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Abstract. 
We define 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

		
	
Closed sets and discuss their properties. Using these sets, we characterize 
	
		
			

				𝒯
			

			
				1
				/
				2
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
				𝑠
			

		
	
 and 
	
		
			

				𝒯
			

			

				ℐ
			

			

				-
			

			
				𝑆
				𝑝
				𝑎
				𝑐
				𝑒
				𝑠
			

		
	
.
 

1. Introduction and Preliminaries
An ideal  
	
		
			

				ℐ
			

		
	
 on a topological space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a nonempty collection of subsets of 
	
		
			

				𝑋
			

		
	
 which satisfies (i) 
	
		
			
				𝐴
				∈
				ℐ
			

		
	
 and 
	
		
			
				𝐵
				⊂
				𝐴
			

		
	
 implies 
	
		
			
				𝐵
				∈
				ℐ
			

		
	
 and (ii) 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℐ
			

		
	
 implies 
	
		
			
				𝐴
				∪
				𝐵
				∈
				ℐ
			

		
	
. Given a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 with an ideal 
	
		
			

				ℐ
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 and if 
	
		
			
				℘
				(
				𝑋
				)
			

		
	
 is the set of all subsets of 
	
		
			

				𝑋
			

		
	
, a set operator 
	
		
			
				(
				⋅
				)
			

			

				⋆
			

			
				∶
				℘
				(
				𝑋
				)
				→
				℘
				(
				𝑋
				)
			

		
	
 called a local function [1] of 
	
		
			

				𝐴
			

		
	
  with respect to 
	
		
			

				𝜏
			

		
	
 and 
	
		
			

				ℐ
			

		
	
 is defined as follows: for 
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
,  
	
		
			

				𝐴
			

			

				⋆
			

			
				(
				𝑋
				,
				𝜏
				)
				=
				{
				𝑥
				∈
				𝑋
				∣
				𝑈
				∩
				𝐴
				∉
				ℐ
				,
			

			
				f
				o
				r
				e
				v
				e
				r
				y
			

			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
				}
			

		
	
,  where 
	
		
			
				𝜏
				(
				𝑥
				)
				=
				{
				𝑈
				∈
				𝜏
				∣
				𝑥
				∈
				𝑈
				}
			

		
	
.  A Kuratowski closure operator 
	
		
			
				c
				l
			

			

				⋆
			

			
				(
				⋅
				)
			

		
	
 for a topology 
	
		
			

				𝜏
			

			

				⋆
			

			
				(
				ℐ
				,
				𝜏
				)
			

		
	
 called the 
	
		
			

				⋆
			

			

				-
			

		
	
topology, finer than 
	
		
			

				𝜏
			

		
	
,  is defined by 
	
		
			
				c
				l
			

			

				⋆
			

			
				(
				𝐴
				)
				=
				𝐴
				∪
				𝐴
			

			

				⋆
			

			
				(
				ℐ
				,
				𝜏
				)
			

		
	
 [2]. When there is no confusion we will simply write 
	
		
			

				𝐴
			

			

				⋆
			

		
	
 for 
	
		
			

				𝐴
			

			

				⋆
			

			
				(
				ℐ
				,
				𝜏
				)
			

		
	
 and 
	
		
			

				𝜏
			

			

				⋆
			

		
	
 for 
	
		
			

				𝜏
			

			

				⋆
			

			
				(
				ℐ
				,
				𝜏
				)
			

		
	
. If 
	
		
			

				ℐ
			

		
	
 is an ideal on 
	
		
			

				𝑋
			

		
	
, then (
	
		
			
				𝑋
				,
				𝜏
				,
				ℐ
			

		
	
) is called an ideal space. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
  is said to be 
	
		
			

				⋆
			

			

				-
			

		
	
closed [3] if 
	
		
			

				𝐴
			

			

				⋆
			

			
				⊂
				𝐴
			

		
	
. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space (
	
		
			
				𝑋
				,
				𝜏
				,
				ℐ
			

		
	
) is said to be an 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 [4] if 
	
		
			

				𝐴
			

			

				⋆
			

			
				⊂
				𝑈
			

		
	
 whenever 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space (
	
		
			
				𝑋
				,
				𝜏
				,
				ℐ
			

		
	
) is said to be 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. An ideal space (
	
		
			
				𝑋
				,
				𝜏
				,
				ℐ
			

		
	
) is said to be a 
	
		
			

				𝒯
			

			

				ℐ
			

			

				-
			

		
	
space [4] if every 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space (
	
		
			
				𝑋
				,
				𝜏
				,
				ℐ
			

		
	
) is said to be 
	
		
			

				ℐ
			

			

				-
			

		
	
locally 
	
		
			

				⋆
			

			

				-
			

		
	
closed [5] if there exist an open set 
	
		
			

				𝑈
			

		
	
 and a 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set 
	
		
			

				𝐹
			

		
	
 such that 
	
		
			
				𝐴
				=
				𝑈
				∩
				𝐹
			

		
	
.  If 
	
		
			
				ℐ
				=
				{
				∅
				}
			

		
	
,  then 
	
		
			

				ℐ
			

			

