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Abstract. 
Potential sputtering erosion caused by the interactions between spacecraft and plasma plume of Hall thrusters is a concern for electric propulsion. In this study, calculation model of Hall thruster’s plume and sputtering erosion is presented. The model is based on three dimensional hybrid particle-in-cell and direct simulation Monte Carlo method (PIC/DSMC method) which is integrated with plume-wall sputtering yield model. For low-energy heavy-ion sputtering in Hall thruster plume, the Matsunami formula for the normal incidence sputtering yield and the Yamamura angular dependence of sputtering yield are used. The validation of the simulation model is realized through comparing plume results with the measured data. Then, SPT-70’s sputtering erosion on satellite surfaces is assessed and effect of mass flow rate on sputtering erosion is analyzed.


1. Introduction
Hall thrusters have become a tempting alternative to traditional chemical propulsion systems due to the great mass saving that they provide through high specific impulses. Large specific impulses show that Hall thrusters are well suited for missions such as station-keeping and orbit transfers. However, a major stumbling block to their widespread integration is the uncertainty about the thruster plume’s interaction with spacecraft components. For Hall thrusters, the divergence angle of particles is relatively large, leading to the possibility of direct impingements of high energy propellant ions onto the spacecraft surfaces which result in sputtering and degradation of material properties. In order to effectively assess the contamination of plasma plume and improve the performance of electric thrusters, it is crucially important to develop a computational sputtering erosion method. 
Hall thruster plume is a complex rarefied flow with several species: atoms, positively charged ions, and electrons. There are two main ways for calculation of plume: semiempirical methods [1–3] and PIC/DSMC method [4–8]. Semi-empirical methods are based on experimental data, and their the main assumptions are that ion flow can be approximated as originating in ray-like fashion from one or two effective centers and that ion energy is purely a function of axial and radial distance. But, it is difficult to obtain the full information of the plasma plume and there is a need for abundant precise experimental data. PIC/DSMC method which is a general way to simulate plasma plume tracks every real physical process, such as particle moving, particle collision, and electric field calculation. The simulation successfully captures detailed plume structures and plume interactions. 
Sputtering is commonly used for thin-film deposition, etching, and analytical techniques. There are a lot of experiments [9] to study the sputtering yield. And lots of semiexperimental sputtering yield formulations between inlet ion and project material which based on Sigmund theory are built. For low-energy heavy-ion sputtering in Hall thruster plume, the Matsunami formula [10] for the normal incidence sputtering yield and the Yamamura angular dependence of sputtering yield [11] are used in this study.
A 3D PIC/DSMC model is built for plume and sputtering yield calculation, in which plume-wall interaction model for sputtering erosion calculation is integrated. The simulated SPT-70’ propellant is xenon, typically with a power of 660 W, a thruster of 40 mN, and a specific impulse of 1500 s. Plume sputtering erosion on satellite’s surface is calculated. An experiment performed in a vacuum chamber [8] is used to verify simulation results by comparing with experimental data. Additionally, propellant mass flow rate effect on sputtering erosion is assessed.
2. Mathematics Models
A plasma plume is a complex rarefied flow with several species: atoms, positively charged ions, and electrons. It is firstly suggested by Oh et al.  [12, 13] to combine DSMC and PIC to solve a rarefied plasma ultrasonic jet flow problem. The direct simulation Monte Carlo (DSMC) method simulates the collisions of heavy particles (ions and atoms) and the motions of particles, while PIC method is employed to calculate the electric flied and accelerate the charged particles. Electrons are treated using a fluid description, because electrons which have significantly lighter mass, can adjust their velocities more quickly than ions or atoms [14]. The algorithm of PIC-DSMC hybrid method is shown in Figure 1. The simulation successfully captures detailed plume structures and plume interactions. Ions which impact walls deposit their energy near the surface and a collision cascade develops which lead to targeting atoms ejected from the surface. Plume-wall sputtering model is integrated in the PIC/DSMC model, in which the Matsunami formula for the normal incidence sputtering yield and the Yamamura formula for angular dependence of sputtering yield are used. 



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
	


	
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	




	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	





	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 1: One time step of the PIC-DSMC algorithm.


