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Abstract. 
We prove a theorem in which we get a priori estimation of the solution for mixed problems with integral condition for singular parabolic equations. Mixed problems with nonlocal boundary conditions or with nonlocal initial conditions were studied in many works lately. Our result plays an important role in the theory of heat transmission, thermoelasticity, chemical engineering, underground water flow, and plasma physics.


1. Introduction
The importance of problems with integral condition has been pointed out by Samarskiĭ [1]. Mathematical modelling by evolution problems with a nonlocal constraint of the form 
	
		
			
				∫
				(
				1
				/
				(
				1
				−
				𝛼
				)
				)
			

			
				1
				𝛼
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑥
				=
				𝐸
				(
				𝑡
				)
			

		
	
 is encountered in heat transmission theory, thermoelasticity, chemical engineering, underground water flow, and plasma physics. For background information, we refer the reader to Benouar and Yurchuk [2], Bouziani and Benouar [3], Bouziani [4], Cannon and van der Hoek [5–7] Ionkin and Moiceev [8, 9], Kamynin [10], and Yurchuk [11, 12]. Mixed problems with nonlocal boundary conditions or with nonlocal initial conditions were studied in Bouziani [13], Byszewski [14–16], Gasymov [17], Ionkin [8, 9], Lazhar [18], and Said and Nadia [19]. The results and the method used here are a further elaboration of those in [2]. We should mention here that the presence of integral term in the boundary condition can greatly complicate the application of standard functional and numerical techniques. This work can be considered as a continuation of the results in [11, 20].
We consider the following mixed problem in the rectangle 
	
		
			
				𝑄
				=
				(
				0
				,
				𝑙
				)
				×
				(
				0
				,
				𝑇
				)
			

		
	
:
	
 		
 			
				(
				1
				)
			
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐿
				𝑢
				=
				𝜕
				𝑢
			

			
				
			
			
				−
				1
				𝜕
				𝑡
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				|
				|
				|
				|
				
				𝜕
				𝑥
				=
				𝑓
				(
				𝑥
				,
				𝑡
				)
				,
				𝑚
				>
				0
				,
				𝑙
				𝑢
				=
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝜑
				(
				𝑥
				)
				,
				𝑢
				(
				0
				,
				𝑡
				)
				<
				∞
				,
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑥
				=
				0
				,
				𝛼
				>
				0
				.
			

		
	

2. A Priori Estimate
Let 
	
		
			

				𝐸
			

		
	
 be the Hilbert space of all sufficiently smooth functions 
	
		
			

				𝑢
			

		
	
 satisfying the second and third conditions in (2) and equipped with the norm
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				2
				𝐸
			

			
				=
				
			

			

				𝑄
			

			
				
				𝑥
				(
				𝑙
				−
				𝑥
				)
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				1
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				
				𝑑
				𝑥
				𝑑
				𝑡
				+
				s
				u
				p
			

			
				0
				≤
				𝑡
				≤
				𝑇
			

			
				
				
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑥
			

			
				
			
			
				
				𝜕
				𝑢
			

			

				2
			

			
				𝑚
				𝑑
				𝑥
				+
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				
				.
				𝑑
				𝑥
			

		
	

					The equality 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑚
				+
				1
			

			
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑥
			

			
				𝑥
				0
			

			
				
				𝑑
				𝜂
			

			
				𝑥
				𝜂
			

			

				𝜕
			

			
				
			
			
				
				𝜉
				𝜕
				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				
				𝜕
				𝜉
				𝑑
				𝜉
				+
			

			
				𝑥
				0
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜉
				𝑑
				𝜉
			

		
	

					implies the following inequality:
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
				≤
				𝑥
			

			
				1
				/
				2
			

			

				
			

			
				
			
			

				
			

			
				𝑥
				0
			

			
				
				𝜕
			

			
				
			
			
				
				𝜉
				𝜕
				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜉
				
				
			

			

				2
			

			
				+
				
				𝑑
				𝜉
			

			
				
			
			

				
			

			
				𝑥
				0
			

			
				
				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝜉
			

			

				2
			

			
				𝑑
				𝜉
				.
			

