑛
				≥
				2
			

		
	
, then 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐾
			

			

				𝑛
			

			
				
			
			

				𝐾
			

			

				𝑛
			

			
				)
				=
				𝑛
			

		
	
.
Proposition 3.4.  If 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				…
				,
				𝑛
			

			

				𝑝
			

		
	
 is a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				2
				≤
				𝑘
				=
				𝑛
			

			

				1
			

			
				=
				⋯
				=
				𝑛
			

			

				𝛼
			

			
				<
				𝑛
			

			
				𝛼
				+
				1
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				=
				
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				𝑘
				−
				2
			

			
				i
				f
			

			
				𝛼
				=
				1
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝛼
				(
				𝑘
				−
				1
				)
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

Proof. We discuss 
	
		
			

				𝛼
			

		
	
.Case 1 (
	
		
			
				𝛼
				≥
				2
			

		
	
). It follows by 
	
		
			
				𝛼
				≥
				2
			

		
	
 and Lemma 3.1 that, for every 
	
		
			

				𝑘
			

		
	
-tuple total dominating set 
	
		
			

				𝑆
			

		
	
 of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				≥
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
			

		
	
 for 
	
		
			
				1
				≤
				𝑖
				≤
				𝛼
			

		
	
 and 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
				+
				1
			

		
	
 for 
	
		
			
				𝛼
				+
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
. Then
									
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				≥
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝛼
				(
				𝑘
				−
				1
				)
				.
			

		
	

								Now we set 
	
		
			
				⋃
				𝐷
				=
				(
			

			
				1
				≤
				𝑖
				≤
				𝛼
			

			
				(
				𝑋
			

			

				𝑖
			

			

				∪
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				⋃
				)
				)
				∪
				(
			

			
				𝛼
				+
				1
				≤
				𝑖
				≤
				𝑝
			

			
				
			
			

				𝐷
			

			

				𝑖
			

			

				)
			

		
	
 such that 
	
		
			
				
			
			

				𝐷
			

			

				𝑖
			

		
	
 is a (
	
		
			
				𝑘
				+
				1
			

		
	
)-subset of 
	
		
			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
, for 
	
		
			
				𝛼
				+
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
. Since 
	
		
			

				𝐷
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 of cardinality 
	
		
			
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝛼
				(
				𝑘
				−
				1
				)
			

		
	
, we have 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝛼
				(
				𝑘
				−
				1
				)
			

		
	
.Case 2 (
	
		
			
				𝛼
				=
				1
			

		
	
). It follows by 
	
		
			
				𝛼
				=
				1
			

		
	
 and Lemma 3.1 that, for every kTDS 
	
		
			

				𝑆
			

		
	
 of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, 
	
		
			

				𝑋
			

			

				1
			

			

				∪
			

			
				
			
			

				𝑋
			

			

				1
			

		
	
 is a subset of 
	
		
			

				𝑆
			

		
	
 and also every vertex of 
	
		
			
				
			
			

				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				𝑝
			

		
	
 is adjacent to at least 
	
		
			

				𝑘
			

		
	
 vertices of 
	
		
			
				𝑆
				∩
				(
			

			
				
			
			

				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				1
			

			

				)
			

		
	
. Thus either 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
 for each 
	
		
			
				2
				≤
				𝑖
				≤
				𝑝
			

		
	
 and 
	
		
			

				∑
			

			
				2
				≤
				𝑖
				≤
				𝑝
			

			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
				−
				1
			

		
	
 or
									
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				2
			

			
				|
				|
				|
				|
				=
				⋯
				=
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝛽
			

			
				|
				|
				|
				|
				=
				𝑘
				,
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			
				𝛽
				+
				1
			

			
				|
				|
				|
				|
				=
				⋯
				=
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑝
			

			
				|
				|
				=
				𝑘
				+
				1
				,
			

		
	

								for some 
	
		
			
				2
				≤
				𝛽
				≤
				𝑝
			

		
	
. Therefore
									
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				≥
				m
				i
				n
				{
				2
				𝑘
				+
				(
				𝑘
				−
				1
				)
				+
				(
				𝑝
				−
				1
				)
				(
				𝑘
				+
				1
				)
				,
				2
				𝑘
				+
				2
				(
				𝛽
				−
				1
				)
				𝑘
				+
				(
				𝑝
				−
				𝛽
				)
				(
				𝑘
				+
				1
				)
				}
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				(
				𝑘
				−
				1
				)
				.
			

		
	

								Now we set 
	
		
			
				𝐷
				=
				(
				𝑋
			

			

				1
			

			

				∪
			

			
				
			
			

				𝑋
			

			

				1
			

			
				⋃
				)
				∪
				(
			

			
				2
				≤
				𝑖
				≤
				𝑝
			

			
				
			
			

				𝐷
			

			

				𝑖
			

			
				)
				∪
				𝐷
			

			

				0
			

		
	
 such that 
	
		
			
				
			
			

				𝐷
			

			

				𝑖
			

		
	
 is a (
	
		
			
				𝑘
				+
				1
			

		
	
)-subset of 
	
		
			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
 for 
	
		
			
				2
				≤
				𝑖
				≤
				𝑝
			

		
	
 and 
	
		
			

				𝐷
			

			

				0
			

		
	
 is a (
	
		
			
				𝑘
				−
				1
			

		
	
)-subset of 
	
		
			
				𝑉
				(
				𝐺
				)
			

		
	
 such that 
	
		
			
				|
				𝐷
			

			

