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Variations in photovoltaic (PV) module current-voltage curves result in a power loss in PV arrays often referred to as mismatch
loss (MML). As a means of reducing MML, newly fabricated PV modules are sorted to meet a set tolerance for variation in
overall maximum power output with respect to a given module’s rated power. Starting with flash test data sets for two different
polycrystalline PV modules and a simulated sorting procedure, Monte Carlo techniques were used to generate a large number
of artificial PV arrays. The MMLs for each of these arrays were then calculated to assess the sorting procedure’s ability to reduce
MML. Overall MMLs were quite small (0.001–0.01%). Sorting by 𝐼mp resulted in the most consistent MML reductions. Sorting by
𝑉mp yielded insignificant results. Sorting by 𝑃mp yielded significant MML reduction in only one of the two PV module data sets.
Analysis was conducted to quantify if additional sorting on top of what bothmanufacturers had already donewouldmake economic
sense. Based on high level economic analysis, it appears that additional sorting yields little economic gain; however, this is highly
dependent upon manufacturer sorting cost.

1. Introduction

Differences in the current-voltage characteristics of photo-
voltaic (PV)modules give rise to a type of power loss referred
to as “electrical mismatch” once modules are connected to
networks of series and parallel strings called arrays. The
consequence of “mismatch loss” (MML) is that the total
power output of a PV array will be less than the sum of
the power outputs of the modules as if they were acting
independently [1].

This phenomenon has been investigated by a number of
authors [1–5] primarily by using one of two methods: (1) the
comparison between a PV array’s ideal max-power and the
actual max-power computed by progressively synthesizing
the I-V curves of modules, series strings, and finally the
complete PV array; and (2) MML estimates of PV arrays
composed of modules with known or statistically generated
I-V characteristics. This second method was made possible
by an equation developed by Bucciarelli [1] that estimates
MML inPVarrays composed ofmoduleswith relatively small

variations in their I-V characteristics. Bucciarelli’s [1] model
was found to adequately estimate MMLs in 100 kWp arrays
by Iannone et al. [2], combining and expanding on the work
of Bishop [3] who used random numbers to generate PV
modules arranged into arrays, and Chamberlin et al. [4], who
estimated small MML values in randomly arranged arrays
of four 48Wp PV modules. After a brief outline of some of
the causative mechanisms of MML in PV arrays, Kaushika
and Rai [5] used Bucciarelli’s [1] model to explore the
consequences of aging on MML values, showing extremely
small MMLs (<0.01%) and relatively large MMLs (>10%) in
PV arrays composed of newly fabricated cells and aging cells,
respectively.

A common practice employed bymanufacturers is to sort
newly fabricated PVmodules prior to installation as a means
of reducing MMLs in assembled PV arrays. Previous studies
have focused primarily on predicting and estimatingMML in
existing or simulated PV arrays; however very little research
exists on the effectiveness of sorting as a means of MML
reduction. The purpose of this paper is to quantify to what
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degree manufacturer sorting has upon MML reduction and
whether it remains a good economic decision.

This investigation was carried out in three steps. First, a
simulated sorting procedure was applied to a population of
real PV modules. Sorting methods included sorting modules
by reducing variances in a population of modules: maximum
power current, maximum power voltage, and maximum
power. Second, Monte Carlo techniques were used to ran-
domly select and arrange the sorted PV modules into PV
arrays. Bucciarelli’s [1] method was then used to calculate
the MML in each randomly generated PV array, producing
a MML distribution over a series of simulations. This was
systematically repeated over ever stricter sorting procedures,
the results of which showcase the effect of sorting uponMML
reduction. Finally, the impacts of these results were discussed
by means of a high level economic analysis.

2. Mismatch Loss Estimation Model

2.1. Current-Voltage Relationship in a PV Cell. In terms of
light generated current, the I-V curve of a PV cell can be
expressed as [5]
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This derivation is similar in method to Kaushika and Rai [5],
resulting in an expression identical to that of Bucciarelli [1].
Equation (5) is assumed to adequately represent the I-V curve
of a photovoltaic cell (or network of cells) near their max-
power point [1, 2, 5]. 𝐶 is commonly referred to as the cell
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Figure 1: Cell characteristic factor versus fill factor.

characteristic factor and can be expressed in terms of the fill
factor (FF) defined as [1]

FF =

𝐼mp𝑉mp

𝐼sc𝑉oc
=

𝐶
2

(1 + 𝐶) [𝐶 + ln (1 + 𝐶)]
. (6)

The relationship between the fill factor and 𝐶 can be seen in
Figure 1.

