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Abstract. 
A general hierarchical problem has been considered, and an explicit
algorithm has been presented for solving this hierarchical problem. Also, it is shown
that the suggested algorithm converges strongly to a solution of the hierarchical
problem.


1. Introduction
Let 
	
		
			

				𝐻
			

		
	
 be a real Hilbert space with inner product 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 and norm 
	
		
			
				‖
				⋅
				‖
			

		
	
, respectively. Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				𝐻
			

		
	
. The hierarchical problem is of finding 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
 such that
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				⟨
				𝑆
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
				−
				̃
				𝑥
				⟩
				≤
				0
				,
				∀
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
				,
			

		
	

					where 
	
		
			
				𝑆
				,
				𝑇
			

		
	
 are two nonexpansive mappings and 
	
		
			
				F
				i
				x
				(
				𝑇
				)
			

		
	
 is the set of fixed points of 
	
		
			

				𝑇
			

		
	
. Recently, this problem has been studied by many authors (see, e.g., [1–15]). The main reason is that this problem is closely associated with some monotone variational inequalities and convex programming problems (see [16–19]).
Now, we briefly recall some historic results which relate to the problem (1.1).
For solving the problem (1.1), in 2006, Moudafi and Mainge [1] first introduced an implicit iterative algorithm:
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑡
				,
				𝑠
			

			
				
				𝑥
				=
				𝑠
				𝑄
			

			
				𝑡
				,
				𝑠
			

			
				
				
				
				𝑥
				+
				(
				1
				−
				𝑠
				)
				𝑡
				𝑆
			

			
				𝑡
				,
				𝑠
			

			
				
				
				𝑥
				+
				(
				1
				−
				𝑡
				)
				𝑇
			

			
				𝑡
				,
				𝑠
			

			
				
				
			

		
	

					and proved that the net 
	
		
			
				{
				𝑥
			

			
				𝑡
				,
				𝑠
			

			

				}
			

		
	
 defined by (1.2) strongly converges to 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 as 
	
		
			
				𝑠
				→
				0
			

		
	
, where 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 satisfies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				=
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑃
			

			

				𝑡
			

			

				)
			

			
				𝑄
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
, where 
	
		
			

				𝑃
			

			

				𝑡
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 is a mapping defined by 
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑡
			

			
				(
				𝑥
				)
				=
				𝑡
				𝑆
				(
				𝑥
				)
				+
				(
				1
				−
				𝑡
				)
				𝑇
				(
				𝑥
				)
				,
				∀
				𝑥
				∈
				𝐶
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
			

		
	

					or, equivalently, 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 is the unique solution of the quasivariational inequality 
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				0
				∈
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑡
			

			
				+
				𝑁
			

			
				F
				i
				x
				(
				𝑃
			

			

				𝑡
			

			

				)
			

			
				
				𝑥
			

			

				𝑡
			

			
				
				,
			

		
	

					where the normal cone to 
	
		
			
				F
				i
				x
				(
				𝑃
			

			

				𝑡
			

			

				)
			

		
	
, 
	
		
			

				𝑁
			

			
				F
				i
				x
				(
				𝑃
			

			

				𝑡
			

			

				)
			

		
	
, is defined as follows: 
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝑁
			

			
				F
				i
				x
				(
				𝑃
			

			

				𝑡
			

			

				)
			

			
				
				
				𝑃
				∶
				𝑥
				⟶
				{
				𝑢
				∈
				𝐻
				∶
				⟨
				𝑦
				−
				𝑥
				,
				𝑢
				⟩
				≤
				0
				}
				,
				i
				f
				𝑥
				∈
				F
				i
				x
			

			

				𝑡
			

			
				
				,
				∅
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

Moreover, as 
	
		
			
				𝑡
				→
				0
			

		
	
, the net 
	
		
			
				{
				𝑥
			

			

				𝑡
			

			

				}
			

		
	
 in turn weakly converges to the unique solution 
	
		
			

				𝑥
			

			

				∞
			

		
	
 of the fixed point equation 
	
		
			

				𝑥
			

			

				∞
			

			
				=
				p
				r
				o
				j
			

			

				Ω
			

			
				𝑄
				(
				𝑥
			

			

				∞
			

			

				)
			

		
	
 or, equivalently, 
	
		
			

				𝑥
			

			

				∞
			

		
	
 is the unique solution of the variational inequality 
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				0
				∈
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				∞
			

			
				+
				𝑁
			

			

				Ω
			

			
				
				𝑥
			

			

				∞
			

			
				
				.
			

