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Let a = (a1, a2, . . . , am) ∈ Cm be an m-dimensional vector. Then, it can be identified with an m ×m
circulant matrix. By using the theory of matrix-valued wavelet analysis (Walden and Serroukh,
2002), we discuss the vector-valued multiresolution analysis. Also, we derive several different
designs of finite length of vector-valued filters. The corresponding scaling functions and wavelet
functions are given. Specially, we deal with the construction of filters on symmetric matrix-valued
functions space.

1. Introduction

Wavelet analysis has been investigated extensively due to its wide applications in pure and
applied sciences. Many interesting books and papers on this topic have been published (see
[1–7]). The construction of filter banks is very important in applied aspects. The analogous
theory can be extended to the cases of vector-valued and matrix-valued function spaces (see
[8–11]). For example, Xia and Suter in [11] proposed vector-valued wavelets and vector
filter banks and established a sufficient condition on the matrix-valued filters such that
the solution of the corresponding two-scale dilation equation is a matrix-valued scaling
function for a matrix-valued multiresolution analysis. But they did not give any example
of finite length matrix-valued filter. As for this reason, Walden and Serroukh in [9] studied
the wavelet analysis of matrix-valued time series and gave the construction of several
different finite length matrix-valued (2 × 2) filters; naturally, how to construct the filters for
symmetric matrix case. Possible practical application of this scheme in signal and image
processing is numerous. In voice privacy systems, a number of signals may need to be
transmitted from one place to another, intermixing of the signals before transmission via
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the matrix-valued filters, combined with perfect reconstruction, adds greatly to the likelihood
of secure communications. In a scalable coding application, the high-quality lower-resolution
approximations produced may be transmitted via slower communication channels, while the
original can be reproduced using the perfect reconstruction filter banks. Other application
areas are in progressive coding scheme, multisatellite measurements of electromagnetic wave
fields, analysis of climate-related time series, and analysis of space weather effects, and so on.
Here, we shall mention the theory of continuous wavelet transforms for quaternion-valued
functions (see [12, 13]). Applying the theory of matrix-valued wavelet analysis, The authors
in [8] gave the construction of scaling functions and wavelet functions by identifying the
quaternion-valued functions with the complex duplex matrix-valued functions. Also, Bahri
in [14] discussed the construction of filter banks of quaternion-valued functions. On the
other hand, a quaternion a + bi + cj + dk (a, b, c, d ∈ R) can be identified with a matrix(

a −b −c −d
b a −d c
c d a −b
d −c b a

)
. Recently, a new work is to construct the filter banks of quaternion-valued

functions by using method in [9] with this identification. It is well known that every m-
dimensional vector corresponds to an m × m matrix, which is called the circulant matrix.
Our purpose of the present paper is to study wavelet analysis of vector-valued time series
directly by identifying the vector-valued functions with matrix-valued functions and derive
several different designs of finite length vector-valued filters. In order to get more length filter
banks, we need to improve the value of parameter ε in [9]. Also, the corresponding scaling
function and wavelet function are given in the paper. Since the scaling and wavelet functions
are connected with the vanishing moments and regularity, we will consider this problem in
late publication.

This paper is organized as follows. In the remainder of this section, we state some
preliminaries. Section 2 will introduce some important results of multiresolution analysis
theory in the matrix-valued function cases. In Section 3, we give the construction of finite
length vector-valued filters. Followed by several different filter designs, we gain the scaling
functions and wavelet functions, respectively. In the last section, we deal with the same
problem for the symmetric matrix-valued function cases.

Throughout this paper, the black characters are representation of vectors. Let a1,
a2, . . . , an ∈ C. Then, a = (a1, a2, . . . , am) ∈ C

m denotes anm-dimensional vector. The mapping
M from C

m to C
m×m is defined by

M : a = (a1, a2, . . . , am) �−→

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 · · · am
am a1 a2 · · · am−1

am−1 am a1 · · · am−2
...

...
...

...
...

a2 a3 a4 · · · a1

⎞
⎟⎟⎟⎟⎟⎟⎠

= M(a). (1.1)

Clearly, if m = 2, M(a) = ( a1 a2
a2 a1 ) is a symmetric matrix, whose diagonal has the same number.

If m ≥ 3, M(a) is not symmetric. For example, let m = 3, we get M(a) =
( a1 a2 a3
a3 a1 a2
a2 a3 a1

)
. Let

a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm), and M(a) is called the circulant matrix. It is a very
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important class of Toeplitz matrices (see [15, page 201]). And we can verify that M(a)M(b) =
M(c), where

c = (c1, c2, . . . , cm) = (a1b1 + a2bm + a3bm−1 + · · · + amb2, a1b2

+ a2b1 + a3bm + · · · + amb3, . . . , a1bm

+ a2bm−1 + a3bm−2 + · · · + amb1).

(1.2)

This is to say that for any a,b, M(a)M(b) is closed under the matrix multiplication. An m ×
m complex matrix B is said to be normal if BHB = BBH , where BH denotes the complex-
conjugate transpose of B. Thus, we can see that, for every a = (a1, a2, . . . , am), M(a) is normal.
Let

M = {M(a) : a ∈ C
m}, M∗ = {M(a) : a ∈ C

m,detM(a)/= 0}. (1.3)

Then, we have the following.

Theorem 1.1. M∗ is a subgroup ofGL(m,C) in the sense of matrix multiplication, whereGL(m,C)
is the set of all nonsingular linear transforms on C

m.

2. Multiresolution Analysis on L2
M(R,Cm×m)

Firstly, we introduce the basic knowledge of vector-valued functions which can be found in
[10, 11]. Let

L2(
R,Cm×m) = {F(t) = (Fl,j(t))m×m : t ∈ R, Fl,j(t) ∈ L2(R,C), 1 ≤ l, j ≤ m

}
(2.1)

denote the space of matrix-valued functions defined on R with value in Cm×m. The Frobenius
norm on L2(R,Cm×m) is defined by

‖F(t)‖ =

⎛
⎝∑

l,j

∫
R

∣∣Fl,j(t)∣∣2dt
⎞
⎠

1/2

. (2.2)

For F, G ∈ L2(R,Cm×m), the integral of matrix product F(t)GH(t) is denoted by

〈F,G〉 =
∫

R

F(t)GH(t)dt. (2.3)

The above operation is not inner product in the common sense; however, it has the linear and
commutative properties:

〈
F, αG1 + βG2

〉
= αH〈F,G1〉 + βH〈F,G2〉, 〈F,G〉 = 〈G,F〉H. (2.4)
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For convenience, we also call the operator in (2.3) the “inner product.” The concept of
orthogonality on L2(R,Cm×m) can be given in natural way: for Fj ,Fk ∈ L2(R,Cm×m), Fj ,Fk
is called orthogonal if 〈Fj ,Fk〉 = Imδj,k, where δj,k is the Kronecker delta. Let L2

M(R,Cm×m) be
a subspace of L2(R,Cm×m) which is defined by

L2
M

(
R,Cm×m)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1(t) x2(t) x3(t) · · · xm(t)
xm(t) x1(t) x2(t) · · · xm−1(t)
xm−1(t) xm(t) x1(t) · · · xm−2(t)

...
...

...
...

...
x2(t) x3(t) x4(t) · · · x1(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

: x1(t), x2(t), . . . , xm(t) ∈ L2(R)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
(2.5)

Let Z be a set of all integers. A sequence {Φk(t)}k∈Z in L2
M(R,Cm×m) is an orthogonal basis if

it is orthogonal, and, for all Φ(t) ∈ L2
M(R,Cm×m), there is a constant sequence {Ak}k∈Z in M

such that

Φ(t) =
∑
k∈Z

AkΦk(t). (2.6)

It is obvious that Ak = 〈Φ,Φk〉. Let x(t) be a function defined on R. The Fourier transform is

x̂
(
f
)
=
∫

R

x(t)e−2iπtfdt. (2.7)

Suppose that

Φ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1(t) φ2(t) φ3(t) · · · φm(t)
φm(t) φ1(t) φ2(t) · · · φm−1(t)
φm−1(t) φm(t) φ1(t) · · · φm−2(t)

...
...

...
...

...
φ2(t) φ3(t) φ4(t) · · · φ1(t)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.8)

We say that Φ(t) generates a multiresolution analysis for L2
M(R,Cm×m) if the sequence of

closed subspaces

Vj = span
{

2−j/2Φ
(
t

2j
− k
)

: k ∈ Z
}

(2.9)

is nested, such that

(1) · · · ⊂ V3 ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ,
(2)

⋃
j∈Z Vj = L

2
M(R,Cm×m), and

⋂
j∈Z Vj = {0m}, where 0m is an m ×m matrix of zeros,

(3) Φ(t) ∈ V0 if and only if Φ(t − k) ∈ V0 for all k ∈ Z,
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(4) Φ(t) ∈ Vj if and only if (1/
√

2)Φ(t/2) ∈ Vj+1,

(5) {Φ(t − k) : k ∈ Z} is an orthonormal basis for V0.

In this case, Φ is called a scaling function. Let Φ ∈ L2
M(R,Cm×m). Then, the Fourier

transform of Φ is given by

Φ̂
(
f
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ̂1
(
f
)

φ̂2
(
f
)
φ̂3
(
f
) · · · φ̂m

(
f
)

φ̂m
(
f
)

φ̂1
(
f
)
φ̂2
(
f
) · · · φ̂m−1

(
f
)

φ̂m−1
(
f
)
φ̂m
(
f
)
φ̂1
(
f
) · · · φ̂m−2

(
f
)

...
...

...
...

...
φ̂2
(
f
)

φ̂3
(
f
)
φ̂4
(
f
) · · · φ̂1

(
f
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.10)

Evidently, Φ̂ ∈ L2
M(R,Cm×m) and the Fourier transform of Φ(2t−k) with respect to the variable

t is

1
2
Φ̂
(
f

2

)
e−iπkf . (2.11)

Notice that Φ ∈ V0 ⊂ V−1, {Φ(2t − k) : k ∈ Z} is an orthonormal basis for V−1, it follows that
there exist constant matrices Gk ∈ M, such that two-scale dilation equation holds:

Φ(t) =
√

2
∑
k∈Z

GkΦ(2t − k). (2.12)

Let G(f) =
∑

k∈Z Gke
−i2πkf , then we have

Φ̂
(
f
)
=

1√
2
G
(
f

2

)
Φ̂
(
f

2

)
. (2.13)

By the orthogonality,

∫
R
Φ(t)ΦH(t − k)dt = Imδk0, k ∈ Z. (2.14)

We know that
∑

lGlGH
2k+l = Imδk0, k ∈ Z. This implies that

G
(
f
)
GH(f) +G

(
f +

1
2

)
GH

(
f +

1
2

)
= 2Im. (2.15)

Setting f = 0, we have

G(0) =
∑
k∈Z

Gk =
√

2Im, G
(

1
2

)
= 0m. (2.16)
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For f ∈ R, we let

H
(
f
)
=
∑
k∈Z

Hke
−i2πkf

(2.17)

satisfy

G
(
f
)
HH(f) +G

(
f +

1
2

)
HH

(
f +

1
2

)
= 0m,

H
(
f
)
HH(f) +H

(
f +

1
2

)
HH

(
f +

1
2

)
= 2Im.

(2.18)

Analogous to the proof of in [11, Proposition 1], we can get the following.

Theorem 2.1. Suppose that Ψ̂(f) = (1/
√

2)H(f/2)Φ̂(f/2), then Ψk(t) = Ψ(t − k), k ∈ Z
constitute an orthonormal basis for V−1 =W0

⊕
V0, whereΨ is called a wavelet function.

The matrix filters G(f) and H(f) are called matrix quadrature mirror filters (MQMF).
Since G(f) is normal, by the spectral theorem of normal matrices in [16], we can obtain that
G(f) is unitarily equivalent to a diagonal matrix, namely,

G
(
f
)
= Udiag

(
λ1
(
G
(
f
))
, λ2
(
G
(
f
))
, . . . , λm

(
G
(
f
)))

UH, (2.19)

where U ∈ U(m), U(m) denotes the unitary matrix group of order m, λq(G(f)) (q =
1, 2, . . . , m) are the eigenvalues of G(f), and “diag” means the diagonal matrix. Generally,
even if m = 2, it is possible that λ1(f)/=λ2(f). Also, it seems to be true that U in (2.19) should
belong to M. However, it is not the case; we shall display this fact. For simplicity, we assume
that m = 2. Let U =

(
α β
β α

)
∈ U(2) ∩M satisfy the relation

G
(
f
)
= Udiag

(
λ1
(
G
(
f
))
, λ2
(
G
(
f
)))

UH, (2.20)

where λ1(G(f))/=λ2(G(f)) are nonzero eigenvalues. Write λj = λj(G(f)). Since G(f) ∈
L2
M(R,C2×2), it follows that |α|2λ1 + |β|2λ2 = |α|2λ2 + |β|2λ1. But |α|2 + |β|2 = 1. Therefore,

we have |α| = |β| = 1/
√

2. On the other hand, from the equality αβλ1 +βαλ2 = αβλ2 +βαλ1, we
have (αβ − βα)λ1 = (αβ − βα)λ2. But (αβ + βα) = 0, which implies that αβλ1 = αβλ2. This is a
contradiction.

It is natural to ask what is the form of 2 × 2 unitary matrices in M? The following
theorem will give the answer.

Theorem 2.2. LetU be a 2 × 2 unitary matrix inM. Then,U =
(

cos θ i sin θ
i sin θ cos θ

)
orU =

(
i cos θ sin θ
sin θ i cos θ

)
.

From the discussion for [11, Proposition 2, page 513], we have the following theorem.
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Theorem 2.3. If inf|f |≤1/4 |λq(G(f))| > 0 for any 1 ≤ q ≤ m, then the solution Φ of the two-scale
dilation equation (2.13) is a scaling function for L2

M(R,Cm×m), and

{
Ψj,k = 2−j/2Ψ

(
t

2j
− k
)

: j, k ∈ Z
}

(2.21)

constitutes an orthonormal basis for the space L2
M(R,Cm×m).

From the construction of quaternion-valued filters in [8], we have seen that the
estimation of the eigenvalues λq(G(f)) can be transferred to calculate the value of detG(f),
while the latter is easy to be checked in practice. But in the present case, the situation is
different; we have to involve the computation for all eigenvalues of G(f).

3. Construction of Filters

Let G(f) be a finite polynomial matrix in e−i2πf , that is,

G
(
f
)
=

L−1∑
l=0

Gle
−il2πf . (3.1)

Suppose that G(0) =
√

2Im and satisfies

G
(
f
)
GH(f) +G

(
f +

1
2

)
GH

(
f +

1
2

)
= 2Im. (3.2)

If inf|f |≤1/4 |λq(G(f))| > 0 for all 1 ≤ q ≤ m, then the solution of the two-scale dilation equation
(2.13) is a scaling function in L2

M(R,Cm×m), and

{
Ψj,k(t) = 2−j/2Ψ

(
t

2j
− k
)

: j, k ∈ Z
}

(3.3)

is an orthonormal basis in L2
M(R,Cm×m). In order to get the designs of the vector-valued

filters, we need to deduce that G(f) and H(f) should satisfy the necessary condition. Firstly,
we consider that G(f) has the form

G
(
f
)
=
ei2πfγ√

2

(
Im + eεi2πfR

(
2f
))
, ε ∈ {−1, 1}, (3.4)
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where γ is an integer, R(f) ∈ L2
M(R,Cm×m) is a paraunitary matrix with unit periodicity,

namely, R(f)RH(f) = Im, R(f + 1) = R(f), R(0) = Im. Actually, if ε in (3.4) is taken to be 0
and R(f) satisfies R(f)RH(f) = Im, R(f + 1) = −R(f), R(0) = Im, then we still have

G
(
f
)
GH(f) +G

(
f +

1
2

)
GH

(
f +

1
2

)

=
1
2

[(
Im + R

(
2f
))(

Im + RH(2f)) +
(
Im + R

(
2f + 1

))(
Im + RH(2f + 1

))]

=
1
2

[(
Im + R

(
2f
))(

Im + RH(2f)) +
(
Im − R

(
2f
))(

Im − RH(2f))]
= 2Im.