				-
			

			
				𝑙
				𝑜
				𝑐
				𝑎
				𝑙
				𝑙
				𝑦
				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets coincide with locally closed sets.
 By a space, we always mean a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
			

		
	
) with no separation properties assumed. If 
	
		
			
				𝐴
				⊂
				𝑋
				,
				c
				l
				(
				𝐴
				)
			

		
	
 and 
	
		
			
				i
				n
				t
				(
				𝐴
				)
			

		
	
 will, respectively, denote the closure and interior of 
	
		
			

				𝐴
			

		
	
 in 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 and 
	
		
			
				i
				n
				t
			

			

				⋆
			

			
				(
				𝐴
				)
			

		
	
 will denote the interior of 
	
		
			

				𝐴
			

		
	
 in 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				⋆
			

			

				)
			

		
	
.  A subset 
	
		
			

				𝐴
			

		
	
 of a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set [6] if 
	
		
			
				c
				l
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
 whenever 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open. A subset 
	
		
			

				𝐴
			

		
	
 of a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 set if 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is a 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. A space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				𝒯
			

			
				1
				/
				2
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
  [6] if every 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is a closed set.
For a subset 
	
		
			

				𝐴
			

		
	
 of a space 
	
		
			
				(
				𝑋
				,
				𝜏
			

		
	
), the 
	
		
			

				𝜃
			

		
	
-
	
		
			
				𝑖
				𝑛
				𝑡
				𝑒
				𝑟
				𝑖
				𝑜
				𝑟
			

		
	
 [7] of 
	
		
			

				𝐴
			

		
	
 is the union of all open sets of 
	
		
			

				𝑋
			

		
	
 whose closures contained in 
	
		
			

				𝐴
			

		
	
 and is denoted by 
	
		
			
				i
				n
				t
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
. The subset 
	
		
			

				𝐴
			

		
	
 is called 
	
		
			

				𝜃
			

		
	
-
	
		
			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if 
	
		
			
				𝐴
				=
			

			
				i
				n
				t
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
. The complement of a 
	
		
			

				𝜃
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 set is called a 
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. Equivalently, 
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
 is called 
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 [7] if 
	
		
			
				𝐴
				=
			

			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
, where 
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				=
				{
				𝑥
				∈
				𝑋
				∣
				c
				l
				(
				𝑈
				)
				∩
				𝐴
				≠
				∅
			

			
				f
				o
				r
				a
				l
				l
			

			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
				}
			

		
	
. The family of all 
	
		
			

				𝜃
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 sets of 
	
		
			

				𝑋
			

		
	
 forms a topology [7] on 
	
		
			

				𝑋
			

		
	
, which is coarser than 
	
		
			

				𝜏
			

		
	
 and is denoted by 
	
		
			

				𝜏
			

			

				𝜃
			

		
	
.  A subset 
	
		
			

				𝐴
			

		
	
 of a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				𝑠
				𝑒
				𝑡
			

		
	
 [8] if 
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
 whenever 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open. A subset 
	
		
			

				𝐴
			

		
	
 of a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
				𝑠
				𝑒
				𝑡
			

		
	
 [8] if 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is a 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. A subset 
	
		
			

				𝐴
			

		
	
 of a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be a 
	
		
			

				Λ
			

			

				-
			

			
				𝑠
				𝑒
				𝑡
			

		
	
 [9, 10] if 
	
		
			
				𝐴
				=
				𝐴
			

			

				Λ
			

		
	
, where 
	
		
			

				𝐴
			

			

				Λ
			

			
				=
				∩
				{
				𝑈
				∈
				𝜏
				∣
				𝐴
				⊂
				𝑈
				}
			

		
	
.
 A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is said to be 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 [11] if 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				𝐴
			

		
	
,  where 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				{
				𝑥
				∈
				𝑋
				∣
				𝐴
				∩
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				≠
				𝜙
			

			
				f
				o
				r
				a
				l
				l
			

			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
				}
			

		
	
.   
	
		
			

				𝐴
			

		
	
 is said to be 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  If 
	
		
			
				ℐ
				=
				{
				∅
				}
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
			

			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
.  If 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				c
				l
				(
				𝐴
				)
			

		
	
.  For a subset 
	
		
			

				𝐴
			

		
	
 of X,  
	
		
			
				i
				n
				t
			

			

				𝜃
			

			
				𝐼
				(
				𝐴
				)
				=
				∪
				{
				𝑈
				∈
				𝜏
				∣
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				⊂
				𝐴
				}
			

		
	
 [11].  We denote this  
	
		
			
				i
				n
				t
			

			

				𝜃
			

			
				𝐼
				(
				𝐴
				)
			

		
	
 by 
	
		
			
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.  The family of all 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 sets of 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is a topology and it is denoted by 
	
		
			

				𝜏
			

			

				𝜃
			

			

				-
			

			

				ℐ
			

		
	
 (see [11, Theorem  1]).
Lemma 1.1 (see [11, Corollary  4 if Theorem  2]).  
	
