Research Article

Convergence Theorems for Equilibrium Problems and Fixed-Point Problems of an Infinite Family of k_i-Strictly Pseudocontractive Mapping in Hilbert Spaces

Haitao Che, Meixia Li, and Xintian Pan

1 School of Mathematics and Information Science, Weifang University, Shandong Weifang 261061, China
2 School of Management Science, Qufu Normal University, Shandong Rizhao 276800, China

Correspondence should be addressed to Haitao Che, haitaoche@163.com

Received 28 February 2012; Revised 8 June 2012; Accepted 24 June 2012

1. Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$. Let C be a nonempty closed convex subset of H and let $F : C \times C \rightarrow R$ be a bifunction. We consider the following equilibrium problem (EP) which is to find $z \in C$ such that

$$\text{EP} : F(z, y) \geq 0, \quad \forall y \in C. \quad (1.1)$$

Denote the set of solutions of EP by $\text{EP}(F)$. Given a mapping $T : C \rightarrow H$, let $F(x, y) = \langle Tx, y - x \rangle$ for all $x, y \in C$. Then, $z \in \text{EP}(F)$ if and only if $\langle Tx, y - x \rangle \geq 0$ for all $y \in C$, that is, z is a solution of the variational inequality. Numerous problems in physics, optimization, and
economics reduce to find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem [1–13].

A mapping \(B : C \to C \) is called \(\theta \)-Lipschitzian if there exists a positive constant \(\theta \) such that

\[
\| Bx - By \| \leq \theta \| x - y \|, \quad \forall x, y \in C. \tag{1.2}
\]

\(B \) is said to be \(\eta \)-strongly monotone if there exists a positive constant \(\eta \) such that

\[
\langle Bx - By, x - y \rangle \geq \eta \| x - y \|^2, \quad \forall x, y \in C. \tag{1.3}
\]

A mapping \(S : C \to C \) is said to be \(k \)-strictly pseudocontractive mapping if there exists a constant \(0 \leq k < 1 \) such that

\[
\| Sx - Sy \|^2 \leq \| x - y \|^2 + k \| (I - S)x - (I - S)y \|^2, \tag{1.4}
\]

for all \(x, y \in C \) and \(F(S) \) denotes the set of fixed point of the mapping \(S \), that is \(F(S) = \{ x \in C : Sx = x \} \).

If \(k = 1 \), then \(S \) is said to a pseudocontractive mapping, that is,

\[
\| Sx - Sy \|^2 \leq \| x - y \|^2 + \| (I - S)x - (I - S)y \|^2, \tag{1.5}
\]

is equivalent to

\[
\langle (I - S)x - (I - S)y, x - y \rangle \geq 0, \tag{1.6}
\]

for all \(x, y \in C \).

The class of \(k \)-strict pseudo-contractive mappings extends the class of nonexpansive mappings (A mapping \(T \) is said to be nonexpansive if \(\| Tx - Ty \| \leq \| x - y \| \), for all \(x, y \in C \)). That is, \(S \) is nonexpansive if and only if \(S \) is a 0-strict pseudocontractive mapping. Clearly, the class of \(k \)-strictly pseudocontractive mappings falls into the one between classes of nonexpansive mappings and pseudo-contractive mapping.

In 2006, Marino and Xu [14] introduced the general iterative method and proved that for a given \(x_0 \in H \), the sequence \(\{ x_n \} \) generated by the algorithm

\[
x_{n+1} = \alpha_n f(x_n) + (I - \alpha_n B)Tx_n, \quad n \in \mathbb{N}, \tag{1.7}
\]

where \(T \) is a self-nonexpansive mapping on \(H \), \(f \) is an \(\alpha \)-contraction of \(H \) into itself (i.e., \(\| f(x) - f(y) \| \leq \alpha \| x - y \| \), for all \(x, y \in H \) and \(\alpha \in (0,1) \)), \(\{ \alpha_n \} \subset (0,1) \) satisfies certain conditions, \(B \) is strongly positive bounded linear operator on \(H \), and converges strongly to fixed point \(x^\star \) of \(T \) which is the unique solution to the following variational inequality:

\[
\langle (y - B)x^\star, x^\star - x \rangle \leq 0, \quad \forall x \in F(T). \tag{1.8}
\]
Tian [15] considered the following iterative method, for a nonexpansive mapping $T : H \to H$ with $F(T) \neq \emptyset$,

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F)Tx_n, \quad n \in \mathbb{N}, \quad (1.9)$$

where F is k-Lipschitzian and η-strongly monotone operator. The sequence $\{x_n\}$ converges strongly to fixed-point q in $F(T)$ which is the unique solution to the following variational inequality:

$$\langle (\gamma f - \mu F) q, p - q \rangle \leq 0, \quad p \in F(T). \quad (1.10)$$

For finding a common element of $EP(F) \cap F(S)$, S. Takahashi and W. Takahashi [16] introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solution (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space. Let $S : C \to H$ be a nonexpansive mapping. Starting with arbitrary initial point $x_1 \in H$, define sequences $\{x_n\}$ and $\{u_n\}$ recursively by

$$F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \quad \forall y \in C, \quad (1.11)$$

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)Su_n, \quad \forall n \in \mathbb{N}.$$

They proved that under certain appropriate conditions imposed on $\{\alpha_n\}$ and $\{r_n\}$, the sequences $\{x_n\}$ and $\{u_n\}$ converge strongly to $z \in F(S) \cap EP(F)$, where $z = P_{F(S) \cap EP(F)} f(z)$.

Liu [17] introduced the following scheme: $x_1 \in H$ and

$$F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \quad \forall y \in C,$$

$$y_n = \beta_n u_n + (1 - \beta_n)Su_n,$$

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n B)y_n, \quad \forall n \in \mathbb{N}, \quad (1.12)$$

where S is a k-strict pseudo-contractive mapping and B is a strongly positive bounded linear operator. They proved that under certain appropriate conditions imposed on $\{\alpha_n\}$, $\{\beta_n\}$, and $\{r_n\}$, the sequence $\{x_n\}$ converges strongly to $z \in F(S) \cap EP(F)$, where $z = P_{F(S) \cap EP(F)} (I - B + \gamma f)(z)$.

In [18], the concept of W mapping had been modified for a countable family $\{T_n\}_{n \in \mathbb{N}}$ of nonexpansive mappings by defining the sequence $\{W_n\}_{n \in \mathbb{N}}$ of W-mappings generated by $\{T_n\}_{n \in \mathbb{N}}$ and $\{\lambda_n\} \subset (0, 1)$, proceeding backward

$$U_{n+1} := I,$$

$$U_n := \lambda_n T_n U_{n+1} + (1 - \lambda_n) I,$$

...
\[U_{n,k} := \lambda_k T_k U_{n,k+1} + (1 - \lambda_k)I, \]
\[\ldots \]
\[U_{n,2} := \lambda_2 T_2 U_{n,3} + (1 - \lambda_2)I, \]
\[W_n = U_{n,1} := \lambda_1 T_1 U_{n,2} + (1 - \lambda_1)I. \]

(1.13)

Yao et al. [19] using this concept, introduced the following algorithm: \(x_1 \in H \) and

\[F(u_n, y) + \frac{1}{r_n} (y - u_n, u_n - x_n) \geq 0, \quad \forall y \in C, \]
\[x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n)W_n u_n, \quad \forall n \in N. \]

(1.14)

They proved that under certain appropriate conditions imposed on \(\{\alpha_n\} \) and \(\{r_n\} \), the sequences \(\{x_n\} \) and \(\{u_n\} \) converge strongly to \(z \in \bigcap_{i=1}^{\infty} F(T_i) \cap \text{EP}(F) \).