		
	

Recently, Moudafi [2] constructed an explicit iterative algorithm:
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				
				1
				−
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				𝜎
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

					where 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			

				}
			

		
	
 are two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
. By using this iterative algorithm, Moudafi [2] only proved a weak convergence theorem for solving the problem (1.1).
In order to obtain a strong convergence result, Mainge and Moudafi [3] further introduced the following iterative algorithm:
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				
				1
				−
				𝛿
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				𝜎
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

					where 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			

				}
			

		
	
 are two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
, and proved that, under appropriate conditions, the iterative sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 generated by (1.8) has strong convergence.
Subsequently, some authors have studied some algorithms on hierarchical fixed problems (see, e.g., [4–15]).
Motivated and inspired by the results in the literature, in this paper, we consider a general hierarchical problem of finding 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
 such that, for any 
	
		
			
				𝑛
				≥
				1
			

		
	
,
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				⟨
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
				−
				̃
				𝑥
				⟩
				≤
				0
				,
				∀
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
				,
			

		
	

					where 
	
		
			

				𝑊
			

			

				𝑛
			

		
	
 is the 
	
		
			

				𝑊
			

		
	
-mapping defined by (2.3) below and 
	
		
			

				𝑇
			

		
	
 is a nonexpansive mapping, and introduce an explicit iterative algorithm which converges strongly to a solution 
	
		
			
				̃
				𝑥
			

		
	
 of the hierarchical problem (1.9).
2. Preliminaries
Let 
	
		
			

				𝐶
			

		
	
 a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
. Recall that a mapping 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 is said to be contractive if there exists a constant 
	
		
			
				𝛾
				∈
				(
				0
				,
				1
				)
			

		
	
 such that 
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑄
				𝑥
				−
				𝑄
				𝑦
				‖
				≤
				𝛾
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

A mapping 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 is called nonexpansive if
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑥
				−
				𝑇
				𝑦
				‖
				≤
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

Forward, we use 
	
		
			
				F
				i
				x
				(
				𝑇
				)
			

		
	
 to denote the fixed points set of 
	
		
			

				𝑇
			

		
	
.
Let 
	
		
			
				{
				𝑇
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 be an infinite family of nonexpansive mappings and 
	
		
			
				{
				𝜉
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

		
	
 a real number sequence such that 
	
		
			
				0
				≤
				𝜉
			

			

				𝑖
			

			
				≤
				1
			

		
	
 for each 
	
		
			
				𝑖
				≥
				1
			

		
	
.
For each 
	
		
			
				𝑛
				≥
				1
			

		
	
, define a mapping 
	
		
			

				𝑊
			

			

				𝑛
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 as follows:
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝑛
				,
				𝑛
				+
				1
			

			
				𝑈
				=
				𝐼
				,
			

			
				𝑛
				,
				𝑛
			

			
				=
				𝜉
			

			

				𝑛
			

			

				𝑇
			

			

				𝑛
			

			

				𝑈
			

			
				𝑛
				,
				𝑛
				+
				1
			

			
				+
				
				1
				−
				𝜉
			

			

				𝑛
			

			
				
				𝑈
				𝐼
				,
			

			
				𝑛
				,
				𝑛
				−
				1
			

			
				=
				𝜉
			

			
				𝑛
				−
				1
			

			

				𝑇
			

			
				𝑛
				−
				1
			

			

				𝑈
			

			
				𝑛
				,
				𝑛
			

			
				+
				
				1
				−
				𝜉
			

			
				𝑛
				−
				1
			

			
				
				⋯
				𝑈
				𝐼
				,
			

			
				𝑛
				,
				𝑘
			

			
				=
				𝜉
			

			

				𝑘
			

			

				𝑇
			

			

				𝑘
			

			

				𝑈
			

			
				𝑛
				,
				𝑘
				+
				1
			

			
				+
				
				1
				−
				𝜉
			

			