				0
			

			
				∩
				𝑋
			

			

				2
			

			
				|
				=
				⋯
				=
				|
				𝐷
			

			

				0
			

			
				∩
				𝑋
			

			

				𝑘
			

			
				|
				=
				1
			

		
	
. Since 
	
		
			

				𝐷
			

		
	
 is a kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 of cardinality 
	
		
			
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				𝑘
				−
				2
			

		
	
, we get 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				𝑘
				−
				2
			

		
	
.
Now let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				.
				.
				.
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				3
				≤
				𝑘
				+
				1
				=
				𝑛
			

			

				1
			

			
				=
				⋯
				=
				𝑛
			

			

				𝛼
			

			
				<
				𝑛
			

			
				𝛼
				+
				1
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
, and let 
	
		
			

				𝑆
			

		
	
 be a minimal kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
. Then 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
			

		
	
, by Lemma 3.1. We notice that if 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≥
				𝑘
				+
				2
			

		
	
, for some 
	
		
			

				𝑖
			

		
	
, then we may improve 
	
		
			

				𝑆
			

		
	
 and obtain another kTDS 
	
		
			
				𝑆
				′
			

		
	
 of cardinality 
	
		
			
				|
				𝑆
				|
			

		
	
 such that 
	
		
			
				|
				𝑆
				′
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
 (since every vertex in 
	
		
			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
 (respectively 
	
		
			

				𝑋
			

			

				𝑖
			

		
	
) is adjacent to only one vertex in 
	
		
			

				𝑋
			

			

				𝑖
			

		
	
 (respectively 
	
		
			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
)). Therefore, we may assume that for every minimal kTDS 
	
		
			

				𝑆
			

		
	
 of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, we have 
	
		
			
				𝑘
				≤
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≤
				𝑘
				+
				1
			

		
	
.
Now let 
	
		
			

				𝑆
			

		
	
 be a minimal kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and let 
	
		
			
				𝐵
				=
				{
				𝑖
				|
				1
				≤
				𝑖
				≤
				𝑝
				,
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				}
			

		
	
 be a set of cardinality 
	
		
			

				𝛽
			

		
	
. We consider the following two cases.
Case 1 (
	
		
			
				𝛽
				≠
				0
			

		
	
). In this case, if 
	
		
			
				𝑖
				∈
				𝐵
			

		
	
, we have 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
			

		
	
 such that 
	
		
			
				𝑥
				∈
				𝑆
				∩
				𝑋
			

			

				𝑖
			

		
	
 if and only if 
	
		
			
				
			
			
				𝑥
				∈
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

		
	
, and 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
 otherwise. If 
	
		
			
				𝛽
				≥
				2
			

		
	
, then 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝛽
				(
				𝑘
				−
				1
				)
				,
			

		
	

						and if 
	
		
			
				𝛽
				=
				1
			

		
	
 and 
	
		
			
				𝐵
				=
				{
				𝑖
				}
			

		
	
, then we have also 
	
		
			
				|
				𝑆
				∩
				(
				𝑉
				(
				𝐺
				)
				−
				𝑋
			

			

				𝑖
			

			
				)
				|
				=
				𝑘
			

		
	
. Hence 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				𝑘
				−
				1
				.
			

		
	

						Comparing (3.6), (3.7) shows that for 
	
		
			
				𝛽
				≠
				0
			

		
	
 if 
	
		
			

				𝑆
			

		
	
 is a set of vertices such that 
	
		
			
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				=
				{
				𝑥
			

			
				𝑖
				𝑗
			

			
				∣
				1
				≤
				𝑗
				≤
				𝑘
				}
			

		
	
 and 
	
		
			
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				=
				{
			

			
				
			
			

				𝑥
			

			
				𝑖
				𝑗
			

			
				∣
				𝑥
			

			
				𝑖
				𝑗
			

			
				∈
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			

				}
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
 and 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
 for 
	
		
			
				3
				≤
				𝑖
				≤
				𝑝
			

		
	
, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 and 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				2
				𝑘
				−
				2
				.
			

		
	

Case 2 (
	
		
			
				𝛽
				=
				0
			

		
	
). In this case, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
 we have 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
. We continue our discussion in the next subcases.Subcase 1 (
	
		
			
				𝛼
				≥
				𝑘
				+
				1
			

		
	
 or 
	
		
			
				𝛼
				=
				𝑘
				≤
				𝑝
			

		
	
). Then obviously 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
				𝐺
				)
				|
				≥
				𝑘
			

		
	
. If for 
	
		
			
				1
				≤
				𝑖
				≤
				𝑘
			

		
	
 we consider 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 and 
									
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝑘
				.
			

		
	
Subcase 2 (
	
		
			
				𝛼
				<
				𝑘
				≤
				𝑝
			

		
	
). Then obviously 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
				𝐺
				)
				|
				≥
				𝑘
				+
				1
			

		
	
. If we set 
	
		
			

				𝑆
			

		
	
 such that 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				1
			

			
				|
				=
				2
			

		
	
, and 
	
		
			
				|
				𝑆
				∩
				𝑋
			

			

				𝑖
			

			
				|
				=
				1
			

		
	
 when 
	
		
			
				2
				≤
				𝑖
				≤
				𝑘
			

		
	
, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
 and 
									
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝑘
				.
			

		
	
Subcase 3 (
	
		
			
				𝛼
				=
				𝑝
				≤
				𝑘
				−
				1
			

		
	
). Then obviously 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
				𝐺
				)
				|
				≥
				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
. If 
	
		
			
				𝑆
				∩
				𝑉
				(
				𝐺
				)
			

		
	
 is a 
	
		
			

				𝛾
			

			
				×
				(
				𝑘
				−
				1
				)
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
-set, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and Proposition B implies
									
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
			

			
				i
				f
			

			
				
				𝛼
				=
				𝑝
				=
				𝑘
				−
				1
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				(
				𝑘
				−
				1
				)
				𝑝
			

			
				
			
			
				
				𝑝
				−
				1
			

			
				i
				f
			

			
				𝛼
				=
				𝑝
				<
				𝑘
				−
				1
				.
			

		
	
Subcase 4 (
	
		
			
				𝛼
				<
				𝑝
				<
				𝑘
			

		
	
). Then obviously 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
				𝐺
				)
				|
				≥
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
. If 
	
		
			
				𝑆
				∩
				𝑉
				(
				𝐺
				)
			

		
	
 is a 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
-set, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and Proposition B implies 
									
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				
				=
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝑘
				𝑝
			

			
				
			
			
				
				.
				𝑝
				−
				1
			

		
	

Now let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				.
				.
				.
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				4
				≤
				𝑘
				+
				2
				≤
				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
, and let 
	
		
			

				𝑆
			

		
	
 is a minimal kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
. In this case, we may similarly assume that 
	
		
			
				𝑘
				≤
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				≤
				𝑘
				+
				1
			

		
	
. Also it can be easily seen that if 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
			

		
	
 for some 
	
		
			

				𝑖
			

		
	
, then equality (3.8) holds. Thus let 
	
		
			
				{
				𝑖
				∣
				1
				≤
				𝑖
				≤
				𝑝
				,
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				}
				=
				∅
			

		
	
. Then obviously 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
				𝐺
				)
				|
				≥
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
. If we choose a set 
	
		
			

				𝑆
			

		
	
 such that 
	
		
			
				𝑆
				∩
				𝑉
				(
				𝐺
				)
			

		
	
 is a 
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
			

		
	
-set and 
	
		
			
				|
				𝑆
				∩
			

			
				
			
			

				𝑋
			

			

				𝑖
			

			
				|
				=
				𝑘
				+
				1
			

		
	
 for 
	
		
			
				1
				≤
				𝑖
				≤
				𝑝
			

		
	
, then 
	
		
			

				𝑆
			

		
	
 is a minimum kTDS of 
	
		
			

				𝐺
			

			
				
			
			

				𝐺
			

		
	
, and Proposition B implies 
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
			

			
				i
				f
			

			
				𝑝
				≥
				𝑘
				+
				1
				,
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
				+
				1
			

			
				i
				f
			

			
				
				𝑝
				=
				𝑘
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝑘
				𝑝
			

			
				
			
			
				
				𝑝
				−
				1
			

			
				i
				f
			

			
				𝑝
				<
				𝑘
				.
			

		
	

					Comparing (3.9), (3.10), (3.11), (3.12), and (3.13) with (3.8) shows that we have proved the following propositions.
Proposition 3.5.  Let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				.
				.
				.
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				3
				≤
				𝑛
			

			

				1
			

			
				≤
				𝑛
			

			

				2
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
.  Then 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				3
				𝑝
				+
				2
			

		
	
.
Proposition 3.6.    Let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				.
				.
				.
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				4
				≤
				𝑘
				+
				1
				=
				𝑛
			

			

				1
			

			
				=
				⋯
				=
				𝑛
			

			

				𝛼
			

			
				<
				𝑛
			

			
				𝛼
				+
				1
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
. Then 
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				=
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				𝑝
				(
				𝑘
				+
				1
				)
				+
				𝑘
			

			
				i
				f
			

			
				𝛼
				=
				𝑘
				≤
				𝑝
			

			
				o
				r
			

			
				𝛼
				≥
				𝑘
				+
				1
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
			

			
				i
				f
			

			
				𝛼
				<
				𝑘
				≤
				𝑝
			

			
				o
				r
			

			
				
				
				𝛼
				=
				𝑝
				=
				𝑘
				−
				1
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				m
				i
				n
				2
				𝑘
				−
				2
				,
				(
				𝑘
				−
				1
				)
				𝑝
			

			
				
			
			
				𝑝
				−
				1
				
				
			

			
				i
				f
			

			
				
				
				𝛼
				=
				𝑝
				<
				𝑘
				−
				1
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				m
				i
				n
				2
				𝑘
				−
				2
				,
				𝑘
				𝑝
			

			
				
			
			
				𝑝
				−
				1
				
				
			

			
				i
				f
			

			
				𝛼
				<
				𝑝
				<
				𝑘
				.
			

		
	

Proposition 3.7.  Let 
	
		
			
				𝐺
				=
				𝐾
			

			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				,
				.
				.
				.
				,
				𝑛
			

			

				𝑝
			

		
	
 be a complete 
	
		
			

				𝑝
			

		
	
-partite graph with 
	
		
			
				5
				≤
				𝑘
				+
				2
				≤
				𝑛
			

			

				1
			

			
				≤
				⋯
				≤
				𝑛
			

			

				𝑝
			

		
	
.  Then 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				=
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
			

			
				i
				f
			

			
				𝑝
				≥
				𝑘
				+
				1
				(
				𝑝
				+
				1
				)
				(
				𝑘
				+
				1
				)
				+
				1
			

			
				i
				f
			

			
				𝑝
				=
				𝑘
				≥
				4
				,
				1
				6
			

			
				i
				f
			

			
				
				
				𝑝
				=
				𝑘
				=
				3
				,
				𝑝
				(
				𝑘
				+
				1
				)
				+
				m
				i
				n
				2
				𝑘
				−
				2
				,
				𝑘
				𝑝
			

			
				
			
			
				𝑝
				−
				1
				
				
			

			
				i
				f
			

			
				𝑝
				<
				𝑘
				.
			

		
	

We now determine the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of the complementary prism 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
, where 
	
		
			
				1
				≤
				𝑘
				≤
				3
				=
				𝛿
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
. Here we assume that 
	
		
			
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				∪
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				=
				{
				𝑖
				∣
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
, and 
	
		
			
				𝐸
				(
				𝐶
			

			

				𝑛
			

			
				)
				=
				{
				(
				𝑖
				,
				𝑖
				+
				1
				)
				∣
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
. Proposition D implies that 
	
		
			

				𝛾
			

			
				×
				3
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				2
				𝑛
			

		
	
. In many references, for example, in [1], it can be seen that, for 
	
		
			
				𝑛
				≥
				3
			

		
	
,
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				2
				
				𝑛
			

			
				
			
			
				4
				
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≢
				1
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				−
				1
			

			
				i
				f
			

			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
				,
			

		
	

					and trivially we can prove
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				4
			

			
				i
				f
			

			
				3
				𝑛
				=
				4
				,
			

			
				i
				f
			

			
				2
				𝑛
				=
				5
				,
			

			
				i
				f
			

			
				𝑛
				≥
				6
				.
			

		
	

					Hence Theorem 2.1 implies that
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				2
				≤
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				≤
				𝑛
				+
				2
				,
			

		
	

					where 
	
		
			
				𝑛
				≥
				6
			

		
	
, and also Theorem 2.2 implies that
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑛
				≤
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				≤
				𝑛
				+
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				,
			

		
	

					where 
	
		
			
				𝑛
				≥
				5
			

		
	
. In chain (3.19) we need to calculate 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
, which is done by the next proposition.  
Proposition 3.8.  If 
	
		
			

				C
			

			

				𝑛
			

		
	
 is a cycle of order 
	
		
			

				n
			

			
				≥
				5
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				5
			

			
				i
				f
			

			
				4
				𝑛
				=
				5
				,
			

			
				i
				f
			

			
				3
				6
				≤
				𝑛
				≤
				8
				,
			

			
				i
				f
			

			
				𝑛
				≥
				9
				.
			

		
	

Proof. Proposition C implies that 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				≥
				3
			

		
	
. If 
	
		
			
				𝑛
				≥
				9
			

		
	
, then, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
, the set 
	
		
			

				{
			

			
				
			
			
				𝑖
				,
			

			
				
			
			
				𝑖
				+
				3
				,
			

			
				
			
			
				𝑖
				+
				6
				}
			

		
	
 is a DTDS of 
	
		
			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
 and so 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				3
			

		
	
. If 
	
		
			
				6
				≤
				𝑛
				≤
				8
			

		
	
, then it can be easily verified that 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				≥
				4
			

		
	
. Now since 
	
		
			

				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				3
				,
			

			
				
			
			
				4
				,
			

			
				
			
			
				6
				}
			

		
	
 and 
	
		
			

				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				2
				,
			

			
				
			
			
				4
				,
			

			
				
			
			
				6
				}
			

		
	
 are double total dominating sets of 
	
		
			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
, where 
	
		
			
				𝑛
				=
				6
			

		
	
 and 
	
		
			
				𝑛
				=
				7
				,
				8
			

		
	
, respectively, we get 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				4
			

		
	
. Finally if 
	
		
			
				𝑛
				=
				5
			

		
	
, then 
	
		
			
				
			
			

				𝐶
			

			

				5
			

		
	
 is 2-regular and Proposition D implies 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				(
			

			
				
			
			

				𝐶
			

			

				5
			

			
				)
				=
				5
			

		
	
.
Proposition 3.9.  If 
	
		
			
				𝑛
				≥
				5
			

		
	
, then 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				𝑛
				+
				2
			

		
	
.
Proof. Let 
	
		
			
				𝑛
				≥
				5
			

		
	
. equalities (3.18), (3.19) and Propositions C and 3.8 imply
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				
				
				m
				a
				x
				𝑛
				,
				4
				𝑛
			

			
				
			
			
				𝑛
				−
				2
				
				
				≤
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				≤
				𝑛
				+
				2
				.
			

		
	

						If 
	
		
			
				𝑛
				=
				5
			

		
	
, then 
	
		
			
				m
				a
				x
				{
				𝑛
				,
				⌈
				4
				𝑛
				/
				(
				𝑛
				−
				2
				)
				⌉
				}
				=
				⌈
				4
				𝑛
				/
				(
				𝑛
				−
				2
				)
				⌉
				=
				7
				=
				𝑛
				+
				2
			

		
	
, and so 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				𝑛
				+
				2
			

		
	
. Thus we assume 
	
		
			
				𝑛
				≥
				6
			

		
	
. Then 
	
		
			
				m
				a
				x
				{
				𝑛
				,
				⌈
				4
				𝑛
				/
				(
				𝑛
				−
				2
				)
				⌉
				}
				=
				𝑛
			

		
	
 and hence 
	
		
			
				𝑛
				≤
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				≤
				𝑛
				+
				2
			

		
	
. Now let 
	
		
			

				𝑆
			

		
	
 be a 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
-set. If 
	
		
			
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				⊆
				𝑆
			

		
	
, then 
	
		
			
				𝑆
				=
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				∪
				{
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				}
			

		
	
, for some two adjacent vertices 
	
		
			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				∈
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
, and so 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				𝑛
				+
				2
			

		
	
. Thus we assume 
	
		
			
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				̸
				⊆
				𝑆
			

		
	
. Without loss of generality, let 
	
		
			
				3
				∉
				𝑆
			

		
	
. Since 
	
		
			
				|
				𝑆
				∩
				{
				2
				,
				4
				,
			

			
				
			
			
				3
				}
				|
				≥
				2
			

		
	
, we continue our proof in the following two cases.Case 1 (
	
		
			
				{
				2
				,
				4
				}
				⊆
				𝑆
			

		
	
). Then 
	
		
			
				1
				,
				5
				,
			

			
				
			
			
				2
				,
			

			
				
			
			
				4
				∈
				𝑆
			

		
	
. We note that, for every 
	
		
			
				5
				≤
				𝑖
				≤
				𝑛
				−
				1
			

		
	
, 
	
		
			
				𝑆
				∩
				{
			

			
				
			
			
				𝑖
				,
				𝑖
				+
				1
				}
				≠
				∅
			

		
	
. This implies 
	
		
			
				|
				𝑆
				|
				≥
				(
				𝑛
				−
				1
				−
				4
				)
				+
				6
				=
				𝑛
				+
				1
			

		
	
, and since 
	
		
			
				
			
			

				3
			

		
	
 must be dominated by 
	
		
			
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
, we have 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				|
				≥
				4
			

		
	
. If 
	
		
			
				𝑛
				∉
				𝑆
			

		
	
, then 
	
		
			
				
			
			
				1
				∈
				𝑆
			

		
	
 and so 
	
		
			
				|
				𝑆
				|
				≥
				𝑛
				+
				1
				+
				|
				{
			

			
				
			
			
				1
				}
				|
				=
				𝑛
				+
				2
			

		
	
. Let 
	
		
			
				𝑛
				∈
				𝑆
			

		
	
. If 
	
		
			
				
			
			
				𝑛
				∈
				𝑆
			

		
	
, again 
	
		
			
				|
				𝑆
				|
				≥
				𝑛
				+
				1
				+
				|
				{
			

			
				
			
			
				𝑛
				}
				|
				=
				𝑛
				+
				2
			

		
	
. But 
	
		
			
				
			
			
				𝑛
				∉
				𝑆
			

		
	
 implies 
	
		
			
				𝑛
				−
				1
				∈
				𝑆
			

		
	
. Let 
	
		
			
				=
				{
				𝑖
				∈
				𝑆
				∣
				5
				≤
				𝑖
				≤
				𝑛
				−
				1
			

			
				a
				n
				d
			

			
				
			
			
				𝑖
				∈
				𝑆
				}
			

		
	
. The condition 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				|
				≥
				4
			

		
	
 implies 
	
		
			
				|
				|
				≥
				2
			

		
	
. Therefore for at least one vertex 
	
		
			
				5
				≤
				𝑥
				≤
				𝑛
				−
				1
			

		
	
, 
	
		
			

				{
			

			
				
			
			
				𝑥
				,
				𝑥
				+
				1
				}
				⊆
				𝑆
			

		
	
 and hence 
	
		
			
				|
				𝑆
				|
				≥
				𝑛
				+
				|
				{
			

			
				
			
			
				𝑥
				,
				𝑥
				+
				1
				}
				|
				=
				𝑛
				+
				2
			

		
	
.Case 2 (
	
		
			
				{
				4
				,
			

			
				
			
			
				3
				}
				⊆
				𝑆
			

		
	
 (similarly 
	
		
			
				{
				2
				,
			

			
				
			
			
				3
				}
				⊆
				𝑆
			

		
	
)). Case 1 implies 
	
		
			
				2
				∉
				𝑆
			

		
	
. Then 
	
		
			
				
			
			
				1
				,
			

			
				
			
			
				2
				,
			

			
				
			
			
				4
				,
				1
				,
				4
				,
				5
				∈
				𝑆
			

		
	
. Again we see that, for every 
	
		
			
				5
				≤
				𝑖
				≤
				𝑛
				−
				2
			

		
	
, 
	
		
			
				𝑆
				∩
				{
			

			
				
			
			
				𝑖
				,
				𝑖
				+
				1
				}
				≠
				∅
			

		
	
 and so 
	
		
			
				|
				𝑆
				|
				≥
				(
				𝑛
				−
				2
				−
				4
				)
				+
				8
				=
				𝑛
				+
				2
			

		
	
.Therefore, in the previous all cases, we proved that 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				≥
				𝑛
				+
				2
			

		
	
 and chain (3.21) implies 
	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				𝑛
				+
				2
			

		
	
.
Corollary 3.10.  If 
	
		
			
				𝑛
				≥
				5
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			

				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				−
				1
			

			
				i
				f
			

			
				𝛾
				𝑛
				≥
				9
				,
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				−
				2
			

			
				i
				f
			

			
				𝛾
				6
				≤
				𝑛
				≤
				8
				,
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				−
				3
			

			
				i
				f
			

			
				𝑛
				=
				5
				.
			

		
	

Now we determine the exact amount of 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			

				)
			

		
	
 for 
	
		
			
				𝑛
				≥
				3
			

		
	
. Obviously 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				3
			

			
				
			
			

				𝐶
			

			

				3
			

			
				)
				=
				|
				𝑉
				(
				𝐶
			

			

				3
			

			
				)
				|
				=
				3
			

		
	
. In the next proposition we calculate it when 
	
		
			
				𝑛
				≥
				4
			

		
	
.
Proposition 3.11.  Let 
	
		
			
				𝑛
				≥
				4
			

		
	
. Then
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
			

			
				
			
			
				4
				
				+
				2
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

Proof. Theorem 2.2 with equalities (3.16) and (3.17) implies
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				4
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				4
			

			
				
			
			

				𝐶
			

			

				4
			

			
				
				≤
				6
				,
				4
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				5
			

			
				
			
			

				𝐶
			

			

				5
			

			
				
				≤
				8
				,
			

		
	

						and if 
	
		
			
				𝑛
				≥
				6
			

		
	
 and 
	
		
			
				𝑛
				≢
				1
				(
				m
				o
				d
				4
				)
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				2
				
				𝑛
			

			
				
			
			
				4
				
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝑛
				≤
				2
			

			
				
			
			
				4
				
				+
				2
				,
			

		
	

						and if 
	
		
			
				𝑛
				≥
				6
			

		
	
 and 
	
		
			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				2
				
				𝑛
			

			
				
			
			
				4
				
				−
				1
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝑛
				≤
				2
			

			
				
			
			
				4
				
				+
				1
				.
			

		
	

						If 
	
		
			
				𝑛
				=
				4
			

		
	
 and 
	
		
			
				𝑛
				=
				5
			

		
	
, then the sets 
	
		
			
				{
				1
				,
				2
				,
			

			
				
			
			
				1
				,
			

			
				
			
			
				2
				}
			

		
	
 and 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				}
			

		
	
 are total dominating sets of 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
, respectively. Hence chain (3.24) implies 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				4
			

		
	
 for 
	
		
			
				𝑛
				=
				4
				,
				5
			

		
	
. Now we assume 
	
		
			
				𝑛
				≥
				6
			

		
	
. For 
	
		
			
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
			

		
	
, since the sets 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				}
			

		
	
 and 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				}
				∪
				{
				7
				+
				4
				𝑖
				,
				8
				+
				4
				𝑖
				∣
				0
				≤
				𝑖
				≤
				⌈
				𝑛
				/
				4
				⌉
				−
				3
				}
			

		
	
 are two total dominating sets of 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
 of cardinality 
	
		
			
				2
				⌈
				𝑛
				/
				4
				⌉
			

		
	
, where 
	
		
			
				𝑛
				=
				6
			

		
	
 and 
	
		
			
				𝑛
				>
				6
			

		
	
, respectively, we have 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				2
				⌈
				𝑛
				/
				4
				⌉
			

		
	
, by chain (3.25). Now let 
	
		
			
				𝑛
				≢
				2
				(
				m
				o
				d
				4
				)
			

		
	
. We assume that 
	
		
			

				𝑆
			

		
	
 is a TDS of 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
. Obviously 
	
		
			
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				≠
				∅
			

		
	
. If 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				|
				=
				1
			

		
	
 and 
	
		
			
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				{
			

			
				
			
			
				1
				}
			

		
	
, then 
	
		
			
				1
				,
				2
				,
				𝑛
				∈
				𝑆
			

		
	
, and hence 
	
		
			
				|
				𝑆
				∩
				𝑋
				|
				≥
				2
				⌈
				|
				𝑋
				|
				/
				4
				⌉
				=
				2
				⌈
				(
				𝑛
				−
				5
				)
				/
				4
				⌉
			

		
	
, where 
	
		
			
				𝑋
				=
				𝑉
				(
				𝐶
			

			

				𝑛
			

			
				)
				−
				{
				1
				,
				2
				,
				3
				,
				𝑛
				−
				1
				,
				𝑛
				}
			

		
	
. This implies
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				|
				|
				|
				|
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
				𝑆
				∩
				𝑋
				+
				4
				≥
			

			
				
			
			
				4
				
				+
				2
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
			

			
				i
				f
			

			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
				.
			

		
	

						Now let 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				|
				=
				𝛼
				≥
				2
			

		
	
. If 
	
		
			
				𝑛
				≡
				0
				,
				1
				(
				m
				o
				d
				4
				)
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				|
				|
				
				𝐶
				𝑆
				∩
				𝑉
			

			

				𝑛
			

			
				
				|
				|
				≥
				⎧
				⎪
				⎨
				⎪
				⎩
				2
				
				𝑛
				−
				𝛼
			

			
				
			
			
				4
				
			

			
				i
				f
			

			
				2
				
				𝑛
				≡
				𝛼
				(
				m
				o
				d
				4
				)
				,
				𝑛
				−
				𝛼
			

			
				
			
			
				4
				
				+
				1
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				,
			

		
	

						and if 
	
		
			
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				
				𝐶
				𝑆
				∩
				𝑉
			

			

				𝑛
			

			
				
				|
				|
				≥
				⎧
				⎪
				⎨
				⎪
				⎩
				2
				
				𝑛
				−
				𝛼
			

			
				
			
			
				4
				
				−
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				≡
				𝛼
				+
				1
				(
				m
				o
				d
				4
				)
				,
				𝑛
				−
				𝛼
			

			
				
			
			
				4
				
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

						It can be calculated that
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				=
				|
				|
				
				𝐶
				𝑆
				∩
				𝑉
			

			

				𝑛
			

			
				
				|
				|
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
				+
				𝛼
				≥
			

			
				
			
			
				4
				
				+
				2
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
			

			
				i
				f
			

			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
				.
			

		
	

						Then by chains (3.25) and (3.26) we have
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 			
				(
				3
				.
				3
				2
				)
			
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝑛
				=
				2
			

			
				
			
			
				4
				
				+
				2
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝑛
				≤
				2
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				+
				1
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝑛
				≤
				2
			

			
				
			
			
				4
				
				+
				2
			

			
				i
				f
			

			
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				.
			

		
	

						If 
	
		
			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
			

		
	
, then the sets 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				,
				7
				,
			

			
				
			
			
				7
				}
			

		
	
 and 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				,
				7
				,
			

			
				
			
			
				7
				}
				∪
				{
				1
				0
				+
				4
				𝑖
				,
				1
				1
				+
				4
				𝑖
				∣
				0
				≤
				𝑖
				≤
				⌈
				𝑛
				/
				4
				⌉
				−
				4
				}
			

		
	
 are total dominating sets of 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
 of cardinality 
	
		
			
				2
				⌈
				𝑛
				/
				4
				⌉
			

		
	
 when 
	
		
			
				𝑛
				=
				9
			

		
	
 and 
	
		
			
				𝑛
				>
				9
			

		
	
, respectively. Hence 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				2
				⌈
				𝑛
				/
				4
				⌉
			

		
	
, by chain (3.32). If also 
	
		
			
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
			

		
	
, the sets 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				,
			

			
				
			
			
				𝑛
				−
				1
				}
			

		
	
 and 
	
		
			
				{
				1
				,
			

			
				
			
			
				1
				,
				4
				,
			

			
				
			
			
				4
				,
			

			
				
			
			
				𝑛
				−
				1
				}
				∪
				{
				7
				+
				4
				𝑖
				,
				8
				+
				4
				𝑖
				∣
				0
				≤
				𝑖
				≤
				⌈
				𝑛
				/
				4
				⌉
				−
				3
				}
			

		
	
 are total dominating sets of 
	
		
			

				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

		
	
 of cardinality 
	
		
			
				2
				⌈
				𝑛
				/
				4
				⌉
				+
				1
			

		
	
 when 
	
		
			
				𝑛
				=
				7
			

		
	
 and 
	
		
			
				𝑛
				>
				7
			

		
	
, respectively. Hence 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				)
				=
				2
				⌈
				𝑛
				/
				4
				⌉
				+
				1
			

		
	
, by chain (3.33).
Finally we determine the 
	
		
			

				𝑘
			

		
	
-tuple total domination number of the complementary prism 
	
		
			

				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

		
	
, where 
	
		
			
				1
				≤
				𝑘
				<
				2
				=
				𝛿
				(
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			

				)
			

		
	
. We recall that 
	
		
			
				𝑉
				(
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				=
				𝑉
				(
				𝑃
			

			

				𝑛
			

			
				)
				∪
				𝑉
				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			
				𝑉
				(
				𝑃
			

			

				𝑛
			

			
				)
				=
				{
				𝑖
				∣
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
, and 
	
		
			
				𝐸
				(
				𝑃
			

			

				𝑛
			

			
				)
				=
				{
				𝑖
				𝑗
				∣
				1
				≤
				𝑖
				≤
				𝑛
				−
				1
				,
				𝑗
				=
				𝑖
				+
				1
				}
			

		
	
. In many references, for example, in [1], it can be seen that, for 
	
		
			
				𝑛
				≥
				2
			

		
	
,
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				2
				
				𝑛
			

			
				
			
			
				4
				
			

			
				i
				f
			

			
				2
				
				𝑛
				𝑛
				≢
				1
				(
				m
				o
				d
				4
				)
				,
			

			
				
			
			
				4
				
				−
				1
			

			
				i
				f
			

			
				𝑛
				≡
				1
				(
				m
				o
				d
				4
				)
				,
			

		
	

					and trivially 
	
		
			

				𝛾
			

			

				𝑡
			

			

				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				=
				|
				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				𝑛
				}
				|
				=
				2
			

		
	
, where 
	
		
			
				𝑛
				≥
				4
			

		
	
. Therefore, by Theorems 2.1 and 2.2, for 
	
		
			
				𝑛
				≥
				4
			

		
	
, we have the following chain:
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				
				≤
				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
				+
				2
				≤
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				
				≤
				𝑛
				+
				2
				.
			

		
	

					It can be easily proved that 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				=
				𝑛
			

		
	
, where 
	
		
			
				𝑛
				=
				2
				,
				3
			

		
	
. Next proposition calculates 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			

				)
			

		
	
 when 
	
		
			
				𝑛
				≥
				4
			

		
	
.
Proposition 3.12.  Let 
	
		
			
				𝑛
				≥
				4
			

		
	
. Then
							
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				2
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

Proof. Let 
	
		
			

				𝐷
			

		
	
 be a 
	
		
			

				𝛾
			

			

				𝑡
			

		
	
-set of the induced path 
	
		
			

				𝑃
			

			

				𝑛
			

			
				[
				𝑉
				(
				𝑃
			

			

				𝑛
			

			
				)
				−
				{
				1
				,
				𝑛
				}
				]
			

		
	
 of 
	
		
			

				𝑃
			

			

				𝑛
			

		
	
. Since 
	
		
			
				𝐷
				∪
				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				𝑛
				}
			

		
	
 is a TDS of 
	
		
			

				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				
				≤
				|
				|
				|
				
				𝐷
				∪
			

			
				
			
			
				1
				,
			

			
				
			
			
				𝑛
				
				|
				|
				|
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				2
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

						Let 
	
		
			
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
			

		
	
. Then chains (3.34), (3.35), (3.37) imply 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				=
				2
				⌈
				(
				𝑛
				−
				2
				)
				/
				4
				⌉
				+
				2
			

		
	
. Since 
	
		
			
				2
				⌈
				𝑛
				/
				4
				⌉
				=
				2
				⌈
				(
				𝑛
				−
				2
				)
				/
				4
				⌉
				+
				2
			

		
	
. Now let 
	
		
			
				𝑛
				≢
				2
				(
				m
				o
				d
				4
				)
			

		
	
, and let 
	
		
			

				𝑆
			

		
	
 be a TDS of 
	
		
			

				𝑃
			

			

				𝑛
			

			
				
			
			

				𝑃
			

			

				𝑛
			

		
	
.  Obviously 
	
		
			
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				≠
				∅
			

		
	
. In all cases, (i) 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				|
				=
				1
			

		
	
 and 
	
		
			
				𝑆
				∩
				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				𝑛
				}
				≠
				∅
			

		
	
, (ii) 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				|
				=
				1
			

		
	
 and 
	
		
			
				𝑆
				∩
				{
			

			
				
			
			
				1
				,
			

			
				
			
			
				𝑛
				}
				=
				∅
			

		
	
, and (iii) 
	
		
			
				|
				𝑆
				∩
				𝑉
				(
			

			
				
			
			

				𝑃
			

			

				𝑛
			

			
				)
				|
				≥
				2
			

		
	
, then similar to the proof of Proposition 3.11, it can be verified that
							
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑆
				|
				|
				≥
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				2
				
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				1
			

			
				i
				f
			

			
				2
				
				𝑛
				≡
				3
				(
				m
				o
				d
				4
				)
				,
				𝑛
				−
				2
			

			
				
			
			
				4
				
				+
				2
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

						Hence chain (3.37) completes the proof of our proposition.
Propositions 3.11 and 3.12 imply the next result in [1].
Corollary 3.13 (see [1]).  If 
	
		
			
				𝐺
				∈
				{
				𝑃
			

			

				𝑛
			

			
				,
				𝐶
			

			

				𝑛
			

			

				}
			

		
	
 with order 
	
		
			
				𝑛
				≥
				5
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐺
			

			
				
			
			
				𝐺
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
			

			
				i
				f
			

			
				𝛾
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
				,
			

			

				𝑡
			

			
				(
				𝐺
				)
				+
				2
			

			
				i
				f
			

			
				𝛾
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
				,
			

			

				𝑡
			

			
				(
				𝐺
				)
				+
				1
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

			

				.
			

		
	

4. Problems
If we look carefully at the propositions of Section 3, we obtain the following result.
Proposition 4.1.  
					(i) Let 
	
		
			

				𝐺
			

		
	
 be a cycle or a path of order 
	
		
			
				𝑛
				≥
				4
			

		
	
. Then 
	
		
			
				m
				a
				x
				{
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			

				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				}
				=
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
			

		
	
 if and only if 
	
		
			
				𝑛
				≡
				2
				(
				m
				o
				d
				4
				)
			

		
	
. 
					(ii) Let 
	
		
			

				𝐺
			

		
	
 be a cycle of order 
	
		
			
				𝑛
				≥
				5
			

		
	
 or a path of order 
	
		
			
				𝑛
				≥
				4
			

		
	
. Then 
	
		
			

				𝛾
			

			

				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝛾
			

			

				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			

				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
			

		
	
 if and only if 
	
		
			
				𝑛
				≡
				0
				(
				m
				o
				d
				4
				)
			

		
	
. 
					(iii) Let 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 be a cycle of order 
	
		
			
				𝑛
				≥
				5
			

		
	
. Then 
							
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				
				𝛾
				m
				a
				x
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				,
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				<
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				<
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				𝛾
			

			
				×
				2
				,
				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				.
			

		
	
 
					(iv) Let 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 be a cycle of order 
	
		
			
				𝑛
				≥
				5
			

		
	
. Then
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			

				𝛾
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				𝛾
			

			

				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				<
				𝛾
			

			
				×
				2
				,
				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				
				
				𝛾
				=
				𝑛
				+
				m
				i
				n
			

			

				𝑡
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				,
				𝛾
			

			

				𝑡
			

			

				
			

			
				
			
			

				𝐶
			

			

				𝑛
			

			
				.
				
				
			

		
	

Therefore it is natural that we state the following problem.
Problem 1. Characterize graphs 
	
		
			

				𝐺
			

		
	
 with(1)
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
			

			
				
			
			
				𝐺
				)
				=
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				+
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
			

		
	
, (2)
	
		
			

				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				=
				m
				a
				x
				{
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			
				(
				𝐺
				)
				,
				𝛾
			

			
				×
				𝑘
				,
				𝑡
			

			

				(
			

			
				
			
			
				𝐺
				)
				}
			

		
	
.
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