Colao and Marino [20] considered the following explicit viscosity scheme

\[F(u_n, y) + \frac{1}{r_n} (y - u_n, u_n - x_n) \geq 0, \quad \forall y \in C, \]
\[x_{n+1} = \alpha_n r f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)W_n u_n, \quad \forall n \in N, \]

(1.15)

where \(A \) is a strongly positive operator on \(H \). Under certain appropriate conditions, the sequences \(\{x_n\} \) and \(\{u_n\} \) converge strongly to \(z \in \bigcap_{i=1}^{\infty} F(T_i) \cap \text{EP}(F) \).

Motivated and inspired by these facts, in this paper, we first extend the definition of \(W_n \) from an infinite family of nonexpansive mappings to an infinite family of strictly pseudo-contractive mappings, and then propose the iteration scheme (3.2) for finding an element of \(\text{EP}(F) \cap \bigcap_{i=1}^{\infty} F(S_i) \), where \(\{S_i\} \) is an infinite family of \(k_i \)-strictly pseudo-contractive mappings of \(C \) into itself. Finally, the convergence theorem of the iteration scheme is obtained. Our results include Yao et al. [19], Colao and Marino [20] as some special cases.

2. Preliminaries

Throughout this paper, we always assume that \(C \) is a nonempty closed convex subset of a Hilbert space \(H \). We write \(x_n \to x \) to indicate that the sequence \(\{x_n\} \) converges weakly to \(x \). \(x_n \to x \) implies that \(\{x_n\} \) converges strongly to \(x \). We denote by \(N \) and \(R \) the sets of positive integers and real numbers, respectively. For any \(x \in H \), there exists a unique nearest point in \(C \), denoted by \(P_C x \), such that

\[\|x - P_C x\| \leq \|x - y\|, \quad \forall y \in C. \]

(2.1)

Such a \(P_C \) is called the metric projection of \(H \) onto \(C \). It is known that \(P_C \) is nonexpansive. Furthermore, for \(x \in H \) and \(u \in C \),

\[u = P_C x \iff (x - u, u - y) \geq 0, \quad \forall y \in C. \]

(2.2)
It is widely known that H satisfies Opial’s condition [21], that is, for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality
\[
\lim_{n \to \infty} \inf \|x_n - x\| < \lim_{n \to \infty} \inf \|x_n - y\|
\] (2.3)
holds for every $y \in H$ with $y \neq x$.

In order to solve the equilibrium problem for a bifunction $F : C \times C \to \mathbb{R}$, we assume that F satisfies the following conditions:

(A1) $F(x, x) = 0$, for all $x \in C$.

(A2) F is monotone, that is, $F(x, y) + F(y, x) \leq 0$, for all $x, y \in C$.

(A3) $\lim_{t \to 0} F(tx + (1-t)y, y) \leq F(x, y)$, for all $x, y, z \in C$.

(A4) For each $x \in C$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

Let us recall the following lemmas which will be useful for our paper.

Lemma 2.1 (see [22]). Let F be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1), (A2), (A3), and (A4). Then, for any $r > 0$ and $x \in H$, there exists $z \in C$ such that
\[
F(z, y) + \frac{1}{r}(y - z, z - x) \geq 0, \quad \forall y \in C.
\] (2.4)

Furthermore, if $T_r x = \{z \in C : F(z, y) + (1/r)(y - z, z - x) \geq 0, \forall y \in C\}$, then the following hold:

(1) T_r is single-valued.

(2) T_r is firmly nonexpansive, that is,
\[
\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle, \quad \forall x, y \in H.
\] (2.5)

(3) $F(T_r) = EP(F)$.

(4) $EP(F)$ is closed and convex.

Lemma 2.2 (see [23]). Let $S : C \to H$ be a k-strictly pseudo-contractive mapping. Define $T : C \to H$ by $Tx = \lambda x + (1 - \lambda)Sx$ for each $x \in C$. Then, as $\lambda \in [k, 1)$, T is nonexpansive mapping such that $F(T) = F(S)$.

Lemma 2.3 (see [24]). In a Hilbert space H, there holds the inequality
\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle, \quad \forall x, y \in H.
\] (2.6)

Lemma 2.4 (see [25]). Let H be a Hilbert space and C be a closed convex subset of H, and $T : C \to C$ a nonexpansive mapping with $F(T) \neq \emptyset$. If $\{x_n\}$ is a sequence in C weakly converging to x and if $\{(I - T)x_n\}$ converges strongly to y, then $(I - T)x = y$.
Lemma 2.5 (see [26]). Let \(\{x_n\} \) and \(\{z_n\} \) be bounded sequences in a Banach space \(E \) and \(\{\gamma_n\} \) be a sequence in \([0,1]\) satisfying the following condition

\[
0 < \liminf_{n \to \infty} \gamma_n \leq \limsup_{n \to \infty} \gamma_n < 1.
\]

(2.7)

Suppose that \(x_{n+1} = \gamma_n x_n + (1 - \gamma_n) z_n, n \geq 0 \) and \(\lim_{n \to \infty} \sup(\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \leq 0 \). Then \(\lim_{n \to \infty} \|z_n - x_n\| = 0 \).

Lemma 2.6 (see [27]). Assume that \(\{a_n\} \) is a sequence of nonnegative real numbers such that

\[
a_{n+1} \leq (1 - b_n) a_n + b_n \delta_n, \quad n \geq 0,
\]

(2.8)

where \(\{b_n\} \) is a sequence in \((0,1)\) and \(\{\delta_n\} \) is a sequence in \(\mathbb{R} \), such that

(i) \(\sum_{i=1}^{\infty} b_i = \infty \).

(ii) \(\lim_{n \to \infty} \sup \delta_n \leq 0 \) or \(\sum_{i=1}^{\infty} |b_i \delta_i| < \infty \).

Then, \(\lim_{n \to \infty} a_n = 0 \).

Let \(\{S_i\} \) be an infinite family of \(k_i \)-strictly pseudo-contractive mappings of \(C \) into itself, we define a mapping \(W_n \) of \(C \) into itself as follows,

\[
U_{n,n+1} := I,
\]

\[
U_{n,n} := \tau_n S_n' U_{n,n+1} + (1 - \tau_n) I,
\]

\[
\quad \cdots
\]

\[
U_{n,k} := \tau_k S_k' U_{n,k+1} + (1 - \tau_k) I,
\]

\[
\quad \cdots
\]

\[
U_{n,2} := \tau_2 S_2' U_{n,3} + (1 - \tau_2) I,
\]

\[
W_n = U_{n,1} := \tau_1 S_1' U_{n,2} + (1 - \tau_1) I,
\]

where \(0 \leq \tau_i \leq 1 \), \(S_i' = \sigma_i I + (1 - \sigma_i) S_i \) and \(\sigma_i \in [k_i, 1) \) for \(i \in N \). We can obtain \(S_i' \) is a nonexpansive mapping and \(F(S_i) = F(S_i') \) by Lemma 2.2. Furthermore, we obtain that \(W_n \) is a nonexpansive mapping.