				𝑘
			

			
				
				𝑈
				𝐼
				,
			

			
				𝑛
				,
				𝑘
				−
				1
			

			
				=
				𝜉
			

			
				𝑘
				−
				1
			

			

				𝑇
			

			
				𝑘
				−
				1
			

			

				𝑈
			

			
				𝑛
				,
				𝑘
			

			
				+
				
				1
				−
				𝜉
			

			
				𝑘
				−
				1
			

			
				
				⋯
				𝑈
				𝐼
				,
			

			
				𝑛
				,
				2
			

			
				=
				𝜉
			

			

				2
			

			

				𝑇
			

			

				2
			

			

				𝑈
			

			
				𝑛
				,
				3
			

			
				+
				
				1
				−
				𝜉
			

			

				2
			

			
				
				𝑊
				𝐼
				,
			

			

				𝑛
			

			
				=
				𝑈
			

			
				𝑛
				,
				1
			

			
				=
				𝜉
			

			

				1
			

			

				𝑇
			

			

				1
			

			

				𝑈
			

			
				𝑛
				,
				2
			

			
				+
				
				1
				−
				𝜉
			

			

				1
			

			
				
				𝐼
				.
			

		
	

Such 
	
		
			

				𝑊
			

			

				𝑛
			

		
	
 is called the 
	
		
			

				𝑊
			

		
	
-mapping generated by 
	
		
			
				{
				𝑇
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

		
	
 and 
	
		
			
				{
				𝜉
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

		
	
.
Lemma 2.1 (see [20]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
. Let 
	
		
			
				{
				𝑇
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

		
	
 be an infinite family of nonexpansive mappings of 
	
		
			

				𝐶
			

		
	
 into itself with 
	
		
			

				⋂
			

			
				∞
				𝑛
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑛
			

			
				)
				≠
				∅
			

		
	
. Let 
	
		
			

				𝜉
			

			

				1
			

			
				,
				𝜉
			

			

				2
			

			
				,
				…
			

		
	
 be real numbers such that 
	
		
			
				0
				<
				𝜉
			

			

				𝑖
			

			
				≤
				𝑏
				<
				1
			

		
	
 for each 
	
		
			
				𝑖
				≥
				1
			

		
	
. Then one has the following results: (1)for any 
	
		
			
				𝑥
				∈
				𝐶
			

		
	
 and 
	
		
			
				𝑘
				≥
				1
			

		
	
, the limit 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑈
			

			
				𝑛
				,
				𝑘
			

			

				𝑥
			

		
	
 exists; (2)
	
		
			
				⋂
				F
				i
				x
				(
				𝑊
				)
				=
			

			
				∞
				𝑛
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑛
			

			

				)
			

		
	
.
Using Lemma  3.1 in [21], we can define a mapping 
	
		
			

				𝑊
			

		
	
 of 
	
		
			

				𝐶
			

		
	
 into itself by 
	
		
			
				𝑊
				𝑥
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑊
			

			

				𝑛
			

			
				𝑥
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑈
			

			
				𝑛
				,
				1
			

			

				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐶
			

		
	
. Thus we have the following.
Lemma 2.2 (see [21]).  If 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a bounded sequence in 
	
		
			

				𝐶
			

		
	
, then one has 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑊
				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

Lemma 2.3 (see [22]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex of a real Hilbert space 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 be nonexpansive mapping. Then 
	
		
			

				𝑇
			

		
	
 is demiclosed on 
	
		
			

				𝐶
			

		
	
, that is, if 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⇀
				𝑥
				∈
				𝐶
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				→
				0
			

		
	
, then 
	
		
			
				𝑥
				=
				𝑇
				𝑥
			

		
	
.
Lemma 2.4 (see [23]).       Assume 
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence of nonnegative real numbers such that 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				+
				1
			

			
				≤
				
				1
				−
				𝛾
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			

				𝛾
			

			

				𝑛
			

			
				+
				𝜂
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				1
				,
			

		
	

						where 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			
				}
				,
				{
				𝜂
			

			

				𝑛
			

			

				}
			

		
	
 are two sequences such that  (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛾
			

			

				𝑛
			

			
				=
				∞
			

		
	