		
			

				𝜏
			

			

				𝜃
			

			
				⊂
				𝜏
			

			

				𝜃
			

			

				-
			

			

				ℐ
			

			
				⊂
				𝜏
			

		
	
. 					
Lemma 1.2 (see [11, Proposition  3]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space. Then, we have (1)if 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 or 
	
		
			
				ℐ
				=
				𝒩
			

		
	
,  where 
	
		
			

				𝒩
			

		
	
 is the ideal of nowhere dense sets of 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
,  then 
	
		
			

				𝜏
			

			

				𝜃
			

			

				-
			

			

				ℐ
			

			
				=
				𝜏
			

			

				𝜃
			

		
	
,(2)if 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
, then 
	
		
			

				𝜏
			

			

				𝜃
			

			

				-
			

			

				ℐ
			

			
				=
				𝜏
			

		
	
.
Lemma 1.3 (see [5, Theorem  2.13]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space. Then every subset of 
	
		
			

				𝑋
			

		
	
 is 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if every open set is 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Lemma 1.4 (see [11, Proposition  1]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and 
	
		
			

				𝐴
			

		
	
 a subset of 
	
		
			

				𝑋
			

		
	
. Then A is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if and only if  
	
		
			
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				𝐴
			

		
	
.
Lemma 1.5.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and 
	
		
			

				𝐴
			

		
	
 a subset of 
	
		
			

				𝑋
			

		
	
. Then 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				{
				𝑥
				∈
				𝑋
				∣
				𝑈
				∩
				c
				l
			

			

				⋆
			

			
				(
				𝐴
				)
				≠
				𝜙
			

		
	
 for all 
	
		
			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
				}
			

		
	
 is closed.
Proof. If 
	
		
			
				𝑥
				∈
				c
				l
				(
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
 and 
	
		
			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
			

		
	
,  then 
	
		
			
				𝑈
				∩
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				≠
				𝜙
			

		
	
. Then,  
	
		
			
				𝑦
				∈
				𝑈
				∩
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 for some 
	
		
			
				𝑦
				∈
				𝑋
			

		
	
. Since 
	
		
			
				𝑈
				∈
				𝜏
				(
				𝑦
				)
			

		
	
 and 
	
		
			
				𝑦
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
, from the definition of 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 we have 
	
		
			
				𝐴
				∩
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				≠
				𝜙
			

		
	
. Therefore, 
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
. So 
	
		
			
				c
				l
				(
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 and hence 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 is closed.
Lemma 1.6.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and 
	
		
			

				𝐴
			

		
	
 a subset of 
	
		
			

				𝑋
			

		
	
. Then,  
	
		
			
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
				=
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.
Proof. 
	
		
			
				𝑥
				∈
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
			

		
	
 if and only if  
	
		
			
				𝑥
				∉
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
			

		
	
 if and only if there exist  
	
		
			
				𝑈
				∈
				𝜏
				(
				𝑥
				)
			

		
	
 such that 
	
		
			
				(
				𝑋
				−
				𝐴
				)
				∩
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				=
				𝜙
			

		
	
 if and only if  
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and,  
	
		
			
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				⊂
				(
				𝐴
				)
			

		
	
 if and only if  
	
		
			
				𝑥
				∈
				𝑈
				⊂
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.
2. 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

		
	
Closed Sets
 A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is said to be a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set   if 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
 whenever 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open. Every 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. If 
	
		
			
				ℐ
				=
				{
				∅
				}
			

		
	
, then 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
 and hence 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets coincide with 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets. If 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
, then 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				c
				l
				(
				𝐴
				)
			

		
	
 and hence 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets coincide with 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets.  Since  
	
		
			
				c
				l
			

			

				⋆
			

			
				(
				𝐴
				)
				⊂
				c
				l
				(
				𝐴
				)
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  we have the following inclusion diagram:
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				⟶
				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				⟶
				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				⟶
				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				.
			

		
	

 Example 2.1.  shows that a 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set needs not to be 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  and Example 2.2 shows that 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set needs not to be a 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.
Example 2.1. Let  
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				,
				𝑑
				}
			

		
	
,  
	
		
			
				𝜏
				=
				{
				𝜙
				,
				{
				𝑏
				}
				,
				{
				𝑎
				,
				𝑏
				}
				,
				{
				𝑏
				,
				𝑐
				}
				,
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
				,
				{
				𝑎
				,
				𝑏
				,
				𝑑
				}
				,
				𝑋
				}
			

		
	
,  and 
	
		
			
				ℐ
				=
				{
				𝜙
				,
				{
				𝑎
				}
				,
				{
				𝑐
				}
				,
				{
				𝑎
				,
				𝑐
				}
				}
			

		
	
. Let 
	
		
			
				𝐴
				=
				{
				𝑐
				}
			

		
	
. Then 
	
		
			

				𝐴
			

		
	
 is closed and hence 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. But 
	
		
			

				𝐴
			

		
	
 is not 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 because 
	
		
			
				𝐴
				⊂
				{
				𝑏
				,
				𝑐
				}
			

		
	
 and 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				𝑋
				⊄
				{
				𝑏
				,
				𝑐
				}
			

		
	
.
Example 2.2. Let   
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝜏
			

		
	
 be the same as in Example 2.1.  Let  
	
		
			
				ℐ
				=
				{
				𝜙
				,
				{
				𝑎
				}
				,
				{
				𝑏
				}
				,
				{
				𝑎
				,
				𝑏
				}
				}
			

		
	
 and 
	
		
			
				𝐴
				=
				{
				𝑐
				}
			

		
	
. Then 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and hence 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  Since 
	
		
			
				𝐴
				⊂
				{
				𝑏
				,
				𝑐
				}
			

		
	
 and 
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				=
				𝑋
				⊄
				{
				𝑏
				,
				𝑐
				}
			

		
	
, A is not 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Theorem 2.3.  If A is a subset of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
, then the following are equivalent. (a)A is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)For all  
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
, 
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				≠
				𝜙
			

		
	
.(c)
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 contains no nonempty closed set.
Proof. 
	