This study takes into consideration the placement of
individual modules within a PV array. To account for this,
we introduce themodified cell characteristic factor 𝐶󸀠, which
is based upon the average fill factor of only the PV modules
used within the assembled PV array (as opposed to the entire
available population):
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. (7)

2.2. Power Loss due toMismatch. From Bucciarelli [1],𝑇 total
PV modules arranged into a network of 𝑀 parallel series
strings of 𝐿modules; each has a mismatch loss Δ𝑃 estimated
by
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Expressions (9) are derived on the assumption that variations
in max-power current and max-power voltage in the 𝑠th PV
cell in our network take the nondimensional form [1]:
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are respective measurements of variations in max-

power current and max-power voltage and take on values
between −1 and 1. 𝜖

𝜂
and 𝜖
𝜉
are small numbers, respectively,

measuring the percentage range of variation in 𝐼mp and 𝑉mp.
In order for (8) to yield acceptably accurate results, the
product of 𝜖 and 𝐶

󸀠, known as the weighted variation of
max-power 𝜖𝐶

󸀠, must be less than 1 [1]. In practice, this
limits the standard deviations of max-power parameters in a
population of PV modules to within a few percentage points
of their mean values [5]. It is also assumed that max-power
current and voltage in each PV module are uncorrelated;
specifically that the Pearson’s Correlation between 𝐼mp and
𝑉mp is small with respect to ±1 [1].

In prior MML studies, the term 𝜎
𝜂
is calculated based

upon the entire sample population ofmodules used in a given
array without taking into consideration module placement.
This neglects the effect that module placement has on series
MML in that different configurations of the same modules
within the same array will yield significantly different series
MML values. In order to account for module placement, a
unique 𝜎

𝜂
, 𝐶󸀠, and series MML value are calculated for each

string based solely upon themoduleswithin that string.These
MML values are then given a weight 𝜔 based upon the ideal
power output 𝑃ideal of that string relative to the average ideal
power output of every string in the array. The final series
MML is taken as the average of the weighted series MML of
each string in the array. Thus, for an array of 𝑀 strings, the
series MML term in (8) becomes
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where 𝑞 refers to the string in question. The final, modified
MML equation is found to be

Δ𝑃 = (1 −
1

𝐿
)

1

𝑀

[

[

𝑀

∑

𝑞=1

𝜔
𝑞

(𝐶
󸀠

𝑞
+ 2)

2
𝜎
2

𝜂,𝑞

]

]

+

(𝐶
󸀠
+ 2)

2

𝜎
2

𝜉

𝐿
[1 −

1

𝑀
] .

(12)

1 2 3

1

2

𝑀

𝐿

Figure 2:Network of𝐿modules in series and𝑀modules in parallel.

3. Sorting Procedure and PV Array Simulation

Most PV manufacturers sort their modules by power output
at 1,000W/m2 and 25 degree Celcius cell temperature and
AtmosphericMass of 1.5, guaranteeing some small amount of
variation from their rated power. Current industry tolerances
between the modules nameplate rating and measured power
rating are ±3–5%.

Sorting for the purpose of this paper was conducted
by imposing a maximum allowed deviation from the mean
for each max-power parameter: 𝑃mp, 𝐼mp, and 𝑉mp on the
entire population of modules. This maximum deviation was
imposed by removing outlier modules and thus reducing
the variance of max-power current 𝜎2

𝜂
and maximum power

voltage 𝜎
2

𝜉
within the remaining population of PV modules.

This maximum allowed deviation from the mean was then
reduced to examine the sensitivity of MML specific to each
sorting parameter and maximum allowed deviation.

Monte Carlo techniques for randomly selecting and
arranging available remaining PV modules into arrays were
carried out using Microsoft Excel’s random number genera-
tor, which has been shown to be suitable for generating small
batches of random numbers [6, 7]. After specifying PV array
dimensions (𝐿 in series, 𝑀 in parallel), the required number
of modules was selected from sorted groups and placed at
random into the array. Finally, a MML value was calculated
using (12).

3.1. Model Verification. This model was validated by reevalu-
ating a problem treated by Bucciarelli [1] for estimatingMML
in a single series string of PV cells with no 𝑉mp variation and
an 𝐼mp variation defined by a Gaussian probability density
function. Bucciarelli [1] assigns the following values:

𝐼mp = 39.2mA,
𝜎
𝐼mp

= 2.86mA,
FF = 0.67.

The 1/𝐿 term is dropped with respect to 1, and (8) results in
Δ𝑃 = 2.35%.