;(ii)
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				≤
				0
			

		
	
 or 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛿
			

			

				𝑛
			

			

				𝛾
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
;(iii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝜂
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
.  Then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

			
				=
				0
			

		
	
.
3. Main Results
In this section, we introduce our algorithm and give its convergence analysis.
Algorithm 3.1. Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				1
			

		
	
 be infinite family of nonexpansive mappings of 
	
		
			

				𝐶
			

		
	
 into itself. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a contraction with coefficient 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. For any 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 the sequence generated iteratively by
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			

				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				
				𝛽
			

			

				𝑛
			

			
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 are two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			

				𝑊
			

			

				𝑛
			

		
	
 is the 
	
		
			

				𝑊
			

		
	
-mapping defined by (2.3). 
Now, we give the convergence analysis of the algorithm.
Theorem 3.2.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				1
			

		
	
 be an infinite family of nonexpansive mappings of 
	
		
			

				𝐶
			

		
	
 into itself. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a contraction with coefficient 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. Assume that the set 
	
		
			

				Ω
			

		
	
 of solutions of the hierarchical problem (1.9) is nonempty. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 be two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 the sequence generated by (3.1). Assume that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded and (i)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛽
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
; (ii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛽
			

			

				𝑛
			

			
				=
				∞
			

		
	
; (iii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				−
				(
				1
				/
				𝛼
			

			
				𝑛
				−
				1
			

			
				)
				|
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				/
				𝛼
			

			

				𝑛
			

			

				𝛽
			

			

				𝑛
			

			
				)
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				|
				1
				−
				(
				𝛽
			

			
				𝑛
				−
				1
			

			
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
				=
				0
			

		
	
.  Then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
 and every weak cluster point of the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 solves the following variational inequality 
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				⟨
				̃
				𝑥
				∈
				Ω
				,
				(
				𝐼
				−
				𝑄
				)
				̃
				𝑥
				,
				𝑥
				−
				̃
				𝑥
				⟩
				≥
				0
				,
				∀
				𝑥
				∈
				Ω
				.
			

		
	

Proof. Set 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				(
				1
				−
				𝛽
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

		
	
 for each 
	
		
			
				𝑛
				≥
				0
			

		
	
. Then we have 
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				
				1
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				+
				
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				+
				
				𝛽
			

			
				𝑛
				−
				1
			

			
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			

				.
			

		
	

						It follows that
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝛾
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				=
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				.
			

		
	

						From (3.1), we have 
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			

				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			

				𝑊
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				
				1
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				
				+
				
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				𝛼
			

			
				𝑛
				−
				1
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑊
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				+
				
				𝛼
			

			
				𝑛
				−
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			

				.
			

		
	

						Then we obtain
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑊
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑊
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				.
			

		
	

						From (2.3), since 
	
		
			

				𝑇
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑈
			

			
				𝑛
				,
				𝑖
			

		
	
 are nonexpansive, we have
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑊
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝜉
			

			

				1
			

			

				𝑇
			

			

				1
			

			

				U
			

			
				𝑛
				,
				2
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝜉
			

			

				1
			

			

				𝑇
			

			

				1
			

			

				𝑈
			

			
				𝑛
				−
				1
				,
				2
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝜉
			

			

				1
			

			
				‖
				‖
				𝑈
			

			
				𝑛
				,
				2
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑈
			

			
				𝑛
				−
				1
				,
				2
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				𝜉
			

			

				1
			

			
				‖
				‖
				𝜉
			

			

				2
			

			

				𝑇
			

			

				2
			

			

				𝑈
			

			
				𝑛
				,
				3
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝜉
			

			

				2
			

			

				𝑇
			

			

				2
			

			

				𝑈
			

			
				𝑛
				−
				1
				,
				3
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝜉
			

			

				1
			

			

				𝜉
			

			

				2
			

			
				‖
				‖
				𝑈
			

			
				𝑛
				,
				3
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑈
			

			
				𝑛
				−
				1
				,
				3
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				⋯
				≤
				𝜉
			

			

				1
			

			

				𝜉
			

			

				2
			

			
				⋯
				𝜉
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				𝑈
			

			
				𝑛
				,
				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑈
			

			
				𝑛
				−
				1
				,
				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝑀
			

			
				1
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			

				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				1
			

		
	
 is a constant such that 
	
		
			
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				{
				‖
				𝑈
			

			
				𝑛
				,
				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝑈
			

			
				𝑛
				−
				1
				,
				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				}
				≤
				𝑀
			

			

				1
			

		
	
. Substituting (3.4) and (3.7) into (3.6), we get 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			

				𝑀
			

			
				1
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				=
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			

				𝑀
			

			
				1
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			

				.
			