		
			
				(
				𝑎
				)
				⇒
				(
				𝑏
				)
			

		
	
.  Suppose 
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
. If 
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				=
				𝜙
			

		
	
, then 
	
		
			
				𝐴
				⊂
				𝑋
				−
				c
				l
				(
				{
				𝑥
				}
				)
			

		
	
.  Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,   
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑋
				−
				c
				l
				(
				{
				𝑥
				}
				)
			

		
	
.  It is a contradiction to the fact that 
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.  This proves (b).
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑐
				)
			

		
	
.  Suppose 
	
		
			
				𝐹
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
,  
	
		
			

				𝐹
			

		
	
 is closed and 
	
		
			
				𝑥
				∈
				𝐹
			

		
	
. Since 
	
		
			
				𝐹
				⊂
				𝑋
				−
				𝐴
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 closed, 
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				⊂
				c
				l
				(
				𝐹
				)
				∩
				𝐴
				=
				𝐹
				∩
				𝐴
				=
				𝜙
			

		
	
. Since 
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  by (b), 
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				≠
				𝜙
			

		
	
, a contradiction which proves (c).
	
		
			
				(
				𝑐
				)
				⇒
				(
				𝑎
				)
			

		
	
.  Let 
	
		
			

				𝑈
			

		
	
 be an open set containing 
	
		
			

				𝐴
			

		
	
.  Since 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 is closed, 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
			

		
	
 is closed and 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
.  By hypothesis, 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
				=
				𝜙
			

		
	
 and hence  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
.  Thus,  
	
		
			

				𝐴
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.3, we get Corollary 2.4 which gives characterizations for 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.3,  we get Corollary 2.5 which gives characterizations for 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets.
Corollary 2.4.  If  
	
		
			

				𝐴
			

		
	
 is a subset of a topological space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, then the following are equivalent. (a)A is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)For all  
	
		
			
				𝑥
				∈
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				≠
				𝜙
			

		
	
.(c)
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
  contains no nonempty closed set.
Corollary 2.5 (see [12, Theorem  2.2]).  If  
	
		
			

				𝐴
			

		
	
 is a subset of a topological space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, then the following are equivalent. (a)
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
			

			

				o
			

			
				𝑠
				𝑒
				𝑑
			

		
	
.(b)For all 
	
		
			
				𝑥
				∈
				c
				l
				(
				𝐴
				)
			

		
	
, 
	
		
			
				c
				l
				(
				{
				𝑥
				}
				)
				∩
				𝐴
				≠
				𝜙
			

		
	
.(c)
	
		
			
				c
				l
				(
				𝐴
				)
				−
				𝐴
			

		
	
   contains no nonempty closed set.
The following Corollary 2.6 shows that in 
	
		
			

				𝒯
			

			

				1
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
, 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets are 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
, the proof of which follows from Theorem 2.3(c). Corollary 2.7 gives the relation between 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets.
Corollary 2.6.  If  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is a  
	
		
			

				𝒯
			

			

				1
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
 and A is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 then A is a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.
Corollary 2.7.  If  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  an ideal space and A is a   
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set,  then the following are equivalent. (a)A is a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.(b)
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is a closed set.
Proof. 
	
		
			
				(
				𝑎
				)
				⇒
				(
				𝑏
				)
			

		
	
.   If 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
, then 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
				=
				𝜙
			

		
	
 and so 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				(
				𝐴
				)
			

		
	
 is closed.
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑎
				)
			

		
	
.   If 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				(
				𝐴
				)
			

		
	
 is closed, since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
, by Theorem 2.3(c), 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				(
				𝐴
				)
				=
				𝜙
			

		
	
 and so 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Corollary 2.7,  we get Corollary 2.8. If we put  
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Corollary 2.7, we get Corollary 2.9.
Corollary 2.8.  If  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				)
			

		
	
 is  a topological space and  
	
		
			

				𝐴
			

		
	
 is  a   
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set,  then the following are equivalent. (a)A is a  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.(b)
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is a closed set.
Corollary 2.9 (see [6, Corollary  2.3]).  If  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  an topological space and  
	
		
			

				𝐴
			

		
	
 is  a  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set,  then the following are equivalent. (a)
	
		
			

				𝐴
			

		
	
 is a closed set.(b)
	
		
			
				c
				l
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is a closed set.
Theorem 2.10.  If every open set of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then every  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. Since every open set is 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  
	
		
			
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				=
				𝑈
			

		
	
 for every 
	
		
			
				𝑈
				∈
				𝜏
			

		
	
. Therefore, for every subset 
	
		
			

				𝐴
			

		
	
 of X,  
	
		
			