Remark 2.7. If \(k_i = 0 \), \(\sigma_i = 0 \) for \(i \in N \), then the definition of \(W_n \) in (2.9) reduces to the definition of \(W_n \) in (1.13).

To establish our results, we need the following technical lemmas.

Lemma 2.8 (see [18]). Let \(C \) be a nonempty closed convex subset of a strictly convex Banach space. Let \(\{S_i\} \) be an infinite family of nonexpansive mappings of \(C \) into itself and let \(\{\tau_i\} \) be a real sequence such that \(0 < \tau_i \leq b < 1 \) for every \(i \in N \). Then, for every \(x \in C \) and \(k \in N \), the limit \(\lim_{n \to \infty} U_{n,k} x \) exists.
In view of the previous lemma, we will define
\[
Wx := \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x, \quad x \in C. \tag{2.10}
\]

Lemma 2.9 (see [18]). Let \(C \) be a nonempty closed convex subset of a strictly convex Banach space. Let \(\{S_i\} \) be an infinite family of nonexpansive mappings of \(C \) into itself such that \(\bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset \) and let \(\{\tau_i\} \) be a real sequence such that \(0 < \tau_i \leq b < 1 \) for every \(i \in \mathbb{N} \). Then, \(F(W) = \bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset \).

The following lemmas follow from Lemmas 2.2, 2.8, and 2.9.

Lemma 2.10. Let \(C \) be a nonempty closed convex subset of a strictly convex Banach space. Let \(\{S_i\} \) be an infinite family of \(k_i \)-strictly pseudo-contractive mappings of \(C \) into itself such that \(\bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset \). Define \(S'_i = \sigma_i I + (1 - \sigma_i) S_i \) and \(\sigma_i \in [k_i, 1) \) and let \(\{\tau_i\} \) be a real sequence such that \(0 < \tau_i \leq b < 1 \) for every \(i \in \mathbb{N} \). Then, \(F(W) = \bigcap_{i=1}^{\infty} F(S_i) = \bigcap_{i=1}^{\infty} F(S'_i) \neq \emptyset \).

Lemma 2.11 (see [28]). Let \(C \) be a nonempty closed convex subset of a Hilbert space. Let \(\{S'_i\} \) be an infinite family of nonexpansive mappings of \(C \) into itself such that \(\bigcap_{i=1}^{\infty} F(S'_i) \neq \emptyset \) and let \(\{\tau_i\} \) be a real sequence such that \(0 < \tau_i \leq b < 1 \) for every \(i \in \mathbb{N} \). If \(K \) is any bounded subset of \(C \), then
\[
\lim_{n \to \infty} \sup_{x \in K} \|Wx - W_n x\| = 0. \tag{2.11}
\]

3. Main Results

Let \(H \) be a real Hilbert space and \(F \) be a \(k \)-Lipschitzian and \(\eta \)-strongly monotone operator with \(k > 0 \), \(\eta > 0 \), \(0 < \mu < 2\eta/k^2 \) and \(0 < t < 1 \). Then, for \(t \in [0, \{1, 1/\tau\}] \), \(S = (I - t\mu F) : H \to H \) is a contraction with contractive coefficient \(1 - t\tau \) and \(\tau = (1/2)\mu(2\eta - \mu k^2) \).

In fact, from (1.2) and (1.3), we obtain
\[
\|Sx - Sy\|^2 = \|x - y - t\mu(Fx - Fy)\|^2
\leq \|x - y\|^2 + k^2 t^2 \mu^2 \|Fx - Fy\|^2 - 2t\mu\langle Fx - Fy, x - y \rangle
\leq \|x - y\|^2 + k^2 t^2 \mu^2 \|x - y\|^2 - 2t\eta \mu \|x - y\|^2 \tag{3.1}
\leq (1 - t\mu(2\eta - \mu k^2)) \|x - y\|^2
\leq (1 - t\tau)^2 \|x - y\|^2.
\]

Thus, \(S = (1 - t\mu F) \) is a contraction with contractive coefficient \(1 - t\tau \in (0, 1) \).

Now, we show the strong convergence results for an infinite family \(k_i \)-strictly pseudo-contractive mappings in Hilbert space.

Theorem 3.1. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \) and \(F \) be a bifunction from \(C \times C \to \mathbb{R} \) satisfying (A1)–(A4). Let \(S_i : C \to C \) be a \(k_i \)-strictly pseudo-contractive mapping with \(\bigcap_{i=1}^{\infty} F(S_i) \cap EP \neq \emptyset \) and \(\{\tau_i\} \) be a real sequence such that \(0 < \tau_i \leq b < 1 \), \(i \in \mathbb{N} \). Let \(f \) be a contraction of \(H \) into itself with \(\beta \in (0, 1) \) and \(B \) be \(k \)-Lipschitzian and \(\eta \)-strongly monotone...
Step 1

Proof.

We divide the proof into five steps.

\(x_{n+1} = \alpha_n r f(x_n) + \beta_n x_n + (1 - \beta_n) I - \mu \alpha_n B) y_n, \quad \forall n \in N,
\)

where \(u_n = T_{\lambda_n} x_n\) and \(\{W_n : C \rightarrow C\}\) is the sequence defined by (2.9). If \(\{\alpha_n\}\), \(\{\beta_n\}\), \(\{\delta_n\}\), and \(\{\lambda_n\}\) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1)\), \(\lim_{n \rightarrow \infty} \alpha_n = 0\), \(\sum_{n=1}^{\infty} \alpha_n = \infty\),

(ii) \(0 < \lim_{n \rightarrow \infty} \inf \beta_n \leq \lim_{n \rightarrow \infty} \sup \beta_n < 1\),

(iii) \(0 < \lim_{n \rightarrow \infty} \inf \delta_n \leq \lim_{n \rightarrow \infty} \sup \delta_n < 1\), \(\lim_{n \rightarrow \infty} |\delta_{n+1} - \delta_n| = 0\),

(iv) \(\{\lambda_n\} \subset (0, \infty)\), \(\lim_{n \rightarrow \infty} \lambda_n = 0\), \(\lim_{n \rightarrow \infty} |\lambda_{n+1} - \lambda_n| = 0\).

Then \(\{x_n\}\) converges strongly to \(z \in \bigcap_{i=1}^{\infty} F(S_i) \cap EP \neq \emptyset\), where \(z\) is the unique solution of variational inequality

\[
\lim_{n \rightarrow \infty} \sup \langle (r f - \mu B) z, p - z \rangle \leq 0, \quad \forall p \in \bigcap_{i=1}^{\infty} F(S_i) \cap EP \neq \emptyset,
\]

that is, \(z = P_{\bigcap_{i=1}^{\infty} F(S_i) \cap EP}(I - \mu B + r f) z\), which is the optimality condition for the minimization problem

\[
\min_{z \in \bigcap_{i=1}^{\infty} F(S_i) \cap EP} \frac{1}{2} \langle \mu B z, z \rangle - h(z),
\]

where \(h\) is a potential function for \(r f\) (i.e., \(h'(z) = r f(z)\) for \(z \in H\)).

Proof. We divide the proof into five steps.

Step 1. We prove that \(\{x_n\}\) is bounded.

