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Removing noise without producing image distortion is the challenging goal for any image denoising filter. Thus, the different
amounts of residual noise and unwanted blur should be evaluated to analyze the actual performance of a denoising process. In
this paper a novel full-reference method for measuring such features in color images is presented. The proposed approach is based
on the decomposition of the normalized color difference (NCD) into three components that separately take into account different
classes of filtering errors such as the inaccuracy in filtering noise pulses, the inaccuracy in reducing Gaussian noise, and the amount
of collateral distortion. Computer simulations show that the proposed method offers significant advantages over other measures of

filtering performance in the literature, including the recently proposed vector techniques.

1. Introduction

It is known that removal of noise and preservation of color/
structural information are very difficult and challenging
issues in the design of image denoising filters [1]. Indeed, the
quality of a filtered image is typically impaired by the super-
position of two different effects: insufficient noise cancella-
tion and unwanted collateral distortion produced by the fil-
tering. Since the different amounts of these effects should
separately be taken into account to analyze the behavior of any
image denoising technique, the development of appropriate
metrics is of paramount importance.

Until recently, the most common methods to evaluate
the quality of denoised images were combinations of visual
inspection and objective measurements based on the compu-
tation of pixelwise differences between the original and the
processed image. Typically, the mean squared error (MSE) or
the peak signal-to-noise ratio (PSNR) was adopted to meas-
ure the noise cancellation, whereas the mean absolute error
(MAE) represented the most commonly used metrics to eval-
uate the edge preservation. All the aforementioned measures
are typically evaluated in the RGB coordinate system, that is,
the most popular color space for a variety of applications.

In order to deal with the human perception of colors (not
adequately described by the RGB space), another kind of
metrics, namely, the normalized color difference (NCD), was
proposed [1-3]. Such measure is evaluated in the perceptually
uniform CIE Luv (or CIE Lab) color spaces in order to
appraise the perceptual closeness of a filtered picture to the
uncorrupted original. The results of most filters in the litera-
ture have been evaluated by resorting to the aforementioned
measures or combinations of them [4-19]. Such evaluation
techniques, however, have a major drawback. They have
limited accuracy in estimating the different filtering features.
As already observed for grayscale [20] and color images [21],
MSE and MAE cannot accurately measure noise removal
and detail preservation, because they cannot separate these
features. Although the MAE is more sensitive to distortion
than the MSE, it also depends upon the residual noise. On the
other hand, even if the MSE is more sensitive to the remaining
noise than the MAE, it is affected by the amount of distortion
produced by a filter too. Similarly, the NCD takes into account
all the filtering errors in perceptually uniform color spaces
without distinguishing error contributions caused by filtering
distortion or by insuflicient noise cancellation. The same lim-
itation also affects metrics that try to estimate the perceived



quality of an image in the form of a single score [22, 23].
Again, they cannot distinguish between noise cancellation
and detail preservation yielded by a filter because different
combi nations of image blur and unfiltered noise can lead
to the same score. Recently proposed measures such as the
vector root mean squared error (VRMSE) are a more appro-
priate choice because they give a separate evaluation of the
mentioned features. A limitation of such techniques, how-
ever, is the fact that they work in the RGB [24] and YUV [25]
nonuniform color spaces and measure the noise removal and
the detail blur in the luminance component of the image only.
Furthermore, they cannot address the case of mixed (impulse
and Gaussian) noise in color data.

In this paper a new method for measuring the objective
quality of filtered images is presented. The proposed approach
consists in the decomposition of the NCD into three different
components that, respectively, measure how much a filter is
good at removing noise pulses, reducing Gaussian noise, and
preserving the image details. The method is more accurate
than our previous vector techniques and can address the case
of mixed noise.

The rest of the paper is organized as follows. Section 2
describes the proposed approach, Section 3 explains how the
method works, Section 4 discusses the results of many com-
puter simulations, and, finally, Section 5 reports the conclu-
sion.

2. The Proposed Method

The proposed method is specifically designed to address the
case of mixed noise. Thus, let us deal with images corrupted
by impulse and Gaussian noise as well. Formally, let ¥(c) =
[?L(C),7M(C),FV(C)]T be the vector (in the Luv color space)
representing the pixel at spatial position ¢ = [¢,¢] in the
original noise-free image and let y(c) = [y, (c), y,,(c), }V(c)]T
be the corresponding pixel in the filtered picture. It is known
that the NCD is defined by the following relationship [1]:

NCD = ¥ ((7,(©) - 7, () + (7, (©) ~ 7, (©))”
ceD

1/2

+(7,(©) -7, ()°) )

) (Z V(L ) + (7, () + (7, (c))2> :

ceC

where C denotes the overall set of coordinates of the pro-
cessed pixels and D = C. In our approach, we want to decom-

pose the NCD into three components NCD,,,,, NCD,,,, and
NCDy;,, as follows:
NCD = NCD,,, + NCDy,, + NCDy;,, (2)

where NCD,,, is the component that deals with partially
removed noise pulses, NCD,,, takes into account the unfil-
tered Gaussian noise, and finally NCDy,, measures the
unwanted distortion produced by the filtering. Since impulse
noise generally affects only a subset of the image pixels, we
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can easily define the NCD;,,, component using relation (1),
where D represents in this case the subset C, of coordinates
where noise pulses occurred (D = C,).

The NCD,,,, and NCDy;, must be evaluated in the subset
C, of pixel coordinates where impulse noise has not been
superimposed. Their definition is more difficult because it is
expected that almost every pixel in C, is degraded by Gaus-
sian noise. In this case, a possible choice for measuring the
noise cancellation and the edge preservation could be to
focus on the uniform and nonuniform areas, according to
visual perception. A more effective solution for separating
the evaluation of distortion from that of the residual noise
consists, however, in determining the distortion area, that is,
the pixel regions where the filter (adopting the same param
eter settings) would blur the original noise-free image. In
principle, a map of the differences between the original and
the blurred picture would suffice for perfectly noiseless syn-
thetic test images. In practice, most test pictures used in
the literature contain small amounts of noise. Thus, a soft
threshold approach is needed. For the computation of such
distortion area, the RGB color space suffices. Let r(c) =
[Rr(c), rG(c),rB(c)]T be the vector (in the RGB color coor-
dinate system) representing the pixel at spatial position
¢ = [¢,6] in the original noise-free image and let s(c) =
[sr(c), sg(c), sB(c)]T be the corresponding pixel in the blurred
picture that is produced when the original noise-free image
is filtered (adopting the same parameter settings). Let (c)
represent the dissimilarity (or distance) between s(c) and r(c):

4 (c)

= V(52 (©) — 1 ) + (56, (©) 76, () + (55 () — 7 (©))°.
3)

Thus, we shall define the NCD,,, and NCDy;, as follows:

NCD,;, = Yeec, B(O) AE(0) |
Seee (7L ©) + (7, @) + (7, (©)°
)
- A
NCD, Yeec, [1 - BQJAE(0)

Y VFL©) + (7 (©) + (7, ()

where AE(c) is the color difference (or error) evaluated in the
Luv perceptually uniform color space:

AE () = ((7, () - 71 (©)* + (3, () ~ 7, (0))°
b (5)

+(3,(©) - 7,()°)

and f(c) denotes the degree of blur at location ¢ = [¢;, ¢,]. We
evaluate this degree by means of the parameterized function
depicted in Figure 1, where a and b are parameters.

Clearly, the NCD g, mainly collects the color errors in the
distortion area (B = 1), whereas the NCD,,, mainly deals
with the errors that are located in the uniform regions (8 =
0). For synthetic test images (including perfectly uniform
regions), a crisp threshold is the natural choice (a = b,
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FIGURE 1: Graphical representation of the function .

a = 0). For test images represented by real pictures having
nonzero noise variance in the background, a soft threshold
(a > 0,b > a) is a more suitable choice. Since the noise
variance should be small (typically o < 4), small values for
parameters a and b are appropriate; for example, a = 4 and
b = 20. This choice is based on a heuristic approach (too small
values could wrongly extend the distortion area and then
yield an excess of NCDy;,, whereas too large values would
produce the opposite effect). Notice that, in the proposed
approach, once a and b have been chosen, the extension of
the distortion area depends upon the kind of filter and the
window size, as it will be shown in the next section. It should
be observed that if impulse noise is the only kind of noise
degrading the image, the NCD is decomposed into two com-
ponents only: the residual noise component NCD;,, and a
distortion component NCDy; that, in this case, can be eval-
uated by the difference NCD — NCD,,,,. Similarly, if the
picture is corrupted by Gaussian noise only, the NCD is again
decomposed into two components NCD,,,, and NCD y; only.
As mentioned in Section 1, the NCD computes all the color
errors in a perceptually uniform color space in order to
evaluate the perceptual closeness of a filtered image to the
uncorrupted original. Clearly, the NCD by itself could not
distinguish between errors caused by filtering distortion or
by insufficient noise cancellation. Splitting the NCD into
appropriate components, such as the NCD;p,,,» NCDg,,, and
NCDy;,, removes this limitation and retains the specific
advantage of the NCD approach.