(3.5)

Namely, (2.15) and (2.16) are still true. Thus,

λq
(
G
(
f
))

=
ei2πfγ√

2

{
1 + eεi2πfλq

(
R
(
2f
))}

. (3.6)

We are now in a position to define H(f). As shown in [9], the matrix H(f) can be given in the
following:

H
(
f
)
= e−2iπf(S−1+δ)G

(
f +

1
2

)
, (3.7)

where L is the design length of the filter Gl, and δ ∈ {0, 1}, such that L−1+δ is odd. Actually,
it is deduced that

H
(
f
)
=

L−1+δ∑
m=δ

(−1)L−1+δ−mGH
L−1+δ−me

−i2πfm. (3.8)

In particular, if L is even, then we take δ = 0. Thus,

H
(
f
)
=

L−1∑
l=0

Hle
−i2πfl, (3.9)

where Hl = (−1)l+1GH
L−l−1, l = 0, 1, . . . , L − 1. If L is odd, then take δ = 1 and let GL = 0m, we

add the filter length of G(f) to L + 1. Suppose that

G
(
f
)
=

l=0∑
L+1

Gle
−il2πf . (3.10)

The similar design can be realized.
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Design 1

Let G(f) = (1/
√

2)(I2 + ei2πf diag(e−i4πf , e−i4πf)), G(f) has the same eigenvalues λ(G(f)) =
(1/

√
2)(1 + e−i2πf). It is obvious that inf|f |≤1/4|λ(G(f))| =√1 + cos 2πf > 0. At the same time,

G(0) =
√

2I2, G(1/2) = 02, G(f + 1) = G(f). Consequently, we have

G0 = G1 =
1√
2
I2,

H0 = − 1√
2
I2, H1 =

1√
2
I2.

(3.11)

If G(f) is defined in the form G(f) = (1/
√

2)(I2 + e−i2πf diag(ei4πf , ei4πf)), we have

G0 = G−1 =
1√
2
I2,

H0 = − 1√
2
I2, H−1 =

1√
2
I2.

(3.12)

This is a simple case. In the following, we shall deal with the case that G(f) has different
eigenvalues. For a diagonal matrix diag(λ1, λ2), if λ1 /=λ2, ρθ =

(
cos θ sin θ
− sin θ cos θ

)
is a rotation

transform on R
2, when θ = π/4, ρθ diag(λ1, λ2)ρHθ ∈ M. We state it as follows.

Theorem 3.1. Let diag(λ1, λ2) be an arbitrary diagonal matrix. Then,
( √

2/2
√

2/2
−√2/2

√
2/2

)
diag(λ1, λ2)(√

2/2 −√2/2√
2/2

√
2/2

)
∈ M.

Depending on this, we give the following designs.

Design 2

Let ρθ =
( √

2/2
√

2/2
−√2/2

√
2/2

)
. Then,

R
(
2f
)
=

⎛
⎜⎜⎜⎝

√
2

2

√
2

2

−
√

2
2

√
2

2

⎞
⎟⎟⎟⎠diag

(
1, ei4πf

)
⎛
⎜⎜⎜⎝

√
2

2
−
√

2
2√

2
2

√
2

2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝

1
2
+

1
2
ei4πf −1

2
+

1
2
ei4πf

−1
2
+

1
2
ei4πf

1
2
+

1
2
ei4πf

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

⎞
⎟⎟⎠ei4πf +

⎛
⎜⎜⎝

1
2

−1
2

−1
2

1
2

⎞
⎟⎟⎠.

(3.13)
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Clearly, R(f)RH(f) = I2, R(f + 1) = R(f), R(0) = I2. Taking γ = −1, ε = −1 in (3.4), we
obtain

G
(
f
)
=
e−i2πf√

2

⎛
⎜⎜⎝I2 +

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

⎞
⎟⎟⎠ei2πf +

⎛
⎜⎜⎝

1
2

−1
2

−1
2

1
2

⎞
⎟⎟⎠e−i2πf

⎞
⎟⎟⎠. (3.14)

Consequently, we have

λ1
(
G
(
f
))

=
e−i2πf√

2

(
1 + ei2πf

)
, λ2

(
G
(
f
))

=
e−i2πf√

2

(
1 + e−i2πf

)
. (3.15)

It is easy to verify that

inf
|f |≤1/4

∣∣λq(G(f))∣∣ = inf
|f |≤1/4

√
1 + cos

(
2πf

)
> 0 (3.16)

for q = 1, 2. Therefore, we get

G
(
f
)
=

1√
2

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

⎞
⎟⎟⎠ + I2e

−i2πf +

⎛
⎜⎜⎝

1
2

−1
2

−1
2

1
2

⎞
⎟⎟⎠e−i4πf

⎤
⎥⎥⎦,

G0 =
1

2
√

2

(
1 1
1 1

)
, G1 =

1√
2
I2, G2 =

1

2
√

2

(
1 −1
−1 1

)
.

(3.17)

Let G3 = 02 and L = 4, from the relation (3.9), we then find that

H0 = 02, H1 =
1

2
√

2

(
1 −1
−1 1

)
, H2 = − 1√

2
I2, H3 =

1

2
√

2

(
1 1
1 1

)
. (3.18)

To change the coefficients of filter bank G(f), it is valid to produce a type of unitary matrices
U and UH in Theorem 2.2 on left and right sides of R(2f).

In the following, we shall give a construction of more length filter banks.
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Design 3

Let ρθ =
( √

2/2
√

2/2
−√2/2

√
2/2

)
. Setting α = (e2iπf + e−2iπf), β = (e6iπf + e2iπf + e−2iπf + e−i6πf). Then,

R
(
2f
)
=

⎛
⎜⎜⎜⎝

√
2

2

√
2

2

−
√

2
2

√
2

2

⎞
⎟⎟⎟⎠diag

(
1
2
α,

1
4
β

)
⎛
⎜⎜⎜⎝

√
2

2
−
√

2
2√

2
2

√
2

2

⎞
⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎝

1
2
α +

1
4
β −1

2
α +

1
4
β

−1
2
α +

1
4
β

1
2
α +

1
4
β

⎞
⎟⎟⎠

=
1
8

(
1 1
1 1

)
ei6πf +

1
8

(
3 −1
−1 3

)
ei2πf +

1
8

(
3 −1
−1 3

)
e−i2πf +

1
8

(
1 1
1 1

)
e−i6πf .

(3.19)

Taking γ = −3, ε = 0 in (3.4), we obtain R(f)RH(f) = Im, R(f + 1) = −R(f), R(0) = Im, and

inf
|f |≤1/4

∣∣λ1
(
G
(
f
))∣∣ = 1√

2
inf

|f |≤1/4

√
1 + cos

(
2πf

)
> 0,

inf
|f |≤1/4

∣∣λ2
(
G
(
f
))∣∣ = 1√

2
inf

|f |≤1/4

√
1 +

1
2
(
cos
(
2πf

)
+ cos

(
6πf

))
> 0.

(3.20)

Therefore, we get

G
(
f
)
=

1

8
√

2

(
1 1
1 1

)
+

1

8
√

2

(
3 −1
−1 3

)
e−i4πf +

1√
2
I2e

−6iπf

+
1

8
√

2

(
3 −1
−1 3

)
e−i8πf +

1

8
√

2

(
1 1
1 1

)
e−i12πf .

(3.21)

Consequently,

G0 =
1

8
√

2

(
1 1
1 1

)
, G1 = 02, G2 =

1

8
√

2

(
3 −1
−1 3

)
, (3.22)

G3 =
1√
2
I2, G4 =

1

8
√

2

(
3 −1
−1 3

)
, G5 = 02, G6 =

1

8
√

2

(
1 1
1 1

)
. (3.23)
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Figure 1: The graph of the scale function Φ for Design 3.

Here, L = 7 is odd, so we let G7 = 02. Also, from (3.4), we have

H0 = 02, H1 =
1

8
√

2

(
1 1
1 1

)
, H2 = 02, H3 =

1

8
√

2

(
3 −1
−1 3

)
,

H4 = − 1√
2
I2, H5 =

1

8
√

2

(
3 −1
−1 3

)
, H6 = 02, H7 =

1

8
√

2

(
1 1
1 1

)
.

(3.24)

The corresponding 2×2 matrix functions Φ and Ψ of this design are plotted in Figures 1 and 2,
respectively. Notice that we take the values of φ1(3) and φ2(3) as 3/2 and −1/2, respectively,
in the figure plotting. However, this design does not determine the values of φ1(3) and φ2(3).
Thus, in practical application, we have the freedom to choose the values of φ1(3) and φ2(3).

