Research Article

LMI-Based Approach for Exponential Robust Stability of High-Order Hopfield Neural Networks with Time-Varying Delays

Yangfan Wang¹ and Linshan Wang²,³

¹ College of Marine Life Science, Ocean University of China, Qingdao 266071, China
² Department of Mathematics, Ocean University of China, Qingdao 266071, China
³ Department of Mathematics, Liaocheng University, Liaocheng 252059, China

Correspondence should be addressed to Linshan Wang, wenxuetzz@gmail.com

Received 30 January 2012; Accepted 27 March 2012

Academic Editor: Wan-Tong Li

Copyright © 2012 Y. Wang and L. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the problems of global exponential robust stability of high-order hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the high-order neural networks are established, which are easily verifiable and have a wider adaptive.

1. Introduction

Hopfield neural networks (HNNs) with time delays and their various generalization have been successfully employed in many areas such as pattern recognition, associate memory, and combinatorial optimization (see [1–11]). Recently, the dynamics of high-order Hopfield neural networks (HOHNNs) with time delays have been considerable attention (see [12–18]), due to the neural networks have stronger approximation properties, faster convergence rate, greater storage capacity, and higher fault tolerance than lower order neural networks (see [12]). So, the stability of HOHNNs with time delays should be a focused topic of theoretical as well as practical importance. This paper studies the problems of global exponential robust stability of high-order hopfield neural networks with time-varying delays. This paper is also an extension of our previous work [19]. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the high-order neural networks are established, which are easily verifiable and have a wider adaptive.
2. Model Description and Preliminaries

We consider the following HOHNNSs with time-varying delays:

\[
\frac{du_i(t)}{dt} = -a_i u_i(t) + \sum_{j=1}^{n} W_{ij} f_j(u_j(t)) + \sum_{j=1}^{n} T_{ij} g_j(u_j(t - \tau(t))) + \sum_{j=1}^{n} \sum_{l=1}^{n} T_{ijl} g_j(u_j(t - \tau(t))) g_l(u_l(t - \tau(t))) + V_i, \tag{2.1}
\]

\[
u_i(t_0 + \theta) = \xi_i(\theta), \quad -\tau_0 \leq \theta \leq 0, \quad i = 1, \ldots, n,
\]

\[
0 \leq \tau(t) \leq \tau_0, \quad a_i \leq a_i, \quad W_{ij} \leq W_{ij} \leq \overline{W}_{ij}, \quad T_{ij} \leq T_{ij} \leq \overline{T}_{ij}, \quad T_{ijl} \leq T_{ijl} \leq \overline{T}_{ijl}, \quad \forall i, j, l = 1, \ldots, n,
\]

where \( u(t) = (u_1(t), \ldots, u_n(t))^T \in \mathbb{R}^n, \quad a_i > 0, \quad W_{ij}, f_j, g_j, V_i \) have the same meanings as those in [13], \( T_{ij}, T_{ijl} \) are the first- and second-order synaptic weights of the system (2.1) (see [12]).

In this paper, the superscript "T" presents the transpose.

We assume throughout that the neuron activation functions \( f_j(u_j), g_j(u_j), j = 1, \ldots, n, \) satisfy the following conditions:

\[
(H_1): \left| g_j(u_j) \right| \leq M_j, \quad 0 \leq \frac{|f_j(u_j) - f_j(v_j)|}{|u_j - v_j|} \leq l_{oji}, \quad 0 \leq \frac{|g_j(u_j) - g_j(v_j)|}{|u_j - v_j|} \leq l_{ij}, \quad \forall u_j \neq v_j, u_j, v_j, l_{oji}, l_{ij} \in \mathbb{R}. \tag{2.2}
\]

From (2.2), we know

\[
|f(u^1) - f(u^2)| \leq |L_0(u^1 - u^2)|, \quad \forall u^1, u^2 \in \mathbb{R}^n, \tag{2.3}
\]

\[
|g(u^1) - g(u^2)| \leq |L_1(u^1 - u^2)|, \quad \forall u^1, u^2 \in \mathbb{R}^n,
\]

where \( u^i = [u_{i1}, \ldots, u_{in}]^T \in \mathbb{R}^n, f(u^i) = [f_1(u_{i1}), f_2(u_{i2}), \ldots, f_n(u_{in})]^T, g(u^i) = [g_1(u_{i1}), g_2(u_{i2}), \ldots, g_n(u_{in})]^T, i = 1, 2. \quad L_0 = \text{diag}(l_{01}, l_{02}, \ldots, l_{0n}), \text{ and } L_1 = \text{diag}(l_{11}, l_{12}, \ldots, l_{1n}). \)

