Research Article

The Group Involutory Matrix of the Combinations of Two Idempotent Matrices

Lingling Wu,1,2 Xiaoji Liu,1 and Yaoming Yu3

1 College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, China
2 College of Mathematics and Computer Science, Bijie University, Guizhou 551700, China
3 School of Mathematical Sciences, Monash University, Clayton Cambus, VIC 3800, Australia

Correspondence should be addressed to Xiaoji Liu, liuxiaoji.2003@yahoo.com.cn

Received 19 December 2011; Accepted 16 March 2012

1. Introduction

Throughout this paper $\mathbb{C}^{n \times n}$ stands for the set of $n \times n$ complex matrices. Let $A \in \mathbb{C}^{n \times n}$. A is said to be idempotent if $A^2 = A$. A is said to be group invertible if there exists an $X \in \mathbb{C}^{n \times n}$ such that

$$AXA = A, \quad XAX = X, \quad AX =XA$$ (1.1)

hold. If such an X exists, then it is unique, denoted by A_g, and called the group inverse of A. It is well known that the group inverse of a square matrix A exists if and only if $\text{rank}(A^2) = \text{rank}(A)$ (see, e.g., [1] for details). Clearly, not every matrix is group invertible. But the group inverse of every idempotent matrix exists and is this matrix itself.

Recall that a matrix A with the group inverse is said to be group involutory if $A_g = A$. A is the group involutory matrix if and only if it is tripotent, that is, satisfies $A^3 = A$ (see [2]). Thus, for a nonzero idempotent matrix P and a nonzero scalar a, aP is a group involutory matrix if and only if either $a = 1$ or $a = -1$.

Recently, some properties of linear combinations of idempotents or projections are widely discussed (see, e.g., [3–12] and the literature mentioned below). In [13], authors...
established a complete solution to the problem of when a linear combination of two different projectors is also a projector. In [14], authors considered the following problem: when a linear combination of nonzero different idempotent matrices is the group involutory matrix. In [15], authors provided the complete list of situations in which a linear combination of two idempotent matrices is the group involutory matrix. In [16], authors discussed the group inverse of \(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ \) of idempotent matrices \(P \) and \(Q \), where \(a, b, c, d, e, f, g \in \mathbb{C} \) