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Abstract. 
We introduce new class of harmonic functions by using certain generalized differential operator of harmonic. Some results which generalize problems considered by many researchers are present. The main results are concerned with the starlikeness and convexity of certain class of harmonic functions.


1. Introduction
 A continuous complex-valued function 
	
		
			
				𝑓
				=
				𝑢
				+
				𝑖
				𝑣
			

		
	
, defined in a simply-connected complex domain 
	
		
			

				𝐷
			

		
	
, is said to be harmonic in 
	
		
			

				𝐷
			

		
	
 if both 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are real harmonic in 
	
		
			

				𝐷
			

		
	
. Such functions can be expressed as 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				𝑓
				=
				ℎ
				+
			

			
				
			
			
				𝑔
				,
			

		
	

					where 
	
		
			

				ℎ
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 are analytic in 
	
		
			

				𝐷
			

		
	
. We call 
	
		
			

				ℎ
			

		
	
 the analytic part and 
	
		
			

				𝑔
			

		
	
 the coanalytic part of 
	
		
			

				𝑓
			

		
	
. A necessary and sufficient condition for 
	
		
			

				𝑓
			

		
	
 to be locally univalent and sense-preserving in 
	
		
			

				𝐷
			

		
	
 is that 
	
		
			

				|
			

			
				
			
			
				ℎ
				(
				𝑧
				)
				|
				>
				|
			

			
				
			
			
				𝑔
				(
				𝑧
				)
				|
			

		
	
 for all 
	
		
			

				𝑧
			

		
	
 in 
	
		
			

				𝐷
			

		
	
 (see [1]). Let 
	
		
			

				𝑆
			

			

				𝐻
			

		
	
 be the class of functions of the form (1.1) that are harmonic univalent and sense-preserving in the unit disk 
	
		
			
				𝐸
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
 for which 
	
		
			
				𝑓
				(
				0
				)
				=
				𝑓
			

			

				𝑧
			

			
				(
				0
				)
				−
				1
				=
				0
			

		
	
. Then for 
	
		
			
				𝑓
				=
				ℎ
				+
			

			
				
			
			
				𝑔
				∈
				𝑆
			

			
				𝐻
				,
			

		
	
 we may express the analytic functions 
	
		
			

				ℎ
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 as
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑧
				)
				=
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑘
			

			

				𝑧
			

			

				𝑘
			

			
				,
				𝑔
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑏
			

			

				𝑘
			

			

				𝑧
			

			

				𝑘
			

			
				|
				|
				𝑏
				,
				𝑧
				∈
				𝐸
				,
			

			

				1
			

			
				|
				|
				<
				1
				.
			

		
	

 In 1984, Clunie and Sheil-Small [1] investigated the class 
	
		
			

				𝑆
			

			

				𝐻
			

		
	
 as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on 
	
		
			

				𝑆
			

			

				𝐻
			

		
	
 and its subclasses.
In this paper, we aim at generalizing the respective results from the papers [2–5], that imply starlikeness and convexity of functions holomorphic in the unit disk.
 Now, we will introduce generalized derivative operator for 
	
		
			
				𝑓
				=
				ℎ
				+
			

			
				
			
			

				𝑔
			

		
	
 given by (1.2). For fixed positive natural 
	
		
			
				𝑚
				,
				𝑛
			

		
	
, and 
	
		
			

				𝜆
			

			

				2
			

			
				≥
				𝜆
			

			

				1
			

			
				≥
				0
			

		
	
,
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				𝑓
				(
				𝑧
				)
				=
				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				ℎ
				(
				𝑧
				)
				+
				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				𝑔
				(
				𝑧
				)
				,
				𝑧
				∈
				𝐸
				,
			

		
	

					where
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				ℎ
				(
				𝑧
				)
				=
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				
				𝜆
				1
				+
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			
				
				(
				𝑛
				−
				1
				)
			

			
				
			
			
				1
				+
				𝜆
			

			

				2
			

			
				
				(
				𝑛
				−
				1
				)
			

			

				𝑚
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				,
				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				𝑔
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				
				
				𝜆
				1
				+
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			
				
				(
				𝑛
				−
				1
				)
			

			
				
			
			
				1
				+
				𝜆
			

			

				2
			

			
				
				(
				𝑛
				−
				1
				)
			

			

				𝑚
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				.
			

		
	

We note that by specializing the parameters, especially when 
	
		
			

				𝜆
			

			

				1
			

			
				=
				𝜆
			

			

				2
			

			
				=
				0
			

		
	
, 
	
		
			

				𝐷
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

		
	
 reduces to 
	
		
			

				𝐷
			

			

				𝑚
			

		
	
 which introduced by Sălăgean in [6].
 Let 
	
		
			
				𝑃
				=
				{
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑅
			

			

				2
			

			
				∶
				0
				≤
				𝛼
				≤
				1
				,
				𝑝
				>
				0
				}
			

		
	
  and 
	
		
			

				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				=
				𝛼
				(
				(
				1
				+
				(
				𝜆
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			
				)
				(
				𝑛
				−
				1
				)
				)
				/
				(
				1
				+
				𝜆
			

			

				2
			

			
				(
				𝑛
				−
				1
				)
				)
				)
			

			
				𝑚
				𝑝
			

		
	
+
	
		
			
				(
				1
				−
				𝛼
				)
				(
				(
				1
				+
				(
				𝜆
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			
				)
				(
				𝑛
				−
				1
				)
				)
				/
				(
				1
				+
				𝜆
			

			

				2
			

			
				(
				𝑛
				−
				1
				)
				)
				)
			

			
				𝑚
				(
				𝑝
				+
				1
				)
			

		
	
,  
	
		
			
				𝑛
				=
				2
				,
				3
				,
				…
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
.
For a fixed pair 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
, we denote by 
	
		
			
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 the class of functions of the form (1.3) and such that
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑏
			

			

				1
			

			
				|
				|
				+
				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				|
				|
				𝑎
				(
				𝛼
				,
				𝑝
				)
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				|
				|
				𝑏
				≤
				1
				,
			

			

				1
			

			
				|
				|
				<
				1
				.
			

		
	

					Moreover, 
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				(
				𝛼
				,
				𝑝
				)
				=
				𝑓
				∈
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				∶
				𝑏
			

			

				1
			

			
				
				.
				=
				0
			

		
	

					The classes 
	
		
			
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				1
				)
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				1
				)
			

		
	
, 
	
		
			
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				2
				)
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				2
				)
			

		
	
 were studied in [2], and the classes 
	
		
			
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				𝑝
				)
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				𝑝
				)
				(
				𝑝
				>
				0
				)
			

		
	
 were investigated in [3]. It is known that each function of the class 
	
		
			
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				1
				)
			

		
	
 is starlike, and every function of the class 
	
		
			
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				2
				)
			

		
	
 is convex (see [2]). With respect to the following inequalities 
	
		
			

				𝑈
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				𝑝
				)
				=
				𝑛
			

			

				𝑝
			

			
				≤
				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				≤
				𝑛
			

			
				𝑝
				+
				1
			

			
				=
				𝑈
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				0
				,
				𝑝
				)
				,
				𝑛
				=
				2
				,
				3
				,
				…
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
, by condition (1.5) we have the following inclusions 
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				0
				,
				𝑝
				)
				⊂
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				⊂
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				𝑝
				)
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
				,
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				0
				,
				𝑝
				)
				⊂
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				⊂
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				𝑝
				)
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
				.
			

		
	

2. Main Result
 Directly from the definition of the class 
	
		
			
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				(
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
  we get the following. 
Theorem 2.1.  Let  
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
. If 
	
		
			
				𝑓
				∈
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				(
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
, then functions 
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝑧
				⟼
				𝑟
			

			
				−
				1
			

			
				𝑓
				(
				𝑟
				𝑧
				)
				,
				𝑧
				⟼
				𝑒
			

			
				−
				𝑖
				𝑡
			

			
				𝑓
				
				𝑒
			

			
				𝑖
				𝑡
			

			
				𝑧
				
				,
				𝑧
				∈
				𝐸
				,
				𝑟
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				∈
				𝑅
			