If there is an equilibrium point \( u^* = [u^*_1, \ldots, u^*_n]^T \) of system (2.1), we can rewrite system (2.1) as the following equivalent form:

\[
\frac{d(u_i(t) - u_i^*)}{dt} = -a_i(u_i(t) - u_i^*) + \sum_{j=1}^{n} W_{ij} \left( f_j(u_j(t)) - f_j(u_j^*) \right) + \sum_{j=1}^{n} \sum_{l=1}^{n} T_{ijl} \left( g_j(u_j(t - \tau(t))) - g_j(u_j^*) \right)
\]
Let \( \xi_l = (1/2)(g_l(u(t - \tau(t))) + g_l(u^*_t)) \) and \( |\xi_l| \leq M_l \).

We easily obtain that system (2.4) is equivalent to system (2.1) (see [13]).

The notations in this paper are quite standard:

(i)

\[
||u(t)|| = \left( \sum_{i=1}^{n} |u_i(t)|^2 \right)^{1/2},
\]

where \( |u_i(t)| \) denotes Euclid’s norm.

(ii) \( A = (a_{ij})_{n \times n} > 0(< 0) \): a positive (negative) definite matrix, that is, \( x^T A x > 0(< 0) \) for any \( x \in \mathbb{R}^n \).

(iii) \( A = (a_{ij})_{n \times n} \geq 0 \): a semipositive definite matrix, that is, \( x^T A x \geq 0 \) for any \( x \in \mathbb{R}^n \).

(iv) \( A \geq B \) (resp., \( A > B \)): this means \( A - B \) is a semi-positive definite matrix (resp., positive definite).

(v) \( I \): identity matrix with compatible dimension.

(vi) \( I^0 = (1,1,\ldots,1)^T \).

(vii) \( \lambda_{\max}(A) \) (resp., \( \lambda_{\min}(A) \)) means the largest (resp., smallest) eigenvalue of the matrix \( A \).

(viii) \( C([-\tau_0,0], \mathbb{R}^n) \) denotes a set of continuous functions.

Let \( u(t, \xi) = [u_1(t, \xi), \ldots, u_n(t, \xi)]^T \) denote the solution \( u(t, \xi) \) to system (2.1) from the initial data \( u(t_0 + \theta, \xi) = \xi(\theta) \) on \(-\tau_0 \leq \theta \leq 0 \) in \( \xi(\theta) \in C([-\tau_0,0], \mathbb{R}^n) \).

**Definition 2.1.** The equilibrium point \( u^* \) of system (2.1) is called globally exponentially robustly stable on norm \( || \cdot || \), if for any \( \xi(\theta) \in C([-\tau_0,0], \mathbb{R}^n) \) there exist scalars, \( J > 0 \) and \( \alpha > 0 \) such that the solution \( u(t, \xi) \) to system (2.1) with the initial condition \( u(t_0 + \theta, \xi) = \xi(\theta) \) on \(-\tau_0 \leq \theta \leq 0 \) satisfies

\[
||u(t, \xi) - u^*||^2 \leq Je^{-\alpha t} \sup_{-\tau_0 \leq \theta \leq 0} ||\xi(\theta) - u^*||^2.
\]

**Lemma 2.2** (see [20]). The LMI

\[
\begin{bmatrix}
Q(t) & S(t) \\
S^T(t) & R(t)
\end{bmatrix} > 0,
\]

is satisfied.
where \( Q(t) = Q^T(t) \), \( R(t) = R^T(t) \), and \( S(t) \) depend on \( t \), is equivalent to any one of the following conditions:

\[
\begin{align*}
(K_1) & \quad R(t) > 0, \quad Q(t) - S(t)R^{-1}(t)S^T(t) > 0; \\
(K_2) & \quad Q(t) > 0, \quad R(t) - S^T(t)Q^{-1}(t)S(t) > 0. 
\end{align*}
\] (2.8)