		
	

						Therefore, it follows that
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				≤
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			

				𝑀
			

			

				1
			

			

				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				=
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				+
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				𝛼
			

			
				𝑛
				−
				1
			

			

				𝑀
			

			

				1
			

			

				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				≤
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				+
				
				|
				|
				|
				|
				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				−
				1
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				|
				|
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				𝑀
				=
				
				1
				−
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				+
				(
				1
				−
				𝛾
				)
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				×
				
				𝑀
			

			
				
			
			
				(
				
				1
				−
				𝛾
				)
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				|
				|
				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				−
				1
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				|
				|
				+
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			

				𝛽
			

			

				𝑛
			

			
				,
				
				
			

		
	

						where 
	
		
			

				𝑀
			

		
	
 is a constant such that 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				
				𝑀
			

			

				1
			

			
				,
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				,
				
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				,
				
				‖
				‖
				𝑄
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				
				≤
				𝑀
				.
			

		
	

						From (iii), we note that 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛼
			

			
				𝑛
				−
				1
			

			
				)
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				/
				𝛽
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				|
				=
				0
			

		
	
, which implies that
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				=
				0
				.
			

		
	

						Thus it follows from (iii) and (3.11) that 
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				|
				|
				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				−
				1
			

			
				
			
			

				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				|
				|
				+
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			

				𝛽
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						Hence, applying Lemma 2.4 to (3.9), we immediately conclude that 
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				=
				0
				.
			

		
	

						This implies that
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Thus, from (3.1) and (3.14), we have 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						At the same time, we note that
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				⟶
				0
				.
			

		
	

						Hence we get
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Since the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 is also bounded. Thus there exists a subsequence of 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, which is still denoted by 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 which converges weakly to a point 
	
		
			
				̃
				𝑥
				∈
				𝐻
			

		
	
. Therefore, 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
 by (3.17) and Lemma 2.3. By (3.1), we observe that 
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				,
			

		
	

						that is, 
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				=
				
				𝐼
				−
				𝑊
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				+
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						Set 
	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				(
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				/
				𝛼
			

			

				𝑛
			

		
	
 for each 
	
		
			
				𝑛
				≥
				1
			

		
	
, that is, 
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				
				𝐼
				−
				𝑊
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				+
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						Using monotonicity of 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 and 
	
		
			
				𝐼
				−
				𝑊
			

			

				𝑛
			

		
	
, we derive that, for all 
	
		
			
				𝑢
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
, 
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				⟨
				𝑧
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				=
				−
				𝑢
				⟩
				
				
				𝐼
				−
				𝑊
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				+
				−
				𝑢
				1
				−
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝑇
				)
				𝑢
				,
				𝑦
			

			

				𝑛
			

			
				+
				−
				𝑢
				⟩
				1
				−
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				𝛽
				⟩
				+
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				≥
				−
				𝑢
				⟩
				
				
				𝐼
				−
				𝑊
			

			

				𝑛
			

			
				
				𝑢
				,
				𝑥
			

			

				𝑛
			

			
				
				+
				𝛽
				−
				𝑢
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑢
				⟩
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝛽
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑄
				𝑥
			

			

				𝑛
			

			
				⟩
				=
				⟨
				(
				𝐼
				−
				𝑊
				)
				𝑢
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
				⟩
				+
				
				
				𝑊
				−
				𝑊
			

			

				𝑛
			

			
				
				𝑢
				,
				𝑥
			

			

				𝑛
			

			
				
				+
				𝛽
				−
				𝑢
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑄
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				+
				
				−
				𝑢
				⟩
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝛽
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
				)
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑄
				𝑥
			

			

				𝑛
			

			
				⟩
				.
			