		
	

						also belong to 
	
		
			
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				(
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
.
Theorem 2.2.  If  
	
		
			
				0
				≤
				𝛼
			

			

				1
			

			
				≤
				𝛼
			

			

				2
			

			
				≤
				1
			

		
	
,   
	
		
			
				𝑝
				>
				0
			

		
	
, then 
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
			

			

				1
			

			
				
				,
				𝑝
				⊂
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
			

			

				2
			

			
				
				,
				𝑝
				,
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
			

			

				1
			

			
				
				,
				𝑝
				⊂
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
			

			

				2
			

			
				
				.
				,
				𝑝
			

		
	

						If  
	
		
			
				𝛼
				∈
				[
				0
				,
				1
				]
			

		
	
 and 
	
		
			
				0
				<
				𝑝
			

			

				1
			

			
				≤
				𝑝
			

			

				2
			

		
	
, then 
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
				,
				𝑝
			

			

				1
			

			
				
				⊃
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
				,
				𝑝
			

			

				2
			

			
				
				,
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
				,
				𝑝
			

			

				1
			

			
				
				⊃
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				
				𝛼
				,
				𝑝
			

			

				2
			

			
				
				.
			

		
	

Theorem 2.3.  Let 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
			

		
	
. If 
	
		
			
				𝑝
				≥
				1
			

		
	
, then every function 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 is univalent and maps the unit disk 
	
		
			

				𝐸
			

		
	
 onto a domain starlike with respect to the origin. If 
	
		
			
				𝑝
				≥
				2
			

		
	
, then every function 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 is univalent and maps the unit disk 
	
		
			

				𝐸
			

		
	
 onto a convex domain. 
 Proof. If  
	
		
			
				𝑝
				≥
				1
			

		
	
, then 
	
		
			

				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				≥
				𝑛
			

		
	
 for 
	
		
			
				𝑛
				=
				2
				,
				3
				,
				…
				,
				𝛼
				∈
				[
				0
				,
				1
				]
			

		
	
, so by the condition (1.5) we obtain 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				𝑛
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				≤
				1
				.
			

		
	

						Therefore (see [2]), 
	
		
			

				𝑓
			

		
	
 is univalent and starlike with respect to the origin. If 
	
		
			
				𝑝
				≥
				2
			

		
	
, then by (1.5) we get 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				2
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				≤
				1
				.
			

		
	

						Hence (see [2]), 
	
		
			

				𝑓
			

		
	
 is convex.
 Next, let 
	
		
			
				𝛼
				∈
				[
				0
				,
				1
				]
			

		
	
 and set 
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝛼
				)
				=
				1
				−
				l
				o
				g
			

			

				2
			

			
				(
				2
				−
				𝛼
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝛼
				)
				=
				2
				−
				l
				o
				g
			

			

				2
			

			
				(
				2
				−
				𝛼
				)
			

		
	
,  
	
		
			
				l
				o
				g
			

			

				2
			

			
				1
				=
				0
			

		
	
. We denote 
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝐷
			

			

				1
			

			
				=
				
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
				∶
				𝑝
				≥
				𝑝
			

			

				1
			

			
				
				,
				𝐷
				(
				𝛼
				)
			

			

				2
			

			
				=
				
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
				∶
				𝑝
				≥
				𝑝
			

			

				2
			

			
				
				.
				(
				𝛼
				)
			

		
	

					The next theorem present results concerning starlikeness and convexity of functions of the class 
	
		
			
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 for arbitrary 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝐷
			

			

				1
			

		
	
 and 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝐷
			

			

				2
			

		
	
, respectively.
Theorem 2.4.  If 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝐷
			

			

				1
			

		
	
, then the functions of the class 
	
		
			
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 are starlike. 
 Proof. We can check that the following inequality: 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				≥
				𝑛
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝐷
			

			

				1
			

			
				,
				𝑛
				=
				2
				,
				3
				,
				…
				,
			

		
	

						hold. If 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 for 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝐷
			

			

				1
			

		
	
, then in view of the inequality, the condition (1.5) and of the mentioned result from [2] it follows that 
	