		
	

By (5) it follows that 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑥
				→
				0
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				=
				0
				,
			

		
	

					for any 
	
		
			
				𝑢
				∈
				𝐸
			

		
	
.
We will use (5) for the solutions 
	
		
			

				𝑢
			

		
	
 of the problem (1)-(2). For the right hand side 
	
		
			

				𝑓
			

		
	
 of (1) and initial condition of 
	
		
			

				𝑢
			

		
	
 from (2) we introduce the space 
	
		
			

				𝐹
			

		
	
 which is consisted of the vector function 
	
		
			
				ℱ
				=
				(
				𝑓
				,
				𝜑
				)
			

		
	
 with the norm 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				‖
				ℱ
				‖
			

			
				2
				𝐹
			

			
				=
				
			

			

				𝑄
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				|
				𝑓
				(
				𝑥
				,
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑥
				+
			

			
				𝑙
				0
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝜑
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝜑
			

			

				2
			

			
				𝑑
				𝑥
				.
			

		
	

					Here it is assumed that 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝜑
				(
				0
				)
				<
				∞
				,
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝜑
				(
				𝑥
				)
				𝑑
				𝑥
				=
				0
				.
			

		
	

Theorem 1.  For any function 
	
		
			
				𝑢
				∈
				𝐸
			

		
	
 such that 
	
		
			

				𝑥
			

			
				𝑚
				/
				2
			

			
				(
				𝜕
				𝑢
				/
				𝜕
				𝑡
				)
				∈
				𝐿
			

			

				2
			

			
				(
				𝑄
				)
			

		
	
 and 
	
		
			

				𝑥
			

			
				−
				𝑚
				/
				2
			

			
				(
				𝜕
				/
				𝜕
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				(
				𝜕
				𝑢
				/
				𝜕
				𝑥
				)
			

		
	
 
	
		
			
				∈
				𝐿
			

			

				2
			

			
				(
				𝑄
				)
			

		
	
, the following inequality holds:
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				2
				𝐸
			

			
				≤
				𝑐
				‖
				ℱ
				‖
			

			
				2
				𝐹
			

			

				,
			

		
	
where  
	
		
			
				𝑐
				=
				2
				(
				𝑙
				+
				e
				x
				p
				(
				𝑇
				/
				2
				𝛼
			

			

				2
			

			
				)
				)
			

		
	
.
Proof. We set 
	
		
			
				𝑀
				𝑢
				=
				𝑥
			

			

				𝑚
			

			

				𝑢
			

		
	
 with 
	
		
			
				0
				≤
				𝑥
				≤
				𝛼
			

		
	
 and 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑀
				𝑢
				=
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				1
				𝑢
				(
				𝑥
				,
				𝑡
				)
				+
			

			
				
			
			
				𝑙
				−
				𝛼
				𝐽
				(
				𝑥
			

			

				𝑚
			

			
				
				𝑢
				)
				,
				𝐽
				𝜗
				(
				𝑥
				)
				=
			

			
				𝑥
				𝛼
			

			
				𝜗
				(
				𝜉
				)
				𝑑
				𝜉
				,
			

		
	

						with 
	
		
			
				𝛼
				≤
				𝑥
				≤
				𝑙
			

		
	
.Consider the following equality:
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝐿
				𝑢
				𝑀
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝑀
				𝜕
				𝑡
				𝜕
				𝑢
			

			
				
			
			
				−
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			

				1
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝑀
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				.
			

		
	

						It can be seen that the following equalities hold:
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝑀
				𝜕
				𝑡
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝑑
				𝑥
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			
				
				
				𝑙
				−
				𝑥
			

			
				
			
			
				
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				1
			

			
				
			
			
				𝑙
				−
				𝛼
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝑡
			

			
				𝑥
				𝛼
			

			
				𝜉
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
				𝑑
				𝜉
			

			
				
			
			
				
				,
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑙
				𝛼
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝑡
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				=
				𝑚
				𝜕
				𝑡
				𝑑
				𝜉
				𝑑
				𝑥
			

			
				
			
			
				2
				
			

			
				𝑙
				𝛼
			

			
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				|
				
				𝜕
				𝑡
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
				𝑑
				𝜉
			

			

				2
			

			
				𝑑
				𝑥
				.
			

		
	
By (12), we obtain the following equality:
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝑀
				𝜕
				𝑡
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				1
			

			
				
			
			

				𝑥
			

			
				𝑚
				+
				1
			

			
				|
				|
				|
				|
				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
				𝑑
				𝜉
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝑡
				.
			