3. How the Method Works

In order to analyze the behavior of the proposed method, we
generated the test image shown in Figure 2(a). In this picture,
perfectly uniform regions and image edges are located into
different areas. We produced a noisy picture by adding zero-
mean Gaussian noise (with standard deviation o = 30) into
some uniform regions only (Figure 2(b)). In this experiment
we resorted to the vector mean filter because its behavior
is well known. We processed the noisy picture by adopting
(2N + 1) x (2N + 1) filters with increasing window size
(N = 2,3, 4,5). The results of the processing are depicted
in Figure 3. From visual inspection, we can easily see that
the noise is reduced at the price of an increasing detail blur
(left to right). It is expected that measures of residual noise
and unwanted blur should yield numerical evaluations that
comply with these observations.

TaBLE 1: List of NCD, NCD,,,, and NCDy; evaluations for (2N +1) x
(2N + 1) vector mean filters.

N NCD (x10%) NCD,,, (x10%) NCDy; (x10%)
2 10.92 2.72 8.21
3 13.15 1.96 1119
4 14.73 155 13.18
5 16.05 1.29 14.75

The distortion areas computed in our method are shown
in Figure 4, where black and white, respectively, denote § = 0
and f = 1. To evaluate these areas we chose a crisp threshold
(a = b = 0), so that  became a two-valued quantity
revealing distortion (§ > 0 = B = 1) or no distortion
(6 = 0 = B = 0). The extension of such areas increases as
the window size increases, as it should be. The results given
by our method are listed in Tablel. We can observe that
the proposed NCD decomposition is in perfect agreement
with the filtering behavior. The values of the NCD,,, (third
column) decrease as the noise cancellation becomes stronger.
Similarly, larger values of the NCD;, highlight the growing
blur in the filtered images.

For real images used as test pictures, a soft threshold
approach is required, as mentioned in the previous section.
In this case, in order to improve the accuracy of the NCDy,,
and NCD;, evaluations, we also adopt a simple calibration
procedure that subtracts from NCD,,,, (and adds to NCD ;)

the possibly nonzero NCD;u component measured in the
uncorrupted image.

4. Results of Computer Simulations

In order to evaluate the performance of the proposed tech-
nique, we report and discuss in this section the results of
many computer simulations based on images of the well-
known Kodak test set [26]. In the following experiments four
pictures from this set are considered. They are depicted in
Figure 5. All of these images are 24-bit color pictures whose
size is 512-by-512 pixels.

In this first experiment we briefly highlight the advan-
tages of our method over the classical MSE and MAE
evaluations (an in-depth analysis of the inaccuracy of MAE
and MSE is reported in [21]. We generated two images having
very different combinations of residual noise and edge preser-
vation, as in [21]. We adopted vector median filters having
different window sizes to produce these results. Figure 6(a)
shows the input noisy picture where each channel component
is degraded by fixed valued impulse noise with probability
p = 40%. The filtered images are shown in Figure 6(b)
(smaller window yielding more residual noise and less blur)
and in Figure 6(c) (larger window giving less residual noise
and more blur). The differences in terms of detail preservation
and noise removal are apparent from visual inspection.
However, they cannot be distinguished in terms of MSE and
MAE (see Table 2).
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FIGURE 2: Test images: (a) noise-free and (b) corrupted by Gaussian noise.
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FIGURE 3: Results of (2N + 1) x (2N + 1) filtering: (a) N =2, (b) N =3, (¢c) N =4,and (d) N = 5.
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FIGURE 4: Distortion areas for (2N + 1) x (2N + 1) windows: (a) N = 2, (b) N = 3,(c) N =4, and (d) N = 5.

TABLE 2: Advantages of our method over the classical MSE and MAE
evaluations (“Parrots” image corrupted by fixed-value impulse noise
and filtered by 5-point and 5 x 5 vector median operators).