**Lemma 2.3** (see [20]). Let \( x \in \mathbb{R}^n \), \( y \in \mathbb{R}^n \), and \( \varepsilon > 0 \). Then, one has

\[
x^T y + y^T x \leq \varepsilon x^T x + \varepsilon^{-1} y^T y.
\] (2.9)

### 3. Main Results

Let

\[
M = [M_1, M_2, \ldots, M_n]^T, \quad \Gamma = \text{diag}(M, M, \ldots, M), \quad \zeta = [\zeta_1, \zeta_2, \ldots, \zeta_n]^T,
\]

\[
\Pi = \text{diag}(\zeta, \zeta, \ldots, \zeta), \quad \Lambda = \text{diag}(\lambda_i), \quad W = (W_{ij})_{n \times n'}, \quad W^+ = (W_{ij})_{n \times n'},
\]

\[
\bar{W} = \left( \max \left\{ \left| W_{ij} \right|, \left| W_{ij} \right| \right\} \right)_{n \times n'}, \quad \bar{W}^T = \left( \max \left\{ \left| W_{ij} \right|, \left| W_{ij} \right| \right\} \right)_{n \times n'},
\]

\[
T = (T_{ij})_{n \times n'}, \quad T^+ = (T_{ij})_{n \times n'}, \quad T_i = (T_{ij})_{n \times n'}, \quad T_i^T = (T_{ij})_{n \times n'}, \quad T_i^+ = (T_{ij})_{n \times n'},
\]

\[
T_H = \left( T_1 + T_1^T, T_2 + T_2^T, \ldots, T_n + T_n^T \right)_{n^2 \times n'}, \quad T_H^+ = \left( T_1^T + \left( T_1^T \right)^T, T_2^T + \left( T_2^T \right)^T, \ldots, T_n^T + \left( T_n^T \right)^T \right)_{n^2 \times n'},
\]

\[
\bar{T}_H = \left( \bar{T}_1 + \bar{T}_1^T, \bar{T}_2 + \bar{T}_2^T, \ldots, \bar{T}_n + \bar{T}_n^T \right)_{n^2 \times n'}, \quad W_{\Pi} = T + \Pi T_H,
\]

For the purpose of simplicity, we rewrite the system (2.4) as the following vector form:

\[
\frac{dy}{dt} = -Ay(t) + WF_0(y(t)) + \left( T + \Pi T_H \right) F_1 \left( y(t - \tau(t)) \right)
\]

\[
y(t_0 + \theta) = \phi(\theta), \quad -\tau_0 \leq \theta \leq 0, \quad 0 \leq \tau(t) \leq \tau_0,
\]

\[
a_i \leq a, \quad W_{ij} \leq \bar{W}_{ij}, \quad T_{ij} \leq \bar{T}_{ij}, \quad T_{ij} \leq T_{ij}^T, \quad i, j, l = 1, \ldots, n,
\] (3.2)
where \( y = y(t) = u(t, \xi(t)) - u^* \) for any \( \xi(t) \in C([-\tau_0, 0], \mathbb{R}^n) \). \( F_0(y(t)) = f(y(t) + u^*) - f(u^*) \), \( f(y(t) + u^*) = [f_1(y_1(t) + u_1^*), f_2(y_2(t) + u_2^*), \ldots, f_n(y_n(t) + u_n^*)]^T \). \( F_1(y(t) - \tau(t)) = g(y(t - \tau(t)) + u^*) - g(u^*) \), \( g(y(t - \tau(t)) + u^*) = [g_1(y_1(t - \tau(t)) + u_1^*), g_2(y_2(t - \tau(t)) + u_2^*), \ldots, g_n(y_n(t - \tau(t)) + u_n^*)]^T \), \( \phi(t) = \xi(t) - u^*, \xi(t) = (\xi_1(t), \ldots, \xi_n(t))^T \).