		
			

				𝑓
			

		
	
 is a starlike function.
Theorem 2.5.  Let 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
				⧵
				𝐷
			

			

				1
			

		
	
. If 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			

				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
, where 
	
		
			

				𝑟
			

			

				0
			

			
				(
				𝛼
				,
				𝑝
				)
				=
				2
			

			
				𝑝
				−
				1
			

			
				(
				2
				−
				𝛼
				)
			

		
	
, then each function 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 maps the disk 
	
		
			

				𝐸
			

			

				𝑟
			

		
	
 onto a domain starlike with respect to the origin. where 
	
		
			

				𝐸
			

			

				𝑟
			

			
				=
				{
				𝑧
				∈
				𝐶
				∶
				|
				𝑧
				|
				<
				𝑟
				}
				,
				𝑟
				>
				0
			

		
	
,    with   
	
		
			

				𝐸
			

			

				1
			

			
				=
				𝐸
			

		
	
.
 Proof. For 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
				⧵
				𝐷
			

			

				1
			

		
	
, we have 
	
		
			

				𝑟
			

			

				0
			

			
				(
				𝛼
				,
				𝑝
				)
				<
				1
			

		
	
, let 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
, 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
				⧵
				𝐷
			

			

				1
			

		
	
, and let 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			

				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
. By Theorem 2.1, the function 
	
		
			

				𝑓
			

			

				𝑟
			

		
	
 of the form 
	
		
			

				𝑓
			

			

				𝑟
			

			
				(
				𝑧
				)
				=
				𝑟
			

			
				−
				1
			

			
				𝑓
				(
				𝑟
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 and we have 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				𝑛
				
				|
				|
				𝑎
			

			

				𝑛
			

			

				𝑟
			

			
				𝑛
				−
				1
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			

				𝑟
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				𝑛
				𝑟
			

			
				𝑛
				−
				1
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				.
			

		
	

						In view of properties of elementary functions, we obtain 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝑛
				𝑟
			

			
				𝑛
				−
				1
			

			
				
				𝑟
				≤
				𝑛
			

			

				0
			

			
				
				(
				𝛼
				,
				𝑝
				)
			

			
				𝑛
				−
				1
			

			
				≤
				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				,
				𝑛
				=
				2
				,
				3
				,
				…
				.
			

		
	

						Hence, 
	
		
			

				𝑓
			

			

				𝑟
			

			
				∈
				𝐻
				𝑆
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				1
				)
			

		
	
 [2] for any 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			

				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
 maps the 
	
		
			

				𝐸
			

		
	
 onto a domain starlike with respect to the origin.
Theorem 2.6.  Let 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
				⧵
				𝐷
			

			

				2
			

		
	
. If 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			
				∗
				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
, where 
	
		
			

				𝑟
			

			
				∗
				0
			

			
				(
				𝛼
				,
				𝑝
				)
				=
				2
			

			
				𝑝
				−
				2
			

			
				(
				2
				−
				𝛼
				)
			

		
	
, then each function 
	
		
			
				𝑓
				∈
				𝐻
				𝐶
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

		
	
 maps the disk 
	
		
			

				𝐸
			

			

				𝑟
			

		
	
 onto a convex domain. 
 Proof. For every 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑝
				⧵
				𝐷
			

			

				2
			

		
	
 we have 
	
		
			

				𝑟
			

			
				∗
				0
			

			
				(
				𝛼
				,
				𝑝
				)
				<
				1
			

		
	
. Further we proceed similarly as in the proof of Theorem 2.5, we have for any 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			
				∗
				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	

	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑛
			

			

				2
			

			

				𝑟
			

			
				𝑛
				−
				1
			

			
				≤
				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				,
				𝑛
				=
				2
				,
				3
				,
				…
				.
			