TasLe 3: List of CQL, NCD,,,, and NCDy; evaluations (“Flowers”
image corrupted by Gaussian noise and filtered by 3 x 3 and 5 x 5
vector mean operators).

Image MSE MAE  NCD,,, (x10*)  NCDy (x10%) Image CQI NCD,,, (x10) NCDy;, (x10%)
Figure 6(b) 77 3.6 337 1.42 Figure 7(b) 0.744 11.04 4.90
Figure 6(c) 77 3.6 1.58 2.08 Figure 7(c) 0.744 491 7.07

Conversely, our method correctly characterizes the men-
tioned filtering behavior. The NCD;,,, can measure the
different amounts of residual noise, whereas the MSE cannot
(the filtered images have the same MSE). The NCDy;, can
focus on the image distortion only, whereas the MAE cannot
(the filtered images have the same MAE).

In the second experiment we considered an example of
image quality index that follows human perception: the color
quality index CQI [27]. As in the previous case, we generated
two images with different combinations of unfiltered noise
and collateral blur. The input picture, corrupted by Gaussian
noise (0 = 22), is reported in Figure 7(a). We adopted
vector mean filters having different window sizes to produce

the results in Figure 7(b) (more residual noise, less blur)
and Figure 7(c) (less residual noise, more blur). The list of
quantitative evaluations is reported in Table 3. The same score
is obtained (CQI = 0.744) for both images, because different
mixtures of residual noise and distortion yield the same loss
of perceived image quality. Again, our method can easily
separate (and measure) such effects.

In the third experiment we considered for a comparison
our previous vector technique operating in the YIQ color
space [25]. In this approach, the MSE evaluated in the
luminance channel is split into two components MSE, and
MSEj that, respectively, estimate the noise cancellation and
the detail preservation. We chose the “House” picture as test
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(a) (b)

(c)

FIGURE 5: Test images used in the experiments: (a) Parrots, (b) Flowers, (c) House, and (d) Boat.

(a) (b) (©)

FIGURE 6: (a) Noisy data, (b) result yielded by the 5-point vector median, and (c) result yielded by the 5 x 5 vector median.
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FIGURE 7: (a) Noisy data, (b) result yielded by the 3 x 3 vector mean filter, and (c) result yielded by the 5 x 5 vector mean filter.

(a) (b)

(© (d)

FIGURE 8: Results of (2N + 1) x (2N + 1) vector mean filtering: (a) N =2, (b) N =3, (c) N =4,and (d) N = 5.

image and we generated a noisy version of it by adding zero-
mean Gaussian noise with o = 20.

As done in Section 3, we adopted the well-known vector
mean filter and we processed the noisy data by adopting
(2N + 1) x (2N + 1) operators with increasing window size
(N =2,3,4,5). The results are reported in Table 4. Portions of
the processed images are shown in Figure 8. It can be seen that
the residual noise decreases as the window becomes larger.
Hence, it is expected that the corresponding filtering errors
decrease. However, this does not occur for the MSE , : growing
values of the MSE, characterize images filtered with larger
windows (second column in Table 4). The proposed NCD,,,
is much more accurate (fourth column). Its values become
smaller as the smoothing effect increases, as it should be.

TaBLE 4: List of MSE,, MSE, NCD,,,, and NCD; values (“House”
image corrupted by Gaussian noise with o = 20 and filtered by (2N +
1) x (2N + 1) vector mean operators).

N  MSE, MSE, NCD,,, (x10%) NCDy; (x10%)
2 23.94 30.74 3.42 8.19
3 30.19 37.49 1.88 9.25
4 34.93 41.82 117 10.20
5 38.97 45.07 0.79 11.04

The same behavior can be observed if we adopt different test
pictures, such as the “Boat” picture (Table 5).
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FIGURE 9: Test images corrupted by different amounts of Gaussian and impulse noise: (a) 0 = 5, p = 5%; (b) 0 = 15, p = 15%; (c) 0 = 25,

and p = 25%.

F1GURE 10: Corresponding results yielded by the FPGA filter.

TaBLE 5: List of MSE,, MSE;, NCD,,,, and NCDy, values (“Boat”
image corrupted by Gaussian noise with o = 20 and filtered by 2N+
1) x (2N + 1) vector mean operators).