Noting the conditions (i) and (ii), we may assume, without loss of generality, that \(\frac{\alpha_n}{1 - \beta_n} \leq \min \{1, 1/\tau\}\). For \(x, y \in C\), we obtain

\[
\|((1 - \beta_n) I - \alpha_n \mu B)x - ((1 - \beta_n) I - \alpha_n \mu B)y\| \\
\leq (1 - \beta_n) \|\left(I - \frac{\alpha_n}{1 - \beta_n} \mu B\right)x - \left(I - \frac{\alpha_n}{1 - \beta_n} \mu B\right)y\| \\
\leq (1 - \beta_n) \left(1 - \frac{\alpha_n}{1 - \beta_n} \tau\right) \|x - y\| \\
= (1 - \beta_n - \alpha_n \tau) \|x - y\|.
\]
Take \(p \in \bigcap_{i=1}^{\infty} F(S_i) \cap \text{EP} \neq \emptyset \). Since \(u_n = T_{\lambda_n} x_n \) and \(p = T_{\lambda_n} p \), then from Lemma 2.1, we know that, for any \(n \in \mathbb{N} \),

\[
\|u_n - p\| = \|T_{\lambda_n}x_n - T_{\lambda_n}p\| \leq \|x_n - p\|. \tag{3.6}
\]

Furthermore, since \(W_n p = p \) and (3.6), we have

\[
\|y_n - p\| = \|\delta_n u_n + (1 - \delta_n) W_n u_n - p\|
= \|\delta_n (u_n - p) + (1 - \delta_n) (W_n u_n - p)\|
\leq \delta_n \|u_n - p\| + (1 - \delta_n) \|W_n u_n - p\|
\leq \|u_n - p\| \leq \|x_n - p\|. \tag{3.7}
\]

Thus, it follows from (3.7) that

\[
x_{n+1} - p = \| \alpha_n r f(x_n) + \beta_n x_n + \left((1 - \beta_n) I - \mu \alpha_n B \right) y_n - p \|
= \| \alpha_n r f(x_n) - f(p) + \alpha_n (r f(p) - \mu B p) + \beta_n (x_n - p) + (1 - \beta_n) I - \mu \alpha_n B \right) (y_n - p) \|
\leq \alpha_n r \| f(x_n - p) + \alpha_n \| r f(p) - \mu B p \| + \beta_n \| x_n - p \|
+ (1 - \beta_n - \tau \alpha_n) \| y_n - p \|
\leq (1 - \alpha_n (\tau - r \beta)) \| x_n - p \| + \alpha_n \| r f(p) - \mu B p \|
\leq \max \left\{ \| x_n - p \|, \frac{\| r f(p) - \mu B p \|}{\tau - r \beta} \right\}. \tag{3.8}
\]

By induction, we have

\[
\| x_n - p \| \leq \max \left\{ \| x_1 - p \|, \frac{\| r f(p) - \mu B p \|}{\tau - r \beta} \right\}, \quad n \geq 1. \tag{3.9}
\]

Hence, \(\{x_n\} \) is bounded and we also obtain that \(\{u_n\}, \{W_n u_n\}, \{y_n\}, \{B y_n\}, \) and \(\{f(x_n)\} \) are all bounded. Without loss of generality, we can assume that there exists a bounded set \(K \subset C \) such that \(\{u_n\}, \{W_n u_n\}, \{y_n\}, \{B y_n\}, \{f(x_n)\} \in K \) for all \(n \in \mathbb{N} \).

Step 2. We show that \(\lim_{n \to \infty} \| x_n - x_{n+1} \| = 0 \).

Let \(x_{n+1} = (1 - \beta_n) z_n + \beta_n x_n \). We note that

\[
z_n = \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n} = \frac{\alpha_n r f(x_n) + \left((1 - \beta_n) I - \mu \alpha_n B \right) y_n}{1 - \beta_n}, \tag{3.10}
\]
and then
\[z_{n+1} - z_n = \frac{\alpha_{n+1}r f(x_{n+1}) + ((1 - \beta_{n+1}) I - \mu \alpha_{n+1} B) y_{n+1}}{1 - \beta_{n+1}} \]
\[- \frac{\alpha_n r f(x_n) + ((1 - \beta_n) I - \mu \alpha_n B) y_n}{1 - \beta_n} \]
\[= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (r f(x_{n+1}) - \mu B y_{n+1}) - \frac{\alpha_n}{1 - \beta_n} (r f(x_n) - \mu B y_n) + y_{n+1} - y_n. \]

Therefore,
\[\| z_{n+1} - z_n \| \leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\| r f(x_{n+1}) \| + \| \mu B y_{n+1} \|) \]
\[+ \frac{\alpha_n}{1 - \beta_n} (\| r f(x_n) \| + \| \mu B y_n \|) + \| y_{n+1} - y_n \|. \]

It follows from (3.2) that
\[\| y_{n+1} - y_n \| = \| \delta_{n+1} u_{n+1} + (1 - \delta_{n+1}) W_{n+1} u_{n+1} - (\delta_n u_n + (1 - \delta_n) W_n u_n) \| \]
\[\leq |\delta_{n+1} - \delta_n| \| u_n \| + \delta_{n+1} \| u_{n+1} - u_n \| + (1 - \delta_{n+1}) \| W_{n+1} u_{n+1} - W_n u_n \| \]
\[+ |\delta_{n+1} - \delta_n| \| W_n u_n \|. \]

We will estimate \(\| u_{n+1} - u_n \| \). From \(u_{n+1} = T_{\lambda_{n+1}} x_{n+1} \) and \(u_n = T_{\lambda_n} x_n \), we obtain
\[F(u_{n+1}, y) + \frac{1}{\lambda_{n+1}} \langle y - u_{n+1}, u_{n+1} - y_{n+1} \rangle \geq 0, \quad \forall y \in C, \]
\[F(u_n, y) + \frac{1}{\lambda_n} \langle y - u_n, u_n - y_n \rangle \geq 0, \quad \forall y \in C. \]

Taking \(y = u_n \) in (3.14) and \(y = u_{n+1} \) in (3.15), we have
\[F(u_{n+1}, u_n) + \frac{1}{\lambda_{n+1}} \langle u_n - u_{n+1}, u_{n+1} - x_{n+1} \rangle \geq 0, \]
\[F(u_n, u_{n+1}) + \frac{1}{\lambda_n} \langle u_{n+1} - u_n, u_n - x_n \rangle \geq 0. \]

So, from (A2), one has
\[\langle u_{n+1} - u_n, \frac{u_n - x_n}{\lambda_n} - \frac{u_{n+1} - x_{n+1}}{\lambda_{n+1}} \rangle \geq 0, \]

in Equation (3.17).
furthermore,
\[\left\langle u_{n+1} - u_n, u_n - u_{n+1} - x_n - \frac{\lambda_n}{\lambda_{n+1}} (u_{n+1} - x_{n+1}) \right\rangle \geq 0. \tag{3.18}\]

Since \(\lim_{n \to \infty} \lambda_n > 0\), we assume that there exists a real number such that \(\lambda_n > a > 0\) for all \(n \in \mathbb{N}\). Thus, we obtain
\[
\|u_{n+1} - u_n\|^2 \leq \left\langle u_{n+1} - u_n, x_{n+1} - x_n + \left(1 - \frac{\lambda_n}{\lambda_{n+1}}\right) (u_{n+1} - x_{n+1}) \right\rangle
\]
\[
\leq \|u_{n+1} - u_n\| \left\{ \|x_{n+1} - x_n\| + \left|1 - \frac{\lambda_n}{\lambda_{n+1}}\right| \|u_{n+1} - x_{n+1}\| \right\}, \tag{3.19}\]

which means
\[
\|u_{n+1} - u_n\| \leq \|x_{n+1} - x_n\| + \left|\frac{\lambda_n}{\lambda_{n+1}}\right| \|u_{n+1} - x_{n+1}\|
\]
\[
\leq \|x_{n+1} - x_n\| + \frac{1}{a} |\lambda_{n+1} - \lambda_n| \|u_{n+1} - x_{n+1}\|, \tag{3.20}\]

where \(L_1 = \sup \{\|u_{n+1} - x_{n+1}\| : n \in \mathbb{N}\}\).