Next, we are going to construct the filters for the case of m ≥ 3. We need to use
the methods of discrete Fourier transform matrix (DFT). Let ωm = e−2iπ/m = cos(2π/m) −
i sin(2π/m). The parameter ωm is an mth root of unity due to ωm

m = 1. Write βjk =

ω
(j−1)(k−1)
m . Then, Fm = (βjk)m×m is called the discrete Fourier transform matrix of order

m. For example, if m = 2, the discrete Fourier transform matrix F2 of order 2 is
(

1 1
1 −1

)
,
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Figure 2: The graph of the wavelet function Ψ for Design 3.

(
1 1
1 −1

)
diag(λ1(G(f)), λ2(G(f)))

(
1 1
1 −1

) ∈ M. We can construct the filters by substituting
(

1 1
1 −1

)
for (1/

√
2)
(

1 1
−1 1

)
. Now, we describe another case. Let m = 4, the discrete Fourier transform

matrix F4 of order m is given by

F4 =

⎛
⎜⎜⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠, (3.25)

and the inverse matrix of F4 is

F−1
4 =

1
4

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠. (3.26)
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We have known that the discrete Fourier transform is an extremely important tool in applied
mathematics and engineering, specially in signal processing. Let us define the downshift
permutation S4 by

S4 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ (3.27)

and a vector b = (a1, a2, a3, a4)
T , where T means the transpose. Then,

M
(
bT
)
=
(
b,S4b,S2

4b,S
3
4b
)
= F−1

4 diag(F4b)F4. (3.28)

Actually, we can verify that F−1
4 diag(λ1(G(f)), λ2(G(f)), λ3(G(f)) = λ4(G(f)))F4 ∈ M.

According to this theory, we can do some designs of the filters for the case m = 4. Other
cases can be done analogously.

4. Symmetric Matrix Case

In the above examples, we deal with the constructions of filter banks for L2
M(R,C2×2). As an

application of this theory, we will discuss the same problem on the space

L2
S

(
R,C2×2

)
=
{(

x1(t) x2(t)
x2(t) x3(t)

)
: x1(t), x2(t), x3(t) ∈ L2(R)

}
. (4.1)

Obviously, L2
M(R,C2×2) ⊂ L2

S(R,C
2×2). Since

(
cos θ sin θ
− sin θ cos θ

)(
a b
b a

)(
cos θ − sin θ
sin θ cos θ

)
=
(
a + 2b cos θ sin θ b

(
cos2θ − sin2θ

)
b
(
cos2θ − sin2θ

)
a − 2b cos θ sin θ

)

=
(
a + b sin 2θ b cos 2θ
b cos 2θ a − b sin 2θ

)
,

(4.2)

we can see that ρθ
(
a b
b a

)
ρHθ /∈ M; however, ρθ

(
a b
b a

)
ρHθ is symmetric with different elements

in diagonal if θ /= 0, π/2, π, 3/2π, 2π . From this, we can give some designs of filter banks in
L2
S(R,C

2×2).
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Multiplying matrices
(

1/2 −√3/2√
3/2 1/2

)
and

(
1/2

√
3/2

−√3/2 1/2

)
on the left and right sides of G(f), re-

spectively, in Design 3, we get the coefficients of the filter banks:

G0 =
1

16
√

2

(
2 − √

3 −1
−1 2 +

√
3

)
, G1 = 02, G2 =

1

16
√

2

(
6 +

√
3 1

1 6 − √
3

)
,

G3 =
1√
2
I2, G4 =

1

16
√

2

(
6 +

√
3 1

1 6 − √
3

)
,

G5 = 02, G6 =
1

16
√

2

(
2 − √

3 −1
−1 2 +

√
3

)
,

H0 = 02, H1 =
1

16
√

2

(
2 − √

3 −1
−1 2 +

√
3

)
,

H2 = 02, H3 =
1

16
√

2

(
6 +

√
3 1

1 6 − √
3

)
,

H4 = − 1√
2
I2, H5 =

1

16
√

2

(
6 +

√
3 1

1 6 − √
3

)
,

(4.3)

H6 = 02, H7 =
1

16
√

2

(
2 − √

3 −1
−1 2 +

√
3

)
. (4.4)

Notice that in this design the scaling function Λ and the wavelet function Υ are

Λ =

⎛
⎜⎜⎝φ1 −

√
3

2
φ2 −1

2
φ2

−1
2
φ2 φ1 +

√
3

2
φ2

⎞
⎟⎟⎠, Υ =

⎛
⎜⎜⎝ψ1 −

√
3

2
ψ2 −1

2
ψ2

−1
2
ψ2 ψ1 +

√
3

2
ψ2

⎞
⎟⎟⎠. (4.5)

The corresponding 2 × 2 matrix functions Λ and Υ of this design are plotted in Figures 3 and
4, respectively.