		
	

					Integrating by parts (and using (6)), we get
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				−
				
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			

				1
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				=
				−
			

			
				𝜏
				0
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
				𝑑
				𝑡
			

			
				𝑥
				=
				𝛼
				𝑥
				=
				0
			

			
				+
				
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜕
				𝑥
			

			

				2
			

			

				𝑢
			

			
				
			
			
				
				𝜕
				𝑥
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				=
				−
			

			
				𝜏
				0
			

			

				𝛼
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝛼
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝛼
				𝜕
				𝑢
				(
				𝛼
				,
				𝑡
				)
			

			
				
			
			
				+
				1
				𝜕
				𝑡
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				1
				𝑑
				𝑥
				−
			

			
				
			
			
				2
				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝑑
				𝜑
				(
				𝑥
				)
			

			
				
			
			
				
				𝑑
				𝑥
			

			

				2
			

			
				−
				
				𝑑
				𝑥
				,
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				1
				𝑙
				−
				𝛼
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				=
				−
			

			
				𝜏
				0
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
				𝑑
				𝑡
			

			
				𝑥
				=
				𝑙
				𝑥
				=
				𝛼
			

			
				+
				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜕
				𝑥
			

			

				2
			

			

				𝑢
			

			
				
			
			
				−
				1
				𝜕
				𝑥
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			
				𝛼
				𝜕
				𝑢
				(
				𝛼
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝛼
				𝜕
				𝑢
				(
				𝛼
				,
				𝑡
				)
			

			
				
			
			
				+
				1
				𝜕
				𝑡
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝑙
				𝛼
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				−
				1
				𝑑
				𝑥
			

			
				
			
			
				2
				
			

			
				𝑙
				𝛼
			

			
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝜑
				(
				𝑥
				)
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				−
				1
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				−
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				,
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				1
			

			
				
			
			
				1
				𝑙
				−
				𝛼
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				
				𝜕
				𝑥
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				=
				1
				𝜕
				𝑡
				𝑑
				𝜉
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				−
				𝑚
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				1
			

			
				
			
			
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝑥
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				=
				1
				𝜕
				𝑡
				𝑑
				𝜉
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				−
				𝑚
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑢
			

			
				
			
			

				𝑥
			

			

				2
			

			

				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				+
				𝑚
				𝜕
				𝑡
				𝑑
				𝜉
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				2
				(
				𝑙
				−
				𝑥
				)
			

			
				𝑙
				𝛼
			

			

				𝑢
			

			

				2
			

			
				(
				𝑥
				,
				𝜏
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				−
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				2
				(
				𝑙
				−
				𝑥
				)
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝜑
			

			

				2
			

			
				(
				𝑥
				)
				𝑑
				𝑥
				.
			

		
	
The formulas (14) imply the following:
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				−
				
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			

				1
			

			
				
			
			

				𝑥
			

			

				𝑚
			

			

				𝜕
			

			
				
			
			
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				𝑀
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				=
				1
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				2
				
				1
			

			
				
			
			
				2
				
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				+
				
				𝑑
				𝑥
			

			
				𝑙
				𝛼
			

			
				
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				⋅
				𝑥
			

			

				𝑚
			

			
				
			
			
				𝑢
				(
				𝑙
				−
				𝛼
				)
			

			

				2
			

			
				
				−
				
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
			

			
				𝛼
				0
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝜑
				(
				𝑥
				)
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				−
				
				𝑑
				𝑥
			

			
				𝑙
				𝛼
			

			
				
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝜑
				(
				𝑥
				)
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				−
				𝑚
			

			
				
			
			
				𝑥
				𝑙
				−
				𝛼
			

			
				𝑚
				−
				1
			

			

				𝜑
			

			

				2
			

			
				
				
				−
				𝑚
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝛼
				0
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				2
			

			

				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝑡
				𝑑
				𝜉
				𝑑
				𝑡
				𝑑
				𝑥
				.
			

		
	
Adding (13) and (15), we get
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝐿
				𝑢
				𝑀
				𝜕
				𝑢
			

			
				
			
			
				=
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝜓
				(
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				1
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				2
				
				
			

			
				𝑙
				0
			

			
				𝜓
				(
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				(
				𝑙
				−
				𝛼
				)
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				−
				
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
			

			
				𝑙
				0
			

			
				𝜓
				(
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝑑
				𝜑
			

			
				
			
			
				|
				|
				|
				𝑑
				𝑥
			

			

				2
			

			
				−
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				(
				𝑙
				−
				𝛼
				)
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝜑
			

			

				2
			

			
				
				+
				𝑚
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			
				
				(
				𝑙
				−
				𝛼
				)
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				1
			

			
				
			
			

				𝑥
			

			
				𝑚
				+
				1
			

			
				|
				|
				|
				|
				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				−
				𝑚
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				
				(
				𝑙
				−
				𝛼
				)
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑢
			

			
				
			
			

				𝑥
			

			

				2
			

			

				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
				,
			

		
	

						where the function 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝜓
				(
				𝑥
				)
				=
				1
				,
				0
				≤
				𝑥
				≤
				𝛼
				𝑙
				−
				𝑥
			

			
				
			
			
				𝑙
				−
				𝛼
				,
				𝛼
				≤
				𝑥
				≤
				𝑙
				.
			