Next, we estimate \(\|W_{n+1}u_{n+1} - W_n u_n\|\). Notice that
\[
\|W_{n+1}u_{n+1} - W_n u_n\| = \|W_{n+1}u_{n+1} - W_{n+1}u_n + W_{n+1}u_n - W_n u_n\|
\]
\[
\leq \|u_{n+1} - u_n\| + \|W_{n+1}u_n - W_n u_n\|. \tag{3.21}\]

From (2.9), we obtain
\[
\|W_{n+1}u_n - W_n u_n\| = \|\tau_1 S_1^t U_{n+1,2} u_n - \tau_1 S_1^t U_{n,2} u_n\|
\]
\[
\leq \tau_1 \|U_{n+1,2} u_n - U_{n,2} u_n\|
\]
\[
= \tau_1 \|\tau_2 S_2^t U_{n+1,3} u_n - \tau_2 S_2^t U_{n,3} u_n\|
\]
\[
\leq \tau_1 \tau_2 \|U_{n+1,3} u_n - U_{n,3} u_n\|
\]
\[
\leq \cdots
\]
\[
\leq \tau_1 \tau_2 \cdots \tau_n \|U_{n+1,n+1} u_n - U_{n,n+1} u_n\|
\]
\[
\leq L_2 \prod_{i=1}^{n} \tau_i, \tag{3.22}\]

where \(L_2 \geq 0\) is a constant such that \(\|U_{n+1,n+1} u_n - U_{n,n+1} u_n\| \leq L_2\), for all \(n \in \mathbb{N}\).
Substituting (3.20) and (3.22) into (3.21), we obtain
\[
\|W_{n+1}u_{n+1} - W_n u_n\| \leq \|x_{n+1} - x_n\| + L_1|\lambda_{n+1} - \lambda_n| + L_2 \prod_{i=1}^{n} \tau_i. \tag{3.23}
\]
Hence, we have
\[
\|y_{n+1} - y_n\| \leq |\delta_{n+1} - \delta_n| (\|u_n\| + \|W_n u_n\|) + \|x_{n+1} - x_n\|
+ (1 - \delta_{n+1})L_2 \prod_{i=1}^{n} \tau_i + L_1|\lambda_{n+1} - \lambda_n|
\]
\[
\leq L_3|\delta_{n+1} - \delta_n| + \|x_{n+1} - x_n\| + (1 - \delta_{n+1})L_2 \prod_{i=1}^{n} \tau_i + L_1|\lambda_{n+1} - \lambda_n|,
\tag{3.24}
\]
where \(L_3 = \sup \{\|u_n\| + \|W_n u_n\| : n \in N\}\).
Furthermore,
\[
\|z_{n+1} - z_n\| \leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\|rf(x_{n+1})\| + \|\mu By_{n+1}\|)
+ \frac{\alpha_n}{1 - \beta_n} (\|rf(x_n)\| + \|\mu By_n\|)
\]
\[
+ \|x_{n+1} - x_n\| + L_1|\lambda_{n+1} - \lambda_n| + L_2(1 - \delta_{n+1}) \prod_{i=1}^{n} \tau_i
\]
\[
+ L_3|\delta_{n+1} - \delta_n|.
\tag{3.25}
\]
It follows from (3.25) that
\[
\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|
\leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\|rf(x_{n+1})\| + \|\mu By_{n+1}\|) + \frac{\alpha_n}{1 - \beta_n} (\|rf(x_n)\| + \|\mu By_n\|)
\]
\[
+ L_1|\lambda_{n+1} - \lambda_n| + L_2(1 - \delta_{n+1}) \prod_{i=1}^{n} \tau_i + L_3|\delta_{n+1} - \delta_n|.
\tag{3.26}
\]
By the conditions (i), (iii), and (iv), we obtain
\[
\lim_{n \to \infty} \sup (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \leq 0. \tag{3.27}
\]
Hence, by Lemma 2.5, one has
\[
\lim_{n \to \infty} \|z_n - x_n\| = 0, \tag{3.28}
\]
Journal of Applied Mathematics

which implies

\[\lim_{n \to \infty} \| x_{n+1} - x_n \| = \lim_{n \to \infty} (1 - \beta_n) \| z_n - x_n \| = 0. \]

(3.29)

Step 3. We claim that \(\lim_{n \to \infty} \| W u_n - u_n \| = 0. \)

Notice that

\[\| W u_n - u_n \| = \| W u_n - W u_n + W u_n - u_n \| \]
\[\leq \| W u_n - W u_n \| + \| W u_n - u_n \| \]
\[\leq \sup_{u \in K} \| W u - W u_n \| + \| W u_n - u_n \|. \]

(3.30)

It follows from (3.2) that

\[\| W u_n - u_n \| = \| W u_n - y_n + y_n - u_n \| \]
\[\leq \| y_n - u_n \| + \| W u_n - y_n \| \]
\[= \| y_n - u_n \| + \delta_n \| W u_n - u_n \| \]
\[\leq \| x_n - u_n \| + \| y_n - x_n \| + \delta_n \| W u_n - u_n \|. \]

(3.31)

By the condition (iii), we obtain

\[\| W u_n - u_n \| \leq \frac{1}{1 - \delta_n} (\| x_n - u_n \| + \| y_n - x_n \|). \]

(3.32)

First, we show \(\lim_{n \to \infty} \| x_n - u_n \| = 0. \) From (3.2), for all \(p \in \cap_{i=1}^{\infty} F(S_i) \cap \text{EP}(F) \), applying Lemma 2.3 and noting that \(\| \cdot \| \) is convex, we obtain

\[\| x_{n+1} - p \|^2 = \| \alpha_n f(x_n) + \beta_n x_n + (1 - \beta_n) I - \mu \alpha_n B \| y_n - p \|^2 \]
\[= \| \alpha_n (f(x_n) + \mu By_n) + \beta_n (x_n - p) + (1 - \beta_n) (y_n - p) \|^2 \]
\[\leq \| \beta_n (x_n - p) + (1 - \beta_n) (y_n - p) \|^2 + 2\alpha_n \| f(x_n) + \mu By_n \| \| x_{n+1} - p \| \]
\[\leq \beta_n \| x_n - p \|^2 + (1 - \beta_n) \| y_n - p \|^2 + 2\alpha_n \| f(x_n) + \mu By_n \| \| x_{n+1} - p \| \]
\[\leq \beta_n \| x_n - p \|^2 + (1 - \beta_n) \| u_n - p \|^2 + 2\alpha_n \| f(x_n) + \mu By_n \| \| x_{n+1} - p \|. \]

(3.33)