It is a well-known fact that every rotation operator ρα,β,γ on R
3 can be described by

three Euler’s angles which are given by

ρα,β,γ =

⎛
⎝ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎞
⎠
⎛
⎝1 0 0

0 cos β sin β
0 − sin β cos β

⎞
⎠
⎛
⎝ cosα sinα 0

− sinα cosα 0
0 0 1

⎞
⎠, (4.6)

where α, γ ∈ [0, 2π], β ∈ [0, π]. Obviously, ρα,β,γ diag(λ1, λ2, λ3)ρHα,β,γ is also symmetric. The
description of the rotation operator on R

n is analogous. Thus, we can easily construct the
filter banks on L2

S(R,C
n×n).

As a final example of this paper, we give a construction in case m = 4 in space
L2
S(R,C

4×4).
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Figure 3: The graph of the scaling function Λ for Design 4.
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Figure 4: The graph of the wavelet function Υ for Design 4.
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Let U = (1/2)
( 1 1 1 1

−1 1 −1 1
−1 1 1 −1
1 1 −1 −1

)
. Then,

R
(
2f
)
=

1
4

⎛
⎜⎜⎝

1 1 1 1
−1 1 −1 1
−1 1 1 −1
1 1 −1 −1

⎞
⎟⎟⎠diag

(
1, 1, e−i4πf , e−i4πf

)
⎛
⎜⎜⎝

1 −1 −1 1
1 1 1 1
1 −1 1 −1
1 1 −1 −1

⎞
⎟⎟⎠

=
1
4

⎛
⎜⎜⎝
⎛
⎜⎜⎝

2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

2 0 0 −2
0 2 −2 0
0 −2 2 0
−2 0 0 2

⎞
⎟⎟⎠e−i4πf

⎞
⎟⎟⎠.

(4.7)

Taking γ = −1, ε = 1 in (3.4), we obtain

inf
|f |≤1/4

∣∣λq(G(f))∣∣ = inf
|f |≤1/4

√
1 + cos

(
2πf

)
> 0 (4.8)

for q = 1, 2, and

G
(
f
)
=
e−i2πf√

2

⎛
⎜⎜⎝I4 +

1
4

⎡
⎢⎢⎣
⎛
⎜⎜⎝

2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

⎞
⎟⎟⎠ei2πf +

⎛
⎜⎜⎝

2 0 0 −2
0 2 −2 0
0 −2 2 0
−2 0 0 2

⎞
⎟⎟⎠e−2iπf

⎤
⎥⎥⎦
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 1

2
√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠ +

1√
2
I4e

−i2πf +
1

2
√

2

⎛
⎜⎜⎝

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎞
⎟⎟⎠e−4iπf

⎞
⎟⎟⎠.

(4.9)

Thus, we get

G0 =
1

2
√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠, G1 =

1√
2
I4, G2 =

1

2
√

2

⎛
⎜⎜⎝

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎞
⎟⎟⎠. (4.10)

Let G3 = 02 and L = 4, from the relation (3.9), we then obtain

H0 = 04, H1 =
1

2
√

2

⎛
⎜⎜⎝

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎞
⎟⎟⎠, H2 = − 1√

2
I4, H3 =

1

2
√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠.

(4.11)
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5. Conclusion

In this work, we discuss the problem of construction for vector-valued filters. By using the
theory of matrix-valued wavelet analysis and technique of discrete Fourier transform matrix,
we get some designs of vector-valued filters (circulant matrix space). And the corresponding
scaling functions of multiresolution analysis and wavelet functions are obtained. Also, the
analogous problem on the symmetric matrix space can be solved thoroughly.
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