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				∪
				{
				𝑈
				∈
				𝜏
				∣
				c
				l
			

			

				⋆
			

			
				(
				𝑈
				)
				⊂
				𝐴
				}
				=
				∪
				{
				𝑈
				∈
				𝜏
				∣
				𝑈
				⊂
				𝐴
				}
				=
				i
				n
				t
				(
				𝐴
				)
			

		
	
.  So  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				=
				c
				l
				(
				𝐴
				)
			

		
	
 for every subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝑋
			

		
	
. This implies that every 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.11.  If every subset of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then every  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
The proof follows from Lemma 1.3 and Theorem 2.10.
Theorem 2.12.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space. Then every subset of X is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if every open set is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. Suppose every subset of 
	
		
			

				𝑋
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. If 
	
		
			

				𝑈
			

		
	
 is open, then 
	
		
			

				𝑈
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and so 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑈
				)
				⊂
				𝑈
			

		
	
. Hence 
	
		
			

				𝑈
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. Conversely, suppose 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open. Since every open set is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,   
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
 and so 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.12, we get Corollary 2.13. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.12,  we get Corollary 2.14.
Corollary 2.13.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a topological space. Then every subset of X is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if every open set is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.14 (see [6, Theorem  2.10]).  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a topological space. Then every subset of X is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if every open set is closed.
Theorem 2.15.  If every  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a  
	
		
			

				𝒯
			

			

				1
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.
Proof. Suppose 
	
		
			
				{
				𝑥
				}
			

		
	
 is not closed for some 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. Then,  
	
		
			
				𝐵
				=
				𝑋
				−
				{
				𝑥
				}
			

		
	
 is not open. So 
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  By hypothesis, B is 
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  Therefore, 
	
		
			
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.  So 
	
		
			
				{
				𝑥
				}
			

		
	
 is both open and closed, a contradiction. Hence,  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a 
	
		
			

				𝒯
			

			

				1
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.
If we put  
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
  in Theorem 2.15, we get Corollary 2.16.
Corollary 2.16.  If every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
, then  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a  
	
		
			

				𝒯
			

			

				1
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.
Theorem 2.17.  Intersection of a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set and a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is always  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set and 
	
		
			

				𝐹
			

		
	
  a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			

				𝑐
			

			

				l
			

			
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
.  Suppose 
	
		
			
				𝐴
				∩
				𝐹
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open in 
	
		
			

				𝑋
			

		
	
. Then,  
	
		
			
				𝐴
				⊂
				𝑈
				∪
				(
				𝑋
				−
				𝐹
				)
			

		
	
.   Now 
	
		
			
				𝑋
				−
				𝐹
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 and hence open. So 
	
		
			
				𝑈
				∪
				(
				𝑋
				−
				𝐹
				)
			

		
	
 is an open set containing 
	
		
			

				𝐴
			

		
	
.   Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
				∪
				(
				𝑋
				−
				𝐹
				)
			

		
	
. Therefore,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				𝐹
				⊂
				𝑈
			

		
	
 which implies that 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				∩
				𝐹
				)
				⊂
				𝑈
			

		
	
.  So 
	
		
			
				𝐴
				∩
				𝐹
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.17,  we get Corollary 2.18. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.17,  we get Corollary 2.19.
Corollary 2.18 (see [8, Proposition 3.11]).  Intersection of a  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set and a  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is always  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.19 (see [6, Corollary  2.7]).  Intersection of a  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set and a closed set is always a  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.
Theorem 2.20.  A subset  
	
		
			

				𝐴
			

		
	
 of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

		
	
.
Proof. Suppose 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and 
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.  If 
	
		
			
				𝑥
				∉
				𝐴
			

			

				Λ
			

		
	
, then there exists an open set 
	
		
			

				𝑈
			

		
	
 such that 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
,  but  
	
		
			
				𝑥
				∉
				𝑈
			

		
	
. Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
 and so 
	
		
			
				𝑥
				∉
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  a contradiction. Therefore, 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

		
	
.   Conversely, suppose that 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

		
	
.    If 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open, then 
	
		
			

				𝐴
			

			

				Λ
			

			
				⊂
				𝑈
			

		
	
 and so  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
. Therefore, 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.20, we get Corollary 2.21. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.20,  we get Corollary 2.22.
Corollary 2.21.  A subset A of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if  
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

		
	
.
Corollary 2.22.  A subset A of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if  
	
		
			
				c
				l
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

		
	
.
Theorem 2.23.  Let A be a  
	
		
			

				Λ
			

			

				-
			

			
				𝑠
				𝑒
				𝑡
			

		
	
 of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
. Then A is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if   
	
		
			

				𝐴
			

		
	
  is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. Suppose 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  By Theorem 2.20,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝐴
			

			

				Λ
			

			
				=
				𝐴
			

		
	
,  since 
	
		
			

				𝐴
			

		
	
 is a  
	
		
			

				Λ
			

			

				-
			

			
				𝑠
				𝑒
				𝑡
			

		
	
. Therefore, 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. Converse follows from the fact that every 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.23,  we get Corollary 2.24. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.23,  we get Corollary 2.25.
Corollary 2.24.  Let A be a  
	
		
			

				Λ
			

			