2.1. PIC/DSMC Method
2.1.1. Collision Dynamics
Collision dynamics of dilute plasma plume is involved with atom-atom, atom-ion, electron-atom, electron-ion, electron-electron, and ion-ion collisions. Here, Xe, Xe+, and Xe2+ are taken into consideration. Collisions between these particles can be divided into two types: momentum exchange collision, which is treated as elastic collision, and charge exchange (CEX) collision. Because the mass of the electron is far less than that of ion, directly simulating its collision is lacking efficiency. Here, electrons are treated as fluid with momentum but without mass. Also collisions between ions are not modeled for calculation because of their too high collision frequency.
(1) Momentum Collision Momentum collisions are treated as elastic collisions with variable hard sphere (VHS) [15] model. The cross-section for atom-atom elastic interactions is [16]
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For atom-ion elastic collision, the cross-section given by Dalgarno, McDowell, and Williams [17] is adopted as
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 is the elastic cross-section. The elastic cross-section for interaction between an atom and a doubly charged ion is twice of that of an atom and a singly charged ion.
(2) Charge Exchange CollisionCEX collision is very important for studying Hall thruster plume and is a long-range integration with a cross-section relatively large compared to that of momentum collision. A fast ion from the main beam undergoes a CEX collision with a slow neutral particle results in a slow-moving ion and a fast neutral particle, as shown in (2.3), where “
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” indicates slow. Such collisions are significant for studies of spacecraft contamination. Ions with relatively high velocities tend to follow straight trajectories, while ions with slow velocities are quickly turned towards the edge of the plume. In ion thrusters, the ions in the main beam are moving in a small range of velocities which is much faster than ions created by CEX, so the CEX ions exit to the sides of the plume and form a “wing-like” structure which is located at the backflow region and is the main factor of spacecraft surface pollution. “Wing-like” structure is not shown in this paper, the details can be found in reference [8].Consider the following:
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, for Xe-Xe+ collision measured by Pullins et al. [18] and Scott Miller et al. [19] is used as
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										It is assumed that there is no momentum transfer accompanying the transfer of electron(s) in CEX collisions. The cross-section for interactions between atoms and doubly charged ions is half of that of atoms and singly charged ions.
(3) No Time Counter (NTC) MethodNTC is used to determine whether a collision is happening or not [15]. In every cell, collision pairs between 
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, the collision is accepted, that is, a collision is supposed to be happening. No collision occurs if vice versa.
2.1.2. Calculation of Electric Field
PIC method is used to trace the charged particles movements in self-induced electric and magnetic field. Maxwell equations and Poisson equation are adopted to solve electric-magnetic field and static electric filed, respectively. Although magnetic field is significant in the accelerating channel, experimental results show that magnetic field in the plume exit decreases fast, and magnetic field in most regions is very weak. Therefore, magnetic field throughout the plume region is neglected. Based on a quasineutral assumption, the electron momentum equation (2.6) is written as (2.7), while assuming that the electrons are massless, unmagnetized, and collisionless. Further assuming that the electrons are isothermal, and that their pressure obeys ideal gas law, the Boltzmann relation, as shown in (2.8), is used to solve for the plasma potential in simulations [8, 12] as follows:
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Consider the following:
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In this paper, the friction term is included in the simulation though it is a weak term, which is different from the accomplished work using Boltzmann relation in [8, 12]. This treatment induces the solving process of electric field to be more complex, but it is more accurate than the Boltzmann relation. Introducing the plasma potential 
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 is Boltzmann constant. Using the 5-point formula and assuming that the electrons are isothermal, the plasma potential can be solved by using an alternating direction implicit (ADI) scheme. Here the parameters, such as the number density of ions, accumulated onto each node of the computational domain are obtained by Ruyten’s method [21].
2.2. Plume-Wall Sputtering Yield Model
  Three particles are tracked in the model: Xe, Xe+, and Xe2+. For neutral, it is assumed that particles that impact the channel walls thermalize at the wall temperature and are diffusely scattered back into the channel. Similar to anode injection, the velocity distribution is assumed to be half-Maxwellian. Particles which exit the computational domain in the plume region are no longer tracked by the simulation. Different to the neutral treatment, ions which impact walls recombine to form neutrals and deposit their energy near the surface and a collision cascade develops which leads to target atoms ejected from the surface. Sputtering yield, the number of target atoms removed per incident particle, is dependent upon incident particle energy, incident angle, and target surface composition.
2.2.1. Sputtering Yield Model
Early in 1969, Sigmund [22] derived the formula for the sputtering yield by solving the linearized Boltzmann equation based on the assumption that the collision cascade is well developed in the infinite medium and the heat of sublimation is the surface binding energy.
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At extreme, in cases of the low-energy heavy-ion and the high-energy light-ion sputtering, the original Sigmund formula should be modified. Therefore, Yamamura et al. [23] written the sputtering yield formula as an interpolation between two cases, that is, as 
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In order to propose an empirical formula as simple as possible, Matsunami et al. [10] used in (2.17) the power approximation for 
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									Then, empirical formula is finally given as
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 is the parameter about target atoms as
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 are empirical constants. The Matsunami formula is calculated for the normal incidence sputtering yield. For the dependence of the sputtering yield on the angle of incidence of the bombarding particles, Yamamura et al. [11] proposed a procedure which is based on the assumption that the angular dependence can be described by a factor to the yield at normal incidence as
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 is the incidence angle at which maximum sputtering occurs, and 
	
		
			

				𝑓
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, basing on a large number of experimental sputter data of various projectile-target combinations. The optimum incidence angle is given by 
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 is average lattice constant. Particularly in the case of heavy-ion sputtering, the description reveals a singular behavior at threshold energy which is overcome by an interpolation.
2.2.2. Sheath Model
Sheaths are non-neutral regions that normally form at plasma boundaries to balance electron and ion losses. They are one of the most prominent and well-known features of confined plasma. A crude surface model predicts the interaction between particles and surfaces in the original plume simulation models, in which the quasineutrality is assumed and resolution of the nonquasineutral sheath boundary is not accomplished. Thus, a sheath interaction model is needed to account for this sheath region [26]. The potential drop across the sheath is calculated with
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 is ion flux, 
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 is the electron temperature, and 
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 are the electron charge and Boltzmann constant, respectively. Energy due to acceleration through this sheath potential is added to the particle impacting the object surface. This energy is then used to calculate the sputtering yield.
2.3. Computational Domain and Parameters
The simulation engine is a SPT-70 (7 cm diameter) which works at nominal flow and current. As shown in Figure 2, thruster is placed at the middle of the surface, which has a potential influences on surface 1 and surface 2. From symmetry considerations, it is adequate to solve 1/4th sector of the satellite for high efficient calculation, as shown in the yellow part in Figure 2. The simplified computational model is shown in Figure 3, in which the calculation domain has a 
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, at the thruster exit are 20.8 mm and 35 mm, respectively. The outer radius of the th