Since \(u_n = T_{\lambda_n} x_n, p = T_{\lambda_n} p \), we have

\[\| u_n - p \|^2 = \| T_{\lambda_n} x_n - T_{\lambda_n} p \|^2 \leq \langle x_n - p, u_n - p \rangle \]
\[= \frac{1}{2} (\| x_n - p \|^2 + \| u_n - p \|^2 - \| x_n - u_n \|^2). \]

(3.34)
which implies
\[\|u_n - p\|^2 \leq \|x_n - p\|^2 - \|x_n - u_n\|^2. \] (3.35)

Substituting (3.35) into (3.33), we have
\[\|x_{n+1} - p\|^2 \leq \|x_n - p\|^2 - (1 - \beta_n)\|x_n - u_n\|^2 + 2\alpha_n\|rf(x_n) + \mu By_n\|\|x_{n+1} - p\|, \] (3.36)
which means
\[(1 - \beta_n)\|x_n - u_n\|^2 \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + 2\alpha_n\|rf(x_n) + \mu By_n\|\|x_{n+1} - p\| \]
\[\leq \|x_{n+1} - x_n\|(\|x_n - p\| + \|x_{n+1} - p\|) + 2\alpha_n\|rf(x_n) + \mu By_n\|\|x_{n+1} - p\|. \] (3.37)

Noticing \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\lim_{n \to \infty} \inf(1 - \beta_n) > 0 \), we have
\[\lim_{n \to \infty} \|x_n - u_n\| = 0. \] (3.38)

Second, we show \(\lim_{n \to \infty} \|y_n - x_n\| = 0 \). It follows from (3.2) that
\[\|y_n - x_n\| \leq \|y_n - x_{n+1}\| + \|x_{n+1} - x_n\| \]
\[= \|\alpha_n rf(x_n) + \beta_n x_n + ((1 - \beta_n)I - \mu \alpha_n B)y_n - y_n\| + \|x_{n+1} - x_n\| \] (3.39)
\[\leq \alpha_n\|rf(x_n) + \mu By_n\| + \beta_n\|x_n - y_n\| + \|x_{n+1} - x_n\|. \]
This implies that
\[(1 - \beta_n)\|y_n - x_n\| \leq \alpha_n\|rf(x_n) + \mu By_n\| + \|x_{n+1} - x_n\|. \] (3.40)

Noticing \(\lim_{n \to \infty} \alpha_n = 0 \), \(\lim_{n \to \infty} \inf(1 - \beta_n) > 0 \) and (3.30), we have
\[\lim_{n \to \infty} \|y_n - x_n\| = 0. \] (3.41)

Thus, substituting (3.41) and (3.38) into (3.32), we obtain
\[\lim_{n \to \infty} \|W_n u_n - u_n\| = 0. \] (3.42)

Furthermore, (3.42), (3.30), and Lemma 2.11 lead to
\[\lim_{n \to \infty} \|W u_n - u_n\| = 0. \] (3.43)
Step 4. Letting \(z = P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf)z \), we show

\[
\lim_{n \to \infty} \sup (rf - \mu B)z_n \leq 0. \tag{3.44}
\]

We know that \(P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf) \) is a contraction. Indeed, for any \(x, y \in H \), we have

\[
\| P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf)x - P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf)y \|
\leq \| (I - \mu B + rf)x - (I - \mu B + rf)y \|
\leq (1 - \tau + r\beta)\| x - y \|,
\]

and hence \(P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf) \) is a contraction due to \((1 - \tau + r\beta) \in (0, 1) \). Thus, Banach’s Contraction Mapping Principle guarantees that \(P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf) \) has a unique fixed point, which implies \(z = P_{\mathcal{W} \cap \text{EP}(F)}(I - \mu B + rf)z \).

Since \(\{u_n\} \subset \mathcal{C} \), without loss of generality, we can assume that \(\{u_n\} \to \omega \), it follows from (3.43) that \(W u_n \to \omega \). Since \(\mathcal{C} \) is closed and convex, \(\mathcal{C} \) is weakly closed. Thus we have \(\omega \in \mathcal{C} \).

Let us show \(\omega \in F(W) \). For the sake of contradiction, suppose that \(\omega \notin F(W) \), that is, \(W\omega \neq \omega \). Since \(\{u_n\} \to \omega \), by the Opial condition, we have

\[
\liminf_{n \to \infty} \|u_n - \omega\| < \liminf_{n \to \infty} \|u_n - W\omega\|
\leq \liminf_{n \to \infty} \left\{ \|u_n - Wu_n\| + \|Wu_n - W\omega\| \right\}
\leq \liminf_{n \to \infty} \left\{ \|u_n - Wu_n\| + \|u_n - \omega\| \right\}. \tag{3.46}
\]

It follows (3.43) that

\[
\liminf_{n \to \infty} \|u_n - \omega\| < \liminf_{n \to \infty} \|u_n - \omega\|. \tag{3.47}
\]

This is a contradiction, which shows that \(\omega \in F(W) \).

Next, we prove that \(\omega \in \text{EP}(F) \). By (3.2), we obtain

\[
F(u_n, y) + \frac{1}{\lambda_n}\langle y - u_n, u_n - x_n \rangle \geq 0. \tag{3.48}
\]

It follows from (A2) that

\[
\frac{1}{\lambda_n}\langle y - u_n, u_n - x_n \rangle \geq F(y, u_n). \tag{3.49}
\]

Replacing \(n \) by \(n_i \), we have

\[
\left\langle y - u_{n_i}, \frac{1}{\lambda_n}(u_n - x_n) \right\rangle \geq F(y, u_{n_i}). \tag{3.50}
\]
Since \((1/\lambda_n)(u_n - x_n) \to 0\) and \(\{u_n\} \to \omega\), it follows from (A4) that \(F(y, \omega) \geq 0\) for all \(y \in C\). Put \(z_t = ty + (1 - t)\omega\) for all \(t \in (0, 1)\) and \(y \in C\). Then, we have \(z_t \in C\) and then \(F(z_t, \omega) \geq 0\). Hence, from (A1) and (A4), we have

\[
0 = F(z_t, z_t) \leq tF(z_t, y) + (1 - t)F(z_t, y) \leq tF(z_t, y),
\]

(3.51)

which means \(F(z_t, y) \geq 0\). From (A3), we obtain \(F(\omega, y) \geq 0\) for \(y \in C\) and then \(\omega \in \text{EP}(F)\). Therefore, \(\omega \in F(W) \cap \text{EP}(F)\).