				-
			

			
				𝑠
				𝑒
				𝑡
			

		
	
 of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
. Then A is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if A is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.25.  Let A be a  
	
		
			

				Λ
			

			

				-
			

			
				𝑠
				𝑒
				𝑡
			

		
	
 of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
. Then A is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if A is closed.
Theorem 2.26.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
.  If  
	
		
			

				𝐴
			

			

				Λ
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then A is also  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. Suppose that 
	
		
			

				𝐴
			

			

				Λ
			

		
	
 is a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. If 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is open,  then 
	
		
			

				𝐴
			

			

				Λ
			

			
				⊂
				𝑈
			

		
	
.  Since 
	
		
			

				𝐴
			

			

				Λ
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
			

			

				Λ
			

			
				)
				⊂
				𝑈
			

		
	
.  But,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
			

			

				Λ
			

			

				)
			

		
	
.  Therefore, A is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.26,  we get Corollary 2.27.  If we put  
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.26,  we get Corollary 2.28.
Corollary 2.27.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a topological space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
. If  
	
		
			

				𝐴
			

			

				Λ
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then A is also  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.28.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
. If  
	
		
			

				𝐴
			

			

				Λ
			

		
	
 is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set,  then A is also  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Theorem 2.29.  For an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
, the following are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)Every singleton of  
	
		
			

				𝑋
			

		
	
 is closed or  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
Proof. 
	
		
			
				(
				𝑎
				)
				⇒
				(
				𝑏
				)
			

		
	
.  Let 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.  If 
	
		
			
				{
				𝑥
				}
			

		
	
 is not closed, then 
	
		
			
				𝐴
				=
				𝑋
				−
				{
				𝑥
				}
				∉
				𝜏
			

		
	
 and then 
	
		
			

				𝐴
			

		
	
 is trivially 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  By (a), 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. Hence 
	
		
			
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑎
				)
			

		
	
.  Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set and let  
	
		
			
				𝑥
				∈
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
.  We have the following cases.Case 1. 
	
		
			
				{
				𝑥
				}
			

		
	
 is closed. By Theorem 2.3,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 does not contain a nonempty closed subset. This shows 
	
		
			
				{
				𝑥
				}
				∈
				𝐴
			

		
	
.Case 2. 
	
		
			
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
. Then,  
	
		
			
				{
				𝑥
				}
				∩
				𝐴
				≠
				𝜙
			

		
	
. Hence,  
	
		
			
				𝑥
				∈
				𝐴
			

		
	
.Thus in both cases 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and so 
	
		
			
				𝐴
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  that is, 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  which proves (a).
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.29,  we get Corollary 2.30. If we put  
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.29,  we get Corollary 2.31.
Corollary 2.30.  For an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, the following are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)Every singleton of  
	
		
			

				𝑋
			

		
	
 is closed or  
	
		
			

				𝜃
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
Corollary 2.31 (see [13, Theorem  2.5]).  For an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, the following are equivalent. (a)Every  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is closed.(b)Every singleton of  
	
		
			

				𝑋
			

		
	
 is closed or open.
Theorem 2.32.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
. Then A is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if  
	
		
			
				𝐴
				=
				𝐹
				−
				𝑁
			

		
	
,  where  
	
		
			

				𝐹
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and  
	
		
			

				𝑁
			

		
	
 contains no nonempty closed set.
Proof. If 
	
		
			

				𝐴
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  then by Theorem 2.3,  
	
		
			
				𝑁
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 contains no nonempty closed set. If 
	
		
			
				𝐹
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  then 
	
		
			

				𝐹
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 such that 
	
		
			
				𝐹
				−
				𝑁
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				(
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
				)
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				∪
				𝐴
				)
				=
				𝐴
			

		
	
. Conversely, suppose 
	
		
			
				𝐴
				=
				𝐹
				−
				𝑁
			

		
	
,  where 
	
		
			

				𝐹
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and  
	
		
			

				𝑁
			

		
	
 contains no nonempty closed set. Let 
	
		
			

				𝑈
			

		
	
 be an open set such that 
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
. Then,  
	
		
			
				𝐹
				−
				𝑁
				⊂
				𝑈
			

		
	
 which implies that 
	
		
			
				𝐹
				∩
				(
				𝑋
				−
				𝑈
				)
				⊂
				𝑁
			

		
	
. Now, 
	
		
			
				𝐴
				⊂
				𝐹
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 implies that 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐹
				)
				∩
				(
				𝑋
				−
				𝑈
				)
				⊂
				𝐹
				∩
				(
				𝑋
				−
				𝑈
				)
				⊂
				𝑁
			

		
	
. Since 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 sets are closed,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
			

		
	
 is closed. By hypothesis, 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∩
				(
				𝑋
				−
				𝑈
				)
				=
				𝜙
			

		
	
 and so 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
, which implies that 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.32,  we get Corollary 2.33. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.32,  we get Corollary 2.34.
Corollary 2.33.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
. Then A is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 subset of X if and only if  
	
		
			
				𝐴
				=
				𝐹
				−
				𝑁
			

		
	
,  where F is  
	
		
			

				𝜃
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and N contains no nonempty closed set.
Corollary 2.34 (see [12, Corollary  2.3]).  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space and  
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
. Then A is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 if and only if  
	