**Theorem 3.1.** Given a positive definite matrix \( Q = L_1^T L_1 > 0 \). The equilibrium of system (2.1) is globally exponentially robustly stable on norm \( \| \cdot \| \) for any \( \tau(t) \) satisfying \( \tau(t) \leq \eta < 1 \), if system (2.1) satisfies (H1) and

\[
(H_2) : C = A - W^* L_0 - W^*_1 L_1
\]

is M-matrix,

where \( W^*_1 = T^* + \Gamma^T T^*_{H} \), and

\[
(H_3) : \begin{bmatrix}
\Lambda & L_0 & \beta \bar{W} & \beta \bar{W}_{11}^T \\
L_0^T & -I & 0 & 0 \\
\beta \bar{W} & 0 & -I & 0 \\
\beta \bar{W}_{11} & 0 & 0 & -(1 - \eta) I
\end{bmatrix} \leq 0,
\]

where \( \bar{W}_{11} = \bar{T} + \Gamma^T T_{H} \), and \( \Lambda = \beta(aI - 2\Delta) + e^{\tau_0} Q \), \( \beta > 0 \).

**Proof of Theorem 3.1.** Let

\[
h_i(u_i, V_i) = a_i u_i - \sum_{j=1}^{n} W_{ij} f_j(u_j) - \sum_{j=1}^{n} T_{ij} g_j(u_j)
- \sum_{j=1}^{n} \sum_{l=1}^{n} T_{ij} g_l(u_j) g_l(u_i) + V_i = 0, \quad i = 1, \ldots, n.
\]

It is obvious that the solutions to (3.5) are the equilibrium points of system (2.1).

Let us define homotopic mapping as follows:

\[
H(u, \lambda) = (H_1(u_1, \lambda), \ldots, H_n(u_n, \lambda))^T,
\]

where

\[
H_i(u_i, \lambda) = \lambda h_i(u_i, V_i) + (1 - \lambda) u_i, \quad \lambda \in [0, 1].
\]

By homotopy invariance theorem (see, [21]), topological degree theory (see, [22]), \((H_1)-(H_2)\), and the proof which is similar to Theorem 3.1 in [23], we can conclude that (3.5) has at least one solution. That is, system (2.1) has at least an equilibrium point.
3.1. Part 2- Globally Exponentially Stable

Define a Lyapunov-Krasovskii functional candidate by

\[ V(y(t)) = \beta e^{\alpha t}y^T(t)y(t) + e^{\alpha \tau_0} \int_{t-\tau(t)}^{t} e^{\alpha \theta}y^T(\theta)Qy(\theta)d\theta > 0, \quad (3.8) \]

where \( Q = Q^T > 0 \).

From system (3.2), its Dini derivative can be calculated as

\[
D^+ V(y(t)) = e^{\alpha t} \left[ \alpha \beta y^T(t) y(t) + y^T(t) \left(-\beta A^T - \beta A\right)y(t) \right. \\
+ \beta \left(F_0^T(y(t))W^Ty(t) + y^T(t)WF_0(y(t))\right) \\
+ \beta F_1^T(y(t) - \tau(t)) \left(T + \Pi F H^T\right)^T y(t) \\
+ y^T(t) \left(T + \Pi F H\right) F_1(y(t) - \tau(t)) \right] \\
+ e^{\alpha \tau_0} \left[ e^{\alpha t} y^T(t) Q y(t) - e^{\alpha (t-\tau(t))} y^T(t-\tau(t)) Q y(t-\tau(t)) (1 - \tau(t)) \right].
\]

Since \( 0 \leq \tau(t) \leq \tau_0, \tau(t) \leq \eta < 1, \) and \( Q = L_1^T L_1 > 0 \), we have

\[
-e^{\alpha \tau_0} e^{\alpha (t-\tau(t))} y^T(t-\tau(t)) Q y(t-\tau(t)) (1 - \tau(t)) \leq -e^{\alpha t} y^T(t-\tau(t)) Q y(t-\tau(t)) (1 - \eta), \quad (3.10)
\]