		
	

						But, since 
	
		
			

				𝑧
			

			

				𝑛
			

			
				→
				0
			

		
	
,
	
		
			

				𝛽
			

			

				𝑛
			

			

				/
			

		
	
 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑊
			

			

				𝑛
			

			
				𝑢
				−
				𝑊
				𝑢
				‖
				=
				0
			

		
	
 (by Lemma 2.2), it follows from the above inequality that 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝐼
				−
				𝑊
				)
				𝑢
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
				⟩
				≤
				0
				,
				∀
				𝑢
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

						This suffices to guarantee that 
	
		
			

				𝜔
			

			

				𝑤
			

			
				(
				𝑥
			

			

				𝑛
			

			
				)
				⊂
				Ω
			

		
	
. As a matter of fact, if we take any 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				𝜔
			

			

				𝑤
			

			
				(
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
, then there exists a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⇀
				𝑥
			

			

				∗
			

		
	
. Therefore, we have 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				⟨
				(
				𝐼
				−
				𝑊
				)
				𝑢
				,
				𝑥
			

			

				∗
			

			
				−
				𝑢
				⟩
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				
				(
				𝐼
				−
				𝑊
				)
				𝑢
				,
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				
				−
				𝑢
				≤
				0
				,
				∀
				𝑢
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

						Note that 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
. Hence 
	
		
			

				𝑥
			

			

				∗
			

		
	
 solves the following problem: 
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				∗
			

			
				⟨
				∈
				F
				i
				x
				(
				𝑇
				)
				,
				(
				𝐼
				−
				𝑊
				)
				𝑢
				,
				𝑥
			

			

				∗
			

			
				−
				𝑢
				⟩
				≤
				0
				,
				∀
				𝑢
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

						It is obvious that this is equivalent to the problem (1.9) since 
	
		
			

				𝑊
			

			

				𝑛
			

			
				→
				𝑊
			

		
	
 uniformly in any bounded set (by Lemma 2.2). Thus 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				Ω
			

		
	
.Let 
	
		
			
				̃
				𝑥
			

		
	
 be the unique solution of the variational inequality (3.2). Now, take a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝐼
				−
				𝑄
				)
				̃
				𝑥
				,
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
				⟩
				=
				l
				i
				m
			

			
				𝑖
				→
				∞
			

			
				
				(
				𝐼
				−
				𝑄
				)
				̃
				𝑥
				,
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				.
				−
				̃
				𝑥
			

		
	

						Without loss of generality, we may further assume that 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				⇀
			

			
				
			
			

				𝑥
			

		
	
. Then 
	
		
			
				
			
			
				𝑥
				∈
				Ω
			

		
	
. Therefore, we have 
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝐼
				−
				𝑄
				)
				̃
				𝑥
				,
				𝑥
			

			

				𝑛
			

			
				
				−
				̃
				𝑥
				⟩
				=
				(
				𝐼
				−
				𝑄
				)
				̃
				𝑥
				,
			

			
				
			
			
				
				𝑥
				−
				̃
				𝑥
				≥
				0
				.
			

		
	

						This completes the proof.
Theorem 3.3.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
. Let 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				1
			

		
	
 be infinite family of nonexpansive mappings of 
	
		
			

				𝐶
			

		
	
 into itself. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a contraction with coefficient 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. Assume that the set 
	
		
			

				Ω
			

		
	
 of solutions of the hierarchical problem (1.9) is nonempty. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 be two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 the sequence generated by (3.1). Assume that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded and  (i)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			
				2
				𝑛
			

			
				/
				𝛽
			

			

				𝑛
			

			
				=
				0
			

		
	
; (ii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛽
			

			

				𝑛
			

			
				=
				∞
			

		
	
; (iii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				−
				(
				1
				/
				𝛼
			

			
				𝑛
				−
				1
			

			
				)
				|
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				∏
			

			
				𝑛
				−
				1
				𝑖
				=
				1
			

			

				𝜉
			

			

				𝑖
			

			
				/
				𝛼
			

			

				𝑛
			

			

				𝛽
			

			

				𝑛
			

		
	
 = 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				|
				1
				−
				(
				𝛽
			

			
				𝑛
				−
				1
			

			
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
			

		
	
 = 0; (iv)there exists a constant 
	
		
			
				𝑘
				>
				0
			

		
	
 such that 
	
		
			
				‖
				𝑥
				−
				𝑇
				𝑥
				‖
				≥
				𝑘
				D
				i
				s
				t
				(
				𝑥
				,
				F
				i
				x
				(
				𝑇
				)
				)
			

		
	
, where  
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				D
				i
				s
				t
				(
				𝑥
				,
				F
				i
				x
				(
				𝑇
				)
				)
				=
				i
				n
				f
			

			
				𝑦
				∈
				F
				i
				x
				(
				𝑇
				)
			

			
				‖
				𝑥
				−
				𝑦
				‖
				.
			