Startingwith the same parameters, a Gaussian probability
density function was used to generate 𝐼mp’s for a distribution
of 204 PV cells with 𝐼mp and 𝜎

𝐼mp
approximately equal to

those listed above. The PV module 𝐼mp distribution can be
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Table 1: Statistical measures for the Helios Solar Works 250Wp module data set.

Helios Solar Works mono-Cx 250Wp
𝐼sc (A) 𝑉oc (V) 𝑉mp (V) 𝐼mp (I) 𝑃mp (W) FF

Number of modules 2,132 Avg 8.85 37.6 30.5 8.27 252.3 0.758
󰜚 (𝐼mp, 𝑉mp) −0.35 Max 9.01 38.5 31.1 8.46 260.4 0.772
𝜖𝐶
󸀠 (𝑉mp) 0.51 Min 8.59 37.0 29.8 8.05 247.0 0.741

𝜖𝐶
󸀠 (𝐼mp) 0.58 𝜎 0.083 0.21 0.24 0.076 2.47 0.0055

Table 2: Statistical measures for the Anonymous Module Manufacturer 285Wp module data set.

Anonymous Module Manufacturer 285Wp
𝐼sc (A) 𝑉oc (V) 𝑉mp (V) 𝐼mp (I) 𝑃mp (W) FF

Number of modules 3,850 Avg 8.54 44.8 35.7 8.03 286.9 0.750
󰜚 (𝐼mp, 𝑉mp) −0.14 Max 8.75 45.3 36.2 8.14 290.1 0.759
𝜖𝐶
󸀠 (𝑉mp) 0.30 Min 8.44 44.5 35.2 7.93 284.8 0.732

𝜖𝐶
󸀠 (𝐼mp) 0.29 𝜎 0.041 0.13 0.15 0.030 1.51 0.0037
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Figure 3: 𝐼mp frequency distribution for generated data set used
to verify the MML model. A Gaussian pdf was used to create
the distribution based upon the example carried out originally in
Bucciarelli [1].

seen in Figure 3. 10,000 simulations were run calculating the
MML in a series string composed of 100 randomly selected
modules (so as to neglect the 1/𝐿 term with respect to 1). As
seen in Figure 4, the average value of the resulting seriesMML
distribution is nearly identical to that found by Bucciarelli [1],
only differing by 0.01%.

4. Data

Flash test data was provided by an anonymous module
manufacturer andHelios SolarWorks.The anonymousmod-
ule manufacturer provided flash test data for 3,850 285Wp
modules, the details of which are shown in Figures 5(a),
5(b), and 5(c). Helios Solar Works is a Milwaukee, WI-based
manufacturer of mono-Cx PV modules and provided flash
test data for 2,132 250Wp PV modules upon request, the
details of which are shown in Figures 6(a), 6(b), and 6(c).

As stated in Section 2, it is a requirement that theweighted
variation of max-power 𝜖𝐶

󸀠 is less than 1 and the cross-
correlation 󰜚 for 𝐼mp and 𝑉mp is small with respect to ±1 [1].
Statistical analysis shows that both measures are within
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Figure 4: Series MML frequency distribution using Monte Carlo
techniques for module selection and placement. Results are nearly
identical to those of Bucciarelli [1].

acceptable ranges for each module type, the values of which
are shown in Tables 1 and 2.

5. Results and Analysis

Repetition of the process outlined in Section 3 yields a
distribution of MMLs specific to the dimensions of that
particular PV array and module sorting criteria. Keeping PV
array dimensions constantwhile systematically restricting the
sorting criteria upon the population of available PV modules
yields different results dependent upon which particular
parameter one sorts by. A realistically dimensioned PV array
(400 kWp, 700V) [8] was considered. For this array, MMLs
were calculated by sorting based on each of the three max-
power parameters: 𝑃mp, 𝐼mp, and 𝑉mp. The effect of sorting
upon average MML, represented in terms of a reduction
in the standard deviations of each respective max-power
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Figure 5: 𝑉mp , 𝐼mp, and 𝑃mp distributions of the anonymous module manufacturer’s 285Wp module.

parameter distribution, can be seen in Figures 7, 8(a), and
8(b).

It is immediately clear that sorting by 𝐼mp has the most
consistent, immediate, and greatest reduction onMML. Each
module works at its own 𝐼mp under max-power conditions,
and in a series string the worst performingmodule will lower
the current output of every module in that string. As a result,
individual module placement heavily influences series MML
in a PV array. As outlier modules are removed with respect to
the imposed 𝐼mp restriction, a greater net reduction in MML
is observed.