Since \(z = P_{F(W) \cap \text{EP}(F)}(I - \mu B + rf)z\), it follows from (3.38), (3.42), and Lemma 2.11 that

\[
\lim_{i \to \infty} \sup \langle (rf - \mu B)z, x_n - z \rangle = \lim_{i \to \infty} \langle (rf - \mu B)z, x_n - z \rangle \\
= \lim_{i \to \infty} \langle (rf - \mu B)z, x_n - u_n \rangle \\
+ \lim_{i \to \infty} \langle (rf - \mu B)z, u_n - W_nu_n \rangle \\
+ \lim_{i \to \infty} \langle (rf - \mu B)z, W_nu_n - Wu_n \rangle \\
= \langle (rf - \mu B)z, \omega - z \rangle \leq 0.
\]

Step 5. Finally we prove that \(x_n \to \omega\) as \(n \to \infty\). In fact, from (3.2) and (3.7), we obtain

\[
\|x_{n+1} - \omega\|^2 = \|a_nr f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \mu \alpha_n B)y_n - \omega\|^2 \\
= \|a_nr(f(x_n) - f(\omega)) + \alpha_n(rf(\omega) - \mu B\omega) \\
+ \beta_n(x_n - \omega) + ((1 - \beta_n)I - \mu \alpha_n B)(y_n - \omega)\|^2 \\
= \alpha_n r \langle f(x_n) - f(\omega), x_n - \omega \rangle + \alpha_n \langle rf(\omega) - \mu B\omega, x_{n+1} - \omega \rangle \\
+ \beta_n \langle x_n - \omega, x_{n+1} - \omega \rangle + \langle ((1 - \beta_n)I - \mu \alpha_n B)(y_n - \omega), x_{n+1} - \omega \rangle \\
\leq \alpha_n r \bar{\beta} \|x_n - \omega\|^2 + \|x_{n+1} - \omega\|^2 + \alpha_n \langle rf(\omega) - \mu B\omega, x_{n+1} - \omega \rangle \\
+ \beta_n \|x_n - \omega\|^2 + \|x_{n+1} - \omega\|^2 + \frac{(1 - \beta_n - \alpha_n \tau)}{2} \|y_n - \omega\|^2 + \|x_{n+1} - \omega\|^2 \\
\leq \frac{1 - \alpha_n (\tau - r \bar{\beta})}{2} \left(\|x_n - \omega\|^2 + \|x_{n+1} - \omega\|^2\right) + \alpha_n \langle rf(\omega) - \mu B\omega, x_{n+1} - \omega \rangle, \\
\]

(3.53)
which implies

\[
\|x_{n+1} - \omega\|^2 \leq \frac{1 - \alpha_n (\tau - r \beta)}{1 + \alpha_n (\tau - r \beta)} \|x_n - \omega\|^2 \\
+ \frac{2 \alpha_n (\tau - r \beta)}{(1 + \alpha_n (\tau - r \beta))(\tau - r \beta)} \langle rf(\omega)^2 - \mu B \omega, x_{n+1} - \omega\rangle \\
\leq (1 - \alpha_n (\tau - r \beta)) \|x_n - \omega\|^2 \\
+ \frac{2 \alpha_n (\tau - r \beta)}{(1 + \alpha_n (\tau - r \beta))(\tau - r \beta)} \langle rf(\omega)^2 - \mu B \omega, x_{n+1} - \omega\rangle.
\]

From condition (i) and (3.7), we know that \(\sum_{n=1}^{\infty} \alpha_n (\tau - r \beta) = \infty\) and \(\lim_{n \to \infty} \sup (2/(1 + \alpha_n (\tau - r \beta))(\tau - r \beta)) \langle rf(\omega)^2 - \mu B \omega, x_{n+1} - \omega\rangle = 0\). We can conclude from Lemma 2.6 that \(x_n \to \omega\) as \(n \to \infty\). This completes the proof of Theorem 3.1.

Remark 3.2. If \(r = 1, \mu = 1, B = I\) and \(\delta_i = 0, k_i = 0, \sigma_i = 0\) for \(i \in N\), then Theorem 3.1 reduces to Theorem 3.5 of Yao et al. [19]. Furthermore, we extend the corresponding results of Yao et al. [19] from one infinite family of nonexpansive mapping to an infinite family of strictly pseudo-contractive mappings.

Remark 3.3. If \(\mu = 1\) and \(\delta_i = 0, k_i = 0, \sigma_i = 0\) for \(i \in N\), then Theorem 3.1 reduces to Theorem 10 of Colao and Marino [20]. Furthermore, we extend the corresponding results of Colao and Marino [20] from one infinite family of nonexpansive mapping to an infinite family of strictly pseudo-contractive mappings, and from a strongly positive bounded linear operator \(A\) to a \(k\)-Lipschitzian and \(\eta\)-strongly monotone operator \(B\).

Theorem 3.4. Let \(C\) be a nonempty closed convex subset of a real Hilbert space \(H\) and \(F\) be a bifunction from \(C \times C \to \mathbb{R}\) satisfying (A1)–(A4). Let \(S : C \to C\) be a nonexpansive mapping with \(F(S) \cap EP \neq \emptyset\). Let \(f\) be a contraction of \(H\) into itself with \(\beta \in (0, 1)\) and \(B\) be \(k\)-Lipschitzian and \(\eta\)-strongly monotone operator on \(H\) with coefficients \(k, \eta > 0\). Let \(0 < \mu < 2\eta/k^2\), \(0 < r < (1/2)\mu(2\eta - \mu k^2)/\beta = \tau/\beta\) and \(\tau < 1\). Let \(\{x_n\}\) be sequence generated by

\[
F(u_n, y) + \frac{1}{\lambda_n} \langle y - u_n, u_n - x_n\rangle \geq 0, \quad \forall y \in C, \\
y_n = \delta_n u_n + (1 - \delta_n) S u_n, \\
x_{n+1} = \alpha_n r f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \mu A_n B) y_n, \quad \forall n \in N,
\]

where \(u_n = T_{\lambda_n} x_n\). If \(\{\alpha_n\}, \{\beta_n\}, \{\delta_n\}, \) and \(\{\lambda_n\}\) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1)\), \(\lim_{n \to \infty} \alpha_n = 0\), \(\sum_{n=1}^{\infty} \alpha_n = \infty\),

(ii) \(0 < \lim_{n \to \infty} \inf \beta_n \leq \lim_{n \to \infty} \sup \beta_n < 1\),

(iii) \(0 < \lim_{n \to \infty} \inf \delta_n \leq \lim_{n \to \infty} \sup \delta_n < 1\), \(\lim_{n \to \infty} \delta_{n+1} - \delta_n = 0\),

(iv) \(\{\lambda_n\} \subset (0, \infty)\), \(\lim_{n \to \infty} \lambda_n > 0\), \(\lim_{n \to \infty} \lambda_{n+1} - \lambda_n = 0\).
Then \(\{x_n\} \) converges strongly to \(z \in F(S) \cap EP \neq \emptyset \), where \(z \) is the unique solution of variational inequality

\[
\lim_{n \to \infty} \sup (rf - \mu B)z, p - z) \leq 0, \quad \forall p \in F(S) \cap EP \neq \emptyset,
\]

that is, \(z = P_{F(S) \cap EP}(I - \mu B + rf)z \).

Proof. By Theorem 3.1, letting \(k_i = 0, \sigma_i = 0, \tau_i = 1 \) and \(S_i = S \) for \(i \in \mathbb{N} \), we can obtain Theorem 3.4.

4. Numerical Example

Now, we present a numerical example to illustrate our theoretical analysis results obtained in Section 3.

Example 4.1. Let \(H = \mathbb{R}, C = [-1, 1], S_n = I, \tau_n = \tau \in (0, 1), \lambda_n = 1, n \in \mathbb{N}, F(x, y) = 0, \) for all \(x, y \in C, B = I, r = \mu = 1, f(x) = (1/10)x, \) for all \(x, \) with contraction coefficient \(\beta = 1/5, \delta_n = 1/2, \alpha_n = 1/n, \beta_n = 1/4 + 1/2n \) for every \(n \in \mathbb{N} \). Then \(\{x_n\} \) is the sequence generated by

\[
x_{n+1} = \left(1 - \frac{9}{10n}\right)x_n,
\]

and \(\{x_n\} \to 0 \), as \(n \to \infty \), where \(0 \) is the unique solution of the minimization problem

\[
\min_{x \in C} \frac{9}{20} x^2 + c.
\]

Proof. We divide the proof into four steps.