		
	
Now, it can be shown that the following inequalities hold:
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑢
			

			
				
			
			

				𝑥
			

			

				2
			

			

				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				≤
				
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				1
			

			
				
			
			

				𝑥
			

			
				𝑚
				+
				1
			

			
				|
				|
				|
				|
				
			

			
				𝑥
				𝛼
			

			

				𝜉
			

			

				𝑚
			

			
				𝜕
				𝑢
				(
				𝜉
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				1
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				4
				𝛼
			

			

				2
			

			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑥
				𝑑
				𝑡
				,
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝐿
				𝑢
				𝑀
				𝜕
				𝑢
			

			
				
			
			
				≤
				1
				𝜕
				𝑡
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				|
				𝐿
				𝑢
			

			

				2
			

			
				+
				1
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				𝜓
				(
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝑡
				,
				𝑙
				−
				𝑥
				≤
				𝜓
				(
				𝑥
				)
				≤
				1
				.
			

		
	

						The equality (16) and the inequalities (18) imply the following inequality:
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				≤
				1
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
			

			
				
			
			
				2
				𝛼
			

			

				2
			

			

				𝑚
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				+
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑙
				0
			

			

				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝜑
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝜑
			

			

				2
			

			
				+
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			

				𝑥
			

			

				𝑚
			

			
				(
				𝐿
				𝑢
				)
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝑡
				.
			

		
	

Lemma 2.  Let on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
 continuous nonnegative functions 
	
		
			

				𝑔
			

			

				1
			

			
				,
				𝑔
			

		
	
, and 
	
		
			

				ℎ
			

		
	
 be given, where 
	
		
			

				ℎ
			

		
	
 is nondecreasing. Then from the inequality 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			
				
				(
				𝜏
				)
				+
				𝑔
				(
				𝜏
				)
				≤
				𝑐
			

			
				𝜏
				0
			

			
				𝑔
				(
				𝑡
				)
				𝑑
				𝑡
				+
				ℎ
				(
				𝜏
				)
			

		
	

						implies the inequality
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			
				(
				𝜏
				)
				+
				𝑔
				(
				𝜏
				)
				≤
				𝑒
			

			
				𝑐
				𝜏
			

			
				ℎ
				(
				𝜏
				)
				.
			

		
	

The above lemma can be proved by iteration method. We omit the details.
In order to apply the lemma, we set
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑚
				𝑔
				(
				𝜏
				)
				=
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
				.
			

		
	

					Let 
	
		
			

				𝑔
			

			

				1
			

			
				(
				𝜏
				)
			

		
	
 be the first two terms in the left hand side of (19), 
	
		
			
				ℎ
				(
				𝜏
				)
			

		
	
 the last three terms in the right hand side of (19), and 
	
		
			
				𝑐
				=
				1
				/
				2
				𝛼
			

			

				2
			

		
	
.
As a consequence of (19), we obtain the following inequality:
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜏
				0
			

			

				
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑚
				𝑑
				𝑥
			

			
				
			
			
				
				𝑙
				−
				𝛼
			

			
				𝑙
				𝛼
			

			

				𝑥
			

			
				𝑚
				−
				1
			

			

				𝑢
			

			

				2
			

			
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
				≤
				𝑒
			

			
				𝑇
				/
				2
				𝛼
			

			

				2
			

			
				‖
				ℱ
				‖
			

			
				2
				𝐹
			

			

				.
			

		
	

					Here we have used the notation (7). The right hand side of inequality (23) does not depend on 
	
		
			

				ℱ
			

		
	
. Consequently, in the right hand side of (23) the supremum can be taken. Thus, we get the following inequality:
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			
				𝑙
				0
			

			
				(
				𝑙
				−
				𝑥
				)
				𝑥
			

			

				𝑚
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑡
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝑡
				+
				s
				u
				p
			

			
				0
				≤
				𝑡
				≤
				𝑇
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					The inequalities (24) and (25) imply inequality (9).
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