Compared to 𝐼mp, sorting modules by 𝑉mp results in
negligible or even counterproductive MML reduction (as in
the case of the 250Wpmodule). Parallel MML represents the
overall voltage drop in a PV array as a result of the series
string with the lowest voltage. In a realistically dimensioned
array such as the one considered in this study, each string
in the array is composed of twenty or more PV modules.
This effectively reduces the impact that individual module
placement has upon string voltage variance, thus reducing
the importance of 𝑉mp sorting. This phenomenon can be
inferred by the MML estimate (8) in that parallel MML is
inversely proportional to string length (𝐿). The greater the
string length, the less string voltage variation onewill find and
the less parallelMMLonewillmeasure. Evidence of the heavy

dependence of overall MML upon 𝐼mp over 𝑉mp variance has
been demonstrated by Kaushika and Rai [5], in which parallel
MMLs are found on average to be a full order of magnitude
less than series MMLs even in arrays with a string length of
one.

Sorting by 𝑃mp yielded the most unpredictable impact
on MML reduction. This is not surprising given that a PV
module’s𝑃mp is the product of both𝑉mp and 𝐼mp.With overall
MMLbeing shown to heavily favour seriesMMLover parallel
MML, sorting by any parameter that does not directly reduce
the variation of 𝐼mp (such as 𝑃mp) is not going to result in
consistent, reliable MML reduction.

Both module populations were subjected to some degree
of sorting with respect to 𝑃mp prior to use by this study and
reflect each manufacturer’s 𝑃mp variation tolerance. There
is a significant difference between the two module sets,
with the Helios module showing a modest ±3% variation
from the mean, whereas the modules from the anonymous
manufacturer show ±1%. The consequences of this can be
seen in averageMMLs found before we applied the simulated
sorting procedure, with the modules from the anonymous
manufacturer showing a MML of 0.009% compared to the
Helios module MML of 0.055%—roughly 6 times more
but still orders of magnitude smaller than MML estimates
reported in prior studies [1, 2, 5].
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Figure 6: 𝑉mp , 𝐼mp, and 𝑃mp distributions of the Helios Solar Works 250Wp module.
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by the reduction in 𝐼mp standard deviations displayed above.

Any reduction in MML resulting from sorting modules
similar in fashion to this study would only be reliably seen
in the short term. The work by Kaushika and Rai [5] shows
dramatic increases in MMLs as PV cells age. Outside the

scope of this study, but clearly the next step, would be to
investigate the long-term reduction in PV array MML as a
function of sorting modules prior to installation.

6. Economic Benefit of Sorting PV Modules

Reducing max-power parameter standard deviations of a
given set of PV modules results in a ΔMML reduction
corresponding to a net economic gain over the lifetime of
the PV array. For a set Power Purchase Agreement (PPA), a
given PV array will produce on average ] $/year. A reduction
in MML will result in a yearly net cash flow increase given by

𝐵
𝑗
= ]ΔMML(1 + EER)𝑗,

] = 𝑥𝑦𝑧,

(13)

where

ΔMML = reduction in MML due to sorting (%),
𝑥 = array power output per kWp (kWh/kWp),
𝑦 = array capacity (kWp),
𝑧 = energy cost set by PPA ($/kWh),
EER = Energy Escalation Rate set by PPA (%),
𝑗 = year.
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Figure 8: Average MML as a function of sorting by each max-power parameter for each module. Sorting is represented by a percentage
reduction in the standard deviation of each max-power parameter’s distribution with respect to their unsorted standard deviations.
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Figure 9: Allowed manufacturer sorting cost for a given MML reduction resulting from module sorting to be considered a good economic
decision. Labelled data points correspond to the strictest sorting criteria for each parameter.

The net present value NPV of this series of yearly cash flows
𝐵
𝑗
with a discount rate 𝑑 over an array lifetime of 𝑛 years is

given by
NPV =

𝑛

∑

𝑗=1

𝐵
𝑗

(1 + 𝑑)
𝑗
,

𝑑 =
𝑟 − 𝑖

1 + 𝑖
,

(14)

𝑟 = opportunity cost of capital (%),

𝑖 = inflation rate (%),

resulting in the expression

NPV = ]ΔMML
𝑛

∑

𝑗=1

(
1 + EER
1 + 𝑑

)

𝑗

. (15)

The cost 𝐶
𝑜
to the owner of the PV array to presort the

modules is given by

𝐶
𝑜
= 𝐶
𝑠
(1 + 𝛿) , (16)

where 𝐶
𝑠
is the manufacturer’s cost of sorting and 𝛿 is their

desired profit margin. In order to yield a net economic gain,
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NPV > 𝐶
𝑜
, resulting in an expression for the minimum

required decrease in MML from sorting:

ΔMML >
𝐶
𝑠
(1 + 𝛿)

]
[

[

𝑛

∑

𝑗=1

(
1 + EER
1 + 𝑑

)

𝑗

]

]

−1

. (17)

6.1. Example. We take as an example the Helios 250Wp
module assembled into the 400 kWp PV array simulated
previously place it in a region of high irradiance such as
the American South-West, and assume a specific yield of
2,000 kWh/kWp. For simplicity we assume an array lifetime
and PPA of 20 years each. Using recent data for $/kWh,
EER, and discount rates [9–12] and assuming a modest profit
margin of 20%, the following parameters take the values

𝑥 = 2,000 kWh/kWp,
𝑦 = 400 kWp,
𝑧 = $0.16/kWh,
𝑛 = 20 years,
EER = 2.4%,
𝑟 = 2.72%,
𝑖 = 2.42%,
𝛿 = 20%.

Substituting into (17) yields

𝐶
𝑠

$2,673,000
< ΔMML. (18)

The net economic benefit of sorting modules can be seen in
Figures 9(a) and 9(b). Even in the most significant case, that
of sorting by 𝐼mp and reducing the 𝐼mp standard deviation to
40% in the Helios 250Wp module, the net economic gains
over the lifetime of the PVarray areminimal.This is, however,
highly dependent upon manufacturer sorting cost. Despite
this, all indications suggest that sorting modules by 𝐼mp will
yield the most consistent and reliable reduction in MML.

7. Summary and Conclusions

A procedure for estimating average MMLs of PV arrays
built from a given set of real PV modules was developed
by simulating preinstallation sorting, followed by generating
random artificial PV arrays using Monte Carlo techniques.
Bucciarelli’s [1] equation for estimating MML in a PV net-
works was modified to take into account individual module
placement within the network. Two different PV modules
(250Wp and 285Wp) were used to populate a realistically
dimensioned, large-scale PV array (700V., 400 kWp) [8].

The analysis indicated that sorting PV modules by max-
power current 𝐼mp yielded the most consistent and greatest
overall reduction inMML when compared to sorting by 𝑃mp,
which yielded inconsistent MML reduction, and 𝑉mp, which
yielded insignificant MML reduction. These results were
expressed in terms of a reduction in the standard deviations
of each max-power parameter distribution.

A brief economic analysis was carried out describing the
net economic benefit over the lifetime of the PV array of
MML reduction by means of sorting. Even in the best case
scenario, it appears that sorting yields little or no economic
gain; however this is highly dependent upon manufacturer
sorting cost.

This study was limited by the lack of data pertaining to
the time sensitivity of PV module current-voltage variation.
As modules degrade over time, their electrical characteristics
change which can impact MML.

Nomenclature

𝐼ph: Light generated current
𝐼0: Diode saturation current
𝐸: Electron charge
𝑉
󸀠: Cell voltage

𝐼
󸀠: Cell current

𝑅
𝑠
: Cell series resistance

𝑅sh: Cell shunt resistance
𝐴: Diode ideality factor
𝑘: Boltzmann’s constant
𝑇
𝑐
: Cell temperature

Δ𝑃: Fractional power loss due to electrical mismatch
ΔMML: Reduction in mismatch loss
𝐶: Cell characteristic factor
𝐶
󸀠: Modified cell characteristic factor

FF: Fill factor
𝑃mp: Module max-power output
𝑉mp: Module max-power voltage
𝑉mp: Average module max-power voltage
𝐼mp: Module max-power current
𝐼mp: Average module max-power current
𝑉oc: Module open circuit voltage
𝐼sc: Module short circuit voltage
𝜎
𝑉mp

: Standard deviation of max-power voltage
𝜎
𝐼mp

: Standard deviation of max-power current
𝜎
𝜉
: Coefficient of variation of max-power voltage

𝜎
𝜂
: Coefficient of variation of max-power current

𝜎
2

𝜉
: Variance of max-power voltage

𝜎
2

𝜂
: Variance of max-power current

𝐿: Number of modules connected in series
𝑀: Number of series strings connected in parallel
𝑇: Total number of modules in the PV network
𝜖𝐶
󸀠: Weighted variation of max-power current/voltage

󰜚 : Pearson’s correlation
NPV: Net present value
PPA: Power purchase agreement
EER: Energy escalation rate
𝑑: Discount rate
𝐶
𝑠
: Cost to manufacturer to sort modules

𝛿: Manufacturer profit margin.
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