Step 1. We show

\[
T_{\lambda_n}x = P_Cx, \quad \forall x \in H,
\]

where

\[
P_Cx = \begin{cases}
\frac{x}{|x|}, & x \not\in C, \\
x, & x \in C.
\end{cases}
\]

Since \(F(x, y) = 0 \), for all \(x, y \in C \), due to the definition of \(T_{\lambda_n}(x) \), for all \(x \in H \), by Lemma 2.1, we obtain

\[
T_{\lambda_n}x = \{z \in C : (y - z, z - x) \geq 0, \forall y \in C\}.
\]

By the property of \(P_C \), for \(x \in C \), we have \(T_{\lambda_n}x = P_Cx = Ix \). Furthermore, it follows from (3) in Lemma 2.1 that

\[
EP(F) = C.
\]
Step 2. We show that

\[W_n = I. \] \hspace{1cm} (4.7)

It follows from (2.9) that

\[W_1 = U_{1,1} = \tau_1 S'_1 U_{1,2} + (1 - \tau_1)I = \tau_1 S'_1 + (1 - \tau_1)I, \]
\[W_2 = U_{2,1} = \tau_1 S'_1 U_{2,2} + (1 - \tau_1)I \]
\[= \tau_1 S'_1 (\tau_2 S'_2 U_{2,3} + (1 - \tau_2)I) + (1 - \tau_1)I \]
\[= \tau_1 \tau_2 S'_1 S'_2 + \tau_1 (1 - \tau_2)S'_1 + (1 - \tau_1)I, \]
\[W_3 = U_{3,1} = \tau_1 S'_1 U_{3,2} + (1 - \tau_1)I \]
\[= \tau_1 S'_1 (\tau_2 S'_2 U_{3,3} + (1 - \tau_2)I) + (1 - \tau_1)I \]
\[= \tau_1 \tau_2 S'_1 S'_2 U_{3,3} + \tau_1 (1 - \tau_2)S'_1 + (1 - \tau_1)I \]
\[= \tau_1 \tau_2 \tau_3 S'_1 S'_2 S'_3 + \tau_1 \tau_2 \tau_3 S'_1 S'_2 + \tau_1 (1 - \tau_2)S'_1 + (1 - \tau_1)I. \]

Furthermore, we obtain

\[W_n = U_{n,1} = \tau_1 \tau_2 \tau_3 \cdots \tau_n S'_1 S'_2 S'_3 \cdots S'_n + \tau_1 \tau_2 \cdots \tau_{n-1} (1 - \tau_n) S'_1 S'_2 \cdots S'_{n-1} \]
\[+ \tau_1 \tau_2 \cdots \tau_{n-2} (1 - \tau_{n-1}) S'_1 S'_2 S'_3 \cdots S'_{n-2} + \cdots + \tau_1 (1 - \tau_2) S'_1 + (1 - \tau_1)I. \] \hspace{1cm} (4.9)

Since \(S'_i = I, \tau_i = \tau \) for \(i \in N \), one has

\[W_n = \left[\tau^n + \tau^{n-1}(1 - \tau) + \cdots + \tau(1 - \tau) + (1 - \tau) \right] I = I. \] \hspace{1cm} (4.10)

Step 3. We show that

\[x_{n+1} = \left(1 - \frac{9}{10n} \right) x_n, \] \hspace{1cm} (4.11)

\(\{ x_n \} \to 0 \), as \(n \to \infty \), where 0 is the unique solution of the minimization problem

\[\min_{x \in \mathbb{C}} \frac{9}{20} x^2 + c. \] \hspace{1cm} (4.12)
Table 1: This table shows the value of sequence \(\{x_n\} \) on each iteration step (initial value \(x_1 = 0.2 \)).

<table>
<thead>
<tr>
<th>n</th>
<th>(x_n)</th>
<th>n</th>
<th>(x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2000</td>
<td>17</td>
<td>0.0017</td>
</tr>
<tr>
<td>2</td>
<td>0.0200</td>
<td>18</td>
<td>0.0016</td>
</tr>
<tr>
<td>3</td>
<td>0.0110</td>
<td>19</td>
<td>0.0016</td>
</tr>
<tr>
<td>4</td>
<td>0.0077</td>
<td>20</td>
<td>0.0015</td>
</tr>
<tr>
<td>5</td>
<td>0.0060</td>
<td>21</td>
<td>0.0014</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>0.0032</td>
<td>26</td>
<td>0.0012</td>
</tr>
<tr>
<td>10</td>
<td>0.0029</td>
<td>27</td>
<td>0.0011</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>14</td>
<td>0.0021</td>
<td>30</td>
<td>0.0010</td>
</tr>
<tr>
<td>15</td>
<td>0.0019</td>
<td>31</td>
<td>0.0009</td>
</tr>
<tr>
<td>16</td>
<td>0.0018</td>
<td>32</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

In fact, we can see that \(B = I \) is \(k \)-Lipschitzian and \(\eta \)-strongly monotone operator on \(H \) with coefficient \(k = 1, \eta = 3/4 \) such that \(0 < \mu < 2\eta/k^2, 0 < r < (1/2)\mu(2\eta - \mu k^2)/\beta = \tau/\beta \), so we take \(r = \mu = 1 \). Since \(S_n' = I, n \in N \), we have

\[
\bigcap_{i=1}^{\infty} F(S_i) = H. \tag{4.13}
\]

Furthermore, we obtain

\[
\bigcap_{i=1}^{\infty} F(S_i) \in EP(F) = C = [-1, 1]. \tag{4.14}
\]

Next, we need prove \(\{x_n\} \to 0, n \to \infty \). Since \(y_n = u_n \) for all \(n \in N \), we have

\[
x_{n+1} = \alpha_n r f(x_n) + \beta_n x_n + \left((1 - \beta_n)I - \mu x_n B \right) y_n
\]

\[
= \left(1 - \frac{9}{10n} \right) x_n, \tag{4.15}
\]

for all \(n \in N \).

Thus, we obtain a special sequence \(\{x_n\} \) of (3.2) in Theorem 3.1 as follows

\[
x_{n+1} = \left(1 - \frac{9}{10n} \right) x_n. \tag{4.16}
\]

By Lemma 2.6, it is obviously that \(x_n \to 0 \), 0 is the unique solution of the minimization problem

\[
\min_{x \in C} \frac{9}{20} x^2 + c, \tag{4.17}
\]

where \(c \) is a constant number.
Step 4. Finally, we use software Matlab 7.0 to give the numerical experiment results and then obtain Table 1 which show that the iteration process of the sequence \(\{x_n\} \) is a monotone decreasing sequence and converges to 0. From Table 1 and the corresponding graph Figure 1, we show that the more the iteration steps are, the more slowly the sequence \(\{x_n\} \) converges to 0.

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{graph.png}
\caption{The corresponding graph at \(x = 0.2 \).}
\end{figure}

Acknowledgments

The authors thank the anonymous referees and the editor for their constructive comments and suggestions, which greatly improved this paper. This project is supported by the Natural Science Foundation of China (Grants nos. 11171180, 11171193, 11126233, and 10901096) and Shandong Provincial Natural Science Foundation (Grants no. ZR2009AL019 and ZR2011AM016) and the Project of Shandong Province Higher Educational Science and Technology Program (Grant no. J09LA53).

References