		
			
				𝐴
				=
				𝐹
				−
				𝑁
			

		
	
,  where F is closed and N contains no nonempty closed set.
Theorem 2.35.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space.  If A is  a  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 subset of X and 
	
		
			
				𝐴
				⊂
				𝐵
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
, then B is also  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐵
				)
				−
				𝐵
				⊂
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
, and since 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 has no nonempty closed subset, neither does 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐵
				)
				−
				𝐵
			

		
	
.  By Theorem 2.3, 
	
		
			

				𝐵
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.35,  we get Corollary 2.36. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.35,  we get Corollary 2.37.
Corollary 2.36.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space. If  
	
		
			

				𝐴
			

		
	
 is  a  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 subset of X and  
	
		
			
				𝐴
				⊂
				𝐵
				⊂
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
, then  
	
		
			

				𝐵
			

		
	
 is also  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Corollary 2.37 (see [6, Theorem  2.8]).  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space. If A is  a  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 subset of X and  
	
		
			
				𝐴
				⊂
				𝐵
				⊂
				c
				l
				(
				𝐴
				)
			

		
	
, then B is also  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is said to be 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Theorem 2.38.  A subset A of an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if and only if  
	
		
			
				𝐹
				⊂
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
 whenever F is closed and  
	
		
			
				𝐹
				⊂
				𝐴
			

		
	
.
Proof. Suppose 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 set and  
	
		
			

				𝐹
			

		
	
  is a closed set contained in 
	
		
			

				𝐴
			

		
	
, then 
	
		
			
				𝑋
				−
				𝐴
				⊂
				𝑋
				−
				𝐹
			

		
	
 and 
	
		
			
				𝑋
				−
				𝐹
			

		
	
 is open. Since 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
				⊂
				(
				𝑋
				−
				𝐹
				)
			

		
	
 and so 
	
		
			
				𝐹
				⊂
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
				=
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
. Conversely, suppose 
	
		
			

				X
			

			
				−
				𝐴
				⊂
				𝑈
			

		
	
 and 
	
		
			
				𝑋
				−
				𝑈
			

		
	
 is closed.  By hypothesis,  
	
		
			
				𝑋
				−
				𝑈
				⊂
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
			

		
	
,  which implies that 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				𝐴
				)
				=
				𝑋
				−
				i
				n
				t
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				⊂
				𝑈
			

		
	
.  Therefore, 
	
		
			
				𝑋
				−
				𝐴
			

		
	
  is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 and hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.38,  we get Corollary 2.39. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.38,  we get Corollary 2.40.
Corollary 2.39.  A subset A of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if and only if 
	
		
			
				𝐹
				⊂
				i
				n
				t
			

			

				𝜃
			

			
				(
				𝐴
				)
			

		
	
 whenever F is closed and  
	
		
			
				𝐹
				⊂
				𝐴
			

		
	
.
Corollary 2.40 (see [6, Theorem  4.2]).  A subset A of a space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 if and only if  
	
		
			
				𝐹
				⊂
				i
				n
				t
				(
				𝐴
				)
			

		
	
 whenever F is closed and  
	
		
			
				𝐹
				⊂
				𝐴
			

		
	
.
Theorem 2.41.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 be an ideal space and  
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
. Then the following are equivalent. (a)A is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(c)
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
Proof. 
	
		
			
				(
				𝑎
				)
				⇒
				(
				𝑏
				)
			

		
	
. Suppose 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. If 
	
		
			

				𝑈
			

		
	
 is any open set containing 
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
,  then 
	
		
			
				𝑋
				−
				𝑈
				⊂
				𝑋
				−
				(
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				=
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
.  Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,  by Theorem 2.3(c), it follows that 
	
		
			
				𝑋
				−
				𝑈
				=
				𝜙
			

		
	
 and so 
	
		
			
				𝑋
				=
				𝑈
			

		
	
.  Since 
	
		
			

				𝑋
			

		
	
 is the only open set containing 
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
,  
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑎
				)
			

		
	
. Suppose 
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  If 
	
		
			

				𝐹
			

		
	
 is any closed set contained in 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
, then 
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				⊂
				𝑋
				−
				𝐹
			

		
	
 and 
	
		
			
				𝑋
				−
				𝐹
			

		
	
 is open. Therefore,  
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				⊂
				𝑋
				−
				𝐹
			

		
	
,  which implies that 
	
		
			
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				∪
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
				⊂
				𝑋
				−
				𝐹
			

		
	
 and so 
	
		
			
				𝑋
				⊂
				𝑋
				−
				𝐹
			

		
	
;  it follows that 
	
		
			
				𝐹
				=
				𝜙
			

		
	
.  Hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.The equivalence of (b) and (c) follows from the fact that 
	
		
			
				𝑋
				−
				(
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
				)
				=
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			
				⋆
				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
.
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Theorem 2.41, we get Corollary 2.42. If we put 
	
		
			
				ℐ
				=
				℘
				(
				𝑋
				)
			

		
	
 in Theorem 2.41,  we get Corollary 2.43.
Corollary 2.42.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space and  
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
. Then the following are equivalent. (a)A is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				)
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(c)
	