		
	

						Hence 
	
		
			

				𝑓
			

			

				𝑟
			

			
				∈
				𝐻
				𝐶
			

			
				1
				,
				𝑛
				0
				,
				0
			

			
				(
				1
				,
				1
				)
			

		
	
 [2] for any 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝑟
			

			
				∗
				0
			

			
				(
				𝛼
				,
				𝑝
				)
				)
			

		
	
 maps the 
	
		
			

				𝐸
			

		
	
 onto a convex domain.
Theorem 2.7.  Let 
	
		
			
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
. If 
	
		
			
				𝑓
				∈
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				,
				𝑧
				∈
				𝐸
				,
				𝑧
				≠
				0
			

		
	
, then 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				≤
				
				|
				|
				𝑏
				𝑓
				(
				𝑧
				)
				1
				+
			

			

				1
			

			
				|
				|
				
				|
				|
				𝑏
				|
				𝑧
				|
				+
				1
				−
			

			

				1
			

			
				|
				|
			

			
				
			
			

				2
			

			

				𝑝
			

			
				(
				2
				−
				𝛼
				)
				|
				𝑧
				|
			

			

				2
			

			
				,
				|
				|
				|
				|
				≥
				
				|
				|
				𝑏
				𝑓
				(
				𝑧
				)
				1
				−
			

			

				1
			

			
				|
				|
				
				|
				|
				𝑏
				|
				𝑧
				|
				−
				1
				−
			

			

				1
			

			
				|
				|
			

			
				
			
			

				2
			

			

				𝑝
			

			
				(
				2
				−
				𝛼
				)
				|
				𝑧
				|
			

			

				2
			

			

				.
			

		
	

 Proof.  Let 
	
		
			
				𝑓
				∈
				𝐻
				𝑆
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
, 
	
		
			

				𝑓
			

		
	
 of the form (1.3) and fix 
	
		
			
				𝑧
				∈
				𝐸
				⧵
				{
				0
				}
			

		
	
. Then the condition (1.5) holds, and after simple transformations we obtain 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				≤
				|
				|
				𝑏
				1
				−
			

			

				1
			

			
				|
				|
			

			
				
			
			

				𝑈
			

			
				𝜆
				𝑚
				,
				2
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				−
				(
				𝛼
				,
				𝑝
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				3
			

			
				⎛
				⎜
				⎜
				⎝
				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
			

			
				
			
			

				𝑈
			

			
				𝜆
				𝑚
				,
				2
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎠
				
				|
				|
				𝑎
				(
				𝛼
				,
				𝑝
				)
				−
				1
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				.
			

		
	

						Since 
	
		
			

				𝑈
			

			
				𝜆
				𝑚
				,
				𝑛
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				≥
				𝑈
			

			
				𝜆
				𝑚
				,
				2
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				,
				𝑛
				=
				3
				,
				4
				,
				…
				,
				(
				𝛼
				,
				𝑝
				)
				∈
				𝑃
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				≤
				|
				|
				𝑏
				1
				−
			

			

				1
			

			
				|
				|
			

			
				
			
			

				𝑈
			

			
				𝜆
				𝑚
				,
				2
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				.
				(
				𝛼
				,
				𝑝
				)
			

		
	

						Hence, 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				≤
				𝑓
				(
				𝑧
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				|
				𝑧
				|
			

			

				𝑛
			

			
				+
				
				|
				|
				𝑏
				1
				+
			

			

				1
			

			
				|
				|
				
				
				|
				|
				𝑏
				|
				𝑧
				|
				≤
				1
				+
			

			

				1
			

			
				|
				|
				
				|
				|
				𝑏
				|
				𝑧
				|
				+
				1
				−
			

			

				1
			

			
				|
				|
			

			
				
			
			

				𝑈
			

			
				𝜆
				𝑚
				,
				2
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				(
				𝛼
				,
				𝑝
				)
				|
				𝑧
				|
			

			

				2
			

			

				,
			

		
	

						that is, the upper estimate.The lower estimate follows from (2.13) and the inequality: 
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑏
				𝑓
				(
				𝑧
				)
				≥
				|
				𝑧
				|
				−
			

			

				1
			

			
				|
				|
				|
				𝑧
				|
				−
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
				|
				𝑧
				|
			

			

				𝑛
			

			

				.
			

		
	

Remark 2.8. Other works related to harmonic analytic functions can be read in [7–13].
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