		
	

						Then the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 defined by (3.1) converges strongly to a point 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
, which solves the variational inequality problem (3.2).
Proof. From (3.1), we have 
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				̃
				𝑥
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			
				
				̃
				𝑥
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				
				+
				
				̃
				𝑥
				−
				̃
				𝑥
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				.
				−
				̃
				𝑥
			

		
	

						Thus we have
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				≤
				‖
				‖
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			
				
				+
				
				̃
				𝑥
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				−
				̃
				𝑥
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				−
				̃
				𝑥
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				.
				−
				̃
				𝑥
			

		
	

						At the same time, we observe that
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				=
				‖
				‖
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				
				−
				̃
				𝑥
				+
				𝛽
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑄
				̃
				𝑥
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				)
			

			

				2
			

			
				≤
				‖
				‖
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				
				−
				̃
				𝑥
				+
				𝛽
			

			

				𝑛
			

			
				
				𝑄
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑄
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				≤
				
				−
				̃
				𝑥
				⟩
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑄
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑄
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				≤
				
				−
				̃
				𝑥
				⟩
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				𝛽
			

			

				𝑛
			

			

				𝛾
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				=
				
				
				−
				̃
				𝑥
				⟩
				1
				−
				1
				−
				𝛾
			

			

				2
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				−
				̃
				𝑥
				⟩
				.
			

		
	

						Substituting (3.30) into (3.29), we get
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				
				1
				−
				1
				−
				𝛾
			

			

				2
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				−
				̃
				𝑥
				⟩
				+
				2
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				
				
				−
				̃
				𝑥
				1
				−
				1
				−
				𝛾
			

			

				2
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				−
				̃
				𝑥
				⟩
				+
				2
				𝛼
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				
				
				−
				̃
				𝑥
				1
				−
				1
				−
				𝛾
			

			

				2
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				̃
				𝑥
			

			

				2
			

			
				+
				
				1
				−
				𝛾
			

			

				2
			

			
				
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				×
				
				2
			

			
				
			
			
				1
				−
				𝛾
			

			

				2
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				2
				−
				̃
				𝑥
				⟩
				+
			

			
				
			
			
				
				1
				−
				𝛾
			

			

				2
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				×
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				.
				−
				̃
				𝑥
			

		
	

						By Theorem 3.2, we note that every weak cluster point of the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is in 
	
		
			

				Ω
			

		
	
. Since 
	
		
			

				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				→
				0
			

		
	
, then every weak cluster point of 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 is also in 
	
		
			

				Ω
			

		
	
. Consequently, since 
	
		
			
				̃
				𝑥
				=
				p
				r
				o
				j
			

			

				Ω
			

			
				(
				𝑄
				̃
				𝑥
				)
			

		
	
, we easily have
							
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				𝑄
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑦
			

			

				𝑛
			

			
				−
				̃
				𝑥
				⟩
				≤
				0
				.
			

		
	
On the other hand, we observe that
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				
				𝑊
				−
				̃
				𝑥
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				
				+
				
				𝑊
				−
				̃
				𝑥
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				
				.
			

		
	

						Since 
	
		
			
				̃
				𝑥
			

		
	
 is a solution of the problem (1.9) and 
	
		
			
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				
				−
				̃
				𝑥
				≤
				0
				.
			

		
	

						Thus it follows that 
							
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				𝑊
				−
				̃
				𝑥
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
				̃
				𝑥
				−
				̃
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				p
				r
				o
				j
			

			
				F
				i
				x
				(
				𝑇
				)
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				
				𝑥
				̃
				𝑥
				−
				̃
				𝑥
				×
				D
				i
				s
				t
			

			
				𝑛
				+
				1
			

			
				
				≤
				1
				,
				F
				i
				x
				(
				𝑇
				)
			

			
				
			
			
				𝑘
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
				̃
				𝑥
				−
				̃
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				.
			