		
			
				c
				l
			

			

				𝜃
			

			
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
Corollary 2.43.  Let  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be an ideal space and  
	
		
			
				𝐴
				⊂
				𝑈
			

		
	
. Then the following are equivalent. (a)A is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)
	
		
			
				𝐴
				∪
				(
				𝑋
				−
				c
				l
				(
				𝐴
				)
				)
			

		
	
 is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(c)
	
		
			
				c
				l
				(
				𝐴
				)
				−
				𝐴
			

		
	
 is  
	
		
			

				𝑔
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.
3. Characterization of 
	
		
			

				𝒯
			

			
				1
				/
				2
			

		
	
 and 
	
		
			

				𝒯
			

			

				ℐ
			

		
	
-Space
Theorem 3.1.  In an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
,  the following are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is closed.(b)
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a  
	
		
			

				𝒯
			

			
				1
				/
				2
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.(c)Every  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is closed.
Proof. 
	
		
			
				(
				𝑎
				)
				⇔
				(
				𝑏
				)
			

		
	
. Equivalence of (a) and (b) follows from Theorem  4.1 of [8].
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑐
				)
			

		
	
. Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set. Since every 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
,   A is 
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. By hypothesis, A is closed.
	
		
			
				(
				𝑐
				)
				⇒
				(
				𝑏
				)
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. If 
	
		
			
				{
				𝑥
				}
			

		
	
 is not closed, then 
	
		
			
				𝐵
				=
				𝑋
				−
				{
				𝑥
				}
			

		
	
 is not open. So 
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. By hypothesis, B is closed and so 
	
		
			
				{
				𝑥
				}
			

		
	
 is open. By Corollary 2.31, 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is a 
	
		
			

				𝒯
			

			
				1
				/
				2
			

			

				-
			

			
				𝑠
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.
Theorem 3.2.  In an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 the following,  are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is a  
	
		
			

				𝒯
			

			

				ℐ
			

			

				-
			

			
				𝑆
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.(c)Every  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
Proof. 
	
		
			
				(
				𝑎
				)
				⇒
				(
				𝑏
				)
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.  If 
	
		
			
				{
				𝑥
				}
			

		
	
  is not closed,  then 
	
		
			

				𝑋
			

		
	
 is the only open set containing 
	
		
			
				𝑋
				−
				{
				𝑥
				}
			

		
	
 and so 
	
		
			
				𝑋
				−
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
. By hypothesis,  
	
		
			
				𝑋
				−
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.   Equivalently 
	
		
			
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				⋆
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
.  Thus,  every singleton set in 
	
		
			

				𝑋
			

		
	
 is either closed or 
	
		
			

				⋆
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
. By Theorem  3.3 of [4], 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is a 
	
		
			

				𝒯
			

			

				ℐ
			

			

				-
			

			
				𝑆
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑎
				)
			

		
	
. The proof follows from the fact that every 
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is   
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
	
		
			
				(
				𝑏
				)
				⇒
				(
				𝑐
				)
			

		
	
. The proof follows from the fact that every set is 
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.
	
		
			
				(
				𝑐
				)
				⇒
				(
				𝑏
				)
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.  If 
	
		
			
				{
				𝑥
				}
			

		
	
 is not closed, then 
	
		
			

				𝑋
			

		
	
 is the only open set containing 
	
		
			
				𝑥
				−
				{
				𝑥
				}
			

		
	
 and so 
	
		
			
				𝑥
				−
				{
				𝑥
				}
			

		
	
  is  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  By hypothesis, 
	
		
			
				𝑋
				−
				{
				𝑥
				}
			

		
	
 is 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.  Thus,  
	
		
			
				{
				𝑥
				}
			

		
	
  is 
	
		
			

				⋆
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
. Therefore, every singleton set in 
	
		
			

				𝑋
			

		
	
 is either 
	
		
			

				⋆
			

			

				-
			

			
				𝑜
				𝑝
				𝑒
				𝑛
			

		
	
 or closed. By Theorem of  3.3 [4], 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
 is a 
	
		
			

				𝒯
			

			

				ℐ
			

			

				-
			

			
				𝑆
				𝑝
				𝑎
				𝑐
				𝑒
			

		
	
.  
The proof of the Corollary 3.3 follows from Theorem  3.2 and Theorem  3.10 of [5].
If we put 
	
		
			
				ℐ
				=
				{
				𝜙
				}
			

		
	
 in Corollary 3.3,  we get Corollary 3.4.
Corollary 3.3.  In an ideal space  
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℐ
				)
			

		
	
,  the following are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(b)Every  
	
		
			

				𝜃
			

			

				-
			

			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is  
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
.(c)Every  
	
		
			

				ℐ
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is an  
	
		
			

				ℐ
			

			

				-
			

			
				𝑙
				𝑜
				𝑐
				𝑎
				𝑙
				𝑙
				𝑦
			

		
	
 
	
		
			

				⋆
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set.
Corollary 3.4.  In a topological space  
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
,   the following are equivalent. (a)Every  
	
		
			

				𝜃
			

			

				-
			

			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is closed.(b)Every  
	
		
			

				𝑔
			

			

				-
			

			
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
			

		
	
 set is a locally closed set.
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