From Lemma 2.3 and (2.3), we have

\[
e^{\alpha t} \beta \left(F_0^T(y(t))W^Ty(t) + y^T(t)WF_0(y(t))\right) \\
\leq e^{\alpha t} \beta \left(\beta y^T(t) W W^T y(t) + \frac{1}{\beta} F_0^T(y(t)) F_0(y(t))\right) \\
\leq e^{\alpha t} y^T(t) \left(\beta^2 W W^T + L_0^T L_0 \right) y(t) \leq e^{\alpha t} y^T(t) \left(\beta^2 W W^T + L_0^T L_0 \right) y(t),
\]

\[
e^{\alpha t} \beta \left(F_1^T(y(t) - \tau(t)) \left(T + \Pi F H\right)^T y(t) + y^T(t) \left(T + \Pi F H\right) F_1(y(t) - \tau(t))\right) \\
\leq e^{\alpha t} \beta \left(\frac{1}{\beta} \eta \right)^{\eta - 1} y^T(t) W_{11} W_{11}^T y(t) + \eta \left(F_1^T(y(t-\tau(t)) F_1(y(t-\tau(t))\right) \\
\leq e^{\alpha t} \left(\frac{\beta^2}{1 - \eta} y^T(t) W_{11} W_{11}^T y(t) + (1 - \eta) \left(y^T(t-\tau(t)) Q y(t-\tau(t))\right) \right) \\
\leq e^{\alpha t} \left(\frac{\beta^2}{1 - \eta} y^T(t) W_{11} W_{11}^T y(t) + (1 - \eta) \left(y^T(t-\tau(t)) Q y(t-\tau(t))\right) \right).
\]

In view of $Q > 0$, $\tau(t) \leq \eta < 1$, (3.8)–(3.11), and $(H_3)$, it follows from Lemma 2.2 that

$$D^+ V(y(t)) \leq e^{\alpha t} y^T(t) \left( \beta (AI - 2A) + e^{\alpha t} Q \right) + \beta^2 \left( \overline{W} \overline{W}^T + \frac{1}{1 - \eta} \overline{W}_1 \overline{W}_1^T \right) y(t) \leq 0.$$ (3.12)

From (3.12), we have

$$V(y(t)) \leq V(y(t_0)).$$ (3.13)

From (3.9) and (3.13), we can know that the solution $y(t)$ to system (3.2) satisfies

$$e^{\alpha t} \|y(t)\|^2 = e^{\alpha t} \left( \beta y^T(t) y(t) \right) \leq V(y(t)) \leq V(y(t_0))$$

$$\leq \left( \beta + \frac{1}{\alpha} (e^{\alpha t_0} - 1) \lambda_{\max}(Q) \right) \sup_{-\tau_0 \leq \theta \leq 0} \|y(\theta)\|.$$ (3.14)

So,

$$\|u(t, \xi) - u^*\|^2 \leq J e^{-\alpha t} \sup_{-\eta \leq \theta \leq 0} \|y(\theta)\| - \|u^*\|^2,$$ (3.15)

where $J = 1 + 1/\alpha \beta (e^{\alpha t_0} - 1) \lambda_{\max}(Q)$, for any $y(\theta) \in C([-\tau_0, 0], R^n)$.

If there exists another equilibrium $u^{**} = [u_1^{**}, u_2^{**}, \ldots, u_n^{**}]^T$ of system (2.1), we have

$$|u_i^{**} - u_i^{**}| \leq |u_i(t, \xi) - u_i^*| + |u_i(t, \xi) - u_i^{**}| \to 0, t \to \infty, i = 1, \ldots, n.$$ (3.16)

From the above proof, the system (2.1) has a unique equilibrium point $u^*$, which is globally exponentially robustly stable. Theorem 3.1 is proved.

Remark 3.2. When $a_i = a_j > 0$, $b_{ij} = b_{ji} = \overline{b}_{ij}$, $w_{ij} = \overline{w}_{ij}$, $w_{ij}^{(k)} = \overline{w}_{ij}^{(k)}$, $\overline{V}_i = V_i = \overline{V}_i$, the system (2.1) becomes to system in [12, 14]. So, the system in [12, 14] is special case of system (2.1).

4. Conclusion

We have investigated global exponential robust stability of high-order hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the neural networks are established, which are easily verifiable. The systems found in the literature are special cases of the system (2.1). So the problem addressed in this paper should be a focused topic of theoretical as well as practical importance.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This research was fully supported by the National Natural Science Foundation of China (no. 11171374) and the Natural Science Foundation of Shandong (no. ZR2011AZ001)
References