		
	

						We note that 
							
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	

						Hence we have 
							
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				𝛼
				−
				̃
				𝑥
			

			
				2
				𝑛
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				
				1
			

			
				
			
			
				𝑘
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑊
				̃
				𝑥
				−
				̃
				𝑥
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				+
				𝛼
			

			

				𝑛
			

			
				
				1
			

			
				
			
			
				𝑘
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				̃
				𝑥
				−
				̃
				𝑥
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				+
				𝛼
			

			
				2
				𝑛
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				1
			

			
				
			
			
				𝑘
				‖
				‖
				𝑊
			

			

				𝑛
			

			
				‖
				‖
				
				.
				̃
				𝑥
				−
				̃
				𝑥
			

		
	

						From Theorem 3.2, we have 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				/
				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
. At the same time, we note that 
	
		
			
				{
				(
				1
				/
				𝑘
				)
				‖
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				‖
				‖
				𝑊
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				}
			

		
	
, 
	
		
			
				{
				(
				1
				/
				𝑘
				)
				‖
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				‖
				‖
				𝑄
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				}
			

		
	
, and 
	
		
			
				{
				(
				1
				/
				𝑘
				)
				‖
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				‖
				}
			

		
	
 are all bounded. Hence it follows from (i) and the above inequality that
							
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑛
			

			
				̃
				𝑥
				−
				̃
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				−
				̃
				𝑥
				≤
				0
				.
			

		
	
Finally, by (3.31)–(3.38) and Lemma 2.4, we conclude that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to a point 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
. This completes the proof.
Remark 3.4. In the present paper, we consider the hierarchical problem (1.9) which includes the hierarchical problem (1.1) as a special case.From the above discussion, we can easily deduce the following result.
Algorithm 3.5. Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
 and 
	
		
			

				𝑆
			

		
	
 a nonexpansive mapping of 
	
		
			

				𝐶
			

		
	
 into itself. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a contraction with coefficient 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. For any 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
, let
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 the sequence generated iteratively by
							
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				
				𝛽
			

			

				𝑛
			

			
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 are two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
. 
Corollary 3.6.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
. Let 
	
		
			
				S
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a contraction with coefficient 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. Assume that the set 
	
		
			

				Ω
			

			

				
			

		
	
 of solutions of the hierarchical problem (1.1) is nonempty. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 be two real numbers in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 the sequence generated by (3.1). Assume that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded and  (i)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			
				2
				𝑛
			

			
				/
				𝛽
			

			

				𝑛
			

			
				=
				0
			

		
	
; (ii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛽
			

			

				𝑛
			

			
				=
				∞
			

		
	
; (iii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				−
				(
				1
				/
				𝛼
			

			
				𝑛
				−
				1
			

			
				)
				|
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				1
				/
				𝛼
			

			

				𝑛
			

			
				)
				|
				1
				−
				(
				𝛽
			

			
				𝑛
				−
				1
			

			
				/
				𝛽
			

			

				𝑛
			

			
				)
				|
				=
				0
			

		
	
; (iv)there exists a constant 
	
		
			
				𝑘
				>
				0
			

		
	
 such that 
	
		
			
				‖
				𝑥
				−
				𝑇
				𝑥
				‖
				≥
				𝑘
				D
				i
				s
				t
				(
				𝑥
				,
				F
				i
				x
				(
				𝑇
				)
				)
			

		
	
, where  
	
 		
 			
				(
				3
				.
				4
				0
				)
			
 		
	

	
		
			
				D
				i
				s
				t
				(
				𝑥
				,
				F
				i
				x
				(
				𝑇
				)
				)
				=
				i
				n
				f
			

			
				𝑦
				∈
				F
				i
				x
				(
				𝑇
				)
			

			
				‖
				𝑥
				−
				𝑦
				‖
				.
			

		
	

						Then the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 defined by (3.39) converges strongly to a point 
	
		
			
				̃
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
			

		
	
, which solves the hierarchical problem (1.1).
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