N  MSE, MSE, NCD,,, (x10%) NCDy, (x10%)
2 21.59 32.31 3.83 6.44
3 32.16 45.20 224 737
4 41.79 54.94 1.44 8.20
5 50.34 62.14 1.00 8.94

The different performance of the previous and new
method mainly resides in the different error decomposition

schemes. The previous method focused on the uniform and
nonuniform areas of a picture to distinguish between noise
cancellation and detail preservation, according to visual per-
ception. Here, the MSE, and MSEy components are simply
obtained by resorting to an edge map given by the Sobel
operator. However, since this map does not depend upon the
actual filtering action, errors due to blur (possibly located
in the exterior of this map) can wrongly be added to the
MSE,, thus increasing its value. The decomposition scheme
adopted in the proposed method, on the contrary, is based on
a distortion area that depends upon the actual filtering: it can

increase when the smoothing is stronger and generates more
blur.
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FIGURE 11: Test images corrupted by different amounts of Gaussian and impulse noise: (a) o = 5, p = 5%; (b) 0 = 15, p = 15%; (c) o = 25,

and p = 25%.

FIGURE 12: Corresponding results yielded by the FPGA filter.

Thus, even in the presence of large window filters, errors
caused by blur are correctly included into the corresponding
NCDy;, component. Consequently, the NCD,,, can correctly
take into account the residual noise only.

gau

In the fourth experiment we finally considered the case
of mixed noise. We chose the “Boat” image and we generated
three noisy pictures by adding growing amounts of Gaussian
and impulse noise (Figure 9). We filtered the noisy pictures
by using the FPGA filter [14] because it is known that this
operator is very effective in removing mixed noise from
color images. We set the filtering parameters according to

the values of the standard deviation o (Gaussian noise) and
probability p (impulse noise), as suggested in [14]. The filtered
pictures are shown in Figure 10 for visual inspection. The
corresponding evaluations given by the new technique and
the previous one are listed in Table 6. The different amounts
of residual impulse and Gaussian noise are, respectively,
measured by the NCD;,,, and NCD,,, components (pro-
posed method). Clearly, the sole MSE, cannot separate these
features (second column), like all other existing metrics in
the literature. Similar results can be obtained if we adopt
different pictures, such as the “House” image (Figure 11).
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TaBLE 6: List of MSE,, MSEg, NCD,,,,,, NCD,,,,, and NCDy; values (“Boat” image corrupted by growing amounts of mixed noise and filtered

imp?>

by the FPGA operator).

Image MSE, MSE, NCD,,, (x10°) NCD,,, (x10%) NCDy, (x10%)
Figure 10(a) 8.43 7.60 0.39 3.87 2.90
Figure 10(b) 18.18 12.48 2.79 11.64 3.73
Figure 10(c) 38.46 20.62 7.36 18.25 4.53
TaBLE 7: List of MSE,, MSEg, NCD,,,, NCD,,,, and NCDy;, values (“House” image corrupted by growing amounts of mixed noise and filtered
by the FPGA operator).

Image MSE, MSE, NCD,,, (x10%) NCD,,, (x10°) NCDy, (x10%)
Figure 12(a) 12.03 10.74 0.45 3.67 4.38
Figure 12(b) 21.67 15.17 2.96 11.02 5.52
Figure 12(c) 41.43 22.39 7.66 17.35 6.68

The filtered data are shown in Figure 12 for visual inspection.
The corresponding evaluations given by the new method and
the previous one are listed in Table 7.

5. Conclusions

Performance evaluation of noise reduction techniques needs
appropriate full-reference metrics able to measure the differ-
ent amounts of residual noise and filtering distortion. In this
paper we have presented a new method for evaluating such
features in color images restored from impulse and Gaussian
noise. The approach is based on the decomposition of the
NCD into three components that, respectively, measure the
ability of a filter to remove noise pulses (NCD;,,;), to reduce
Gaussian noise (NCD,,, ), and to preserve the image details
(NCDy;,)- These new measures retain the specific advantage
of the NCD, that is, the evaluation of color errors in a
perceptually uniform color space. On the other hand, they
overcome the limitation of the sole NCD that cannot dis-
tinguish between color errors due to filtering distortion and
insufficient noise cancellation.

Results of computer simulations dealing with different
pictures corrupted by impulse and Gaussian noise have
shown that the proposed method outperforms classical and
vector metrics in the literature in the evaluation of the dif-
ferent amounts of residual noise and distortion given by a
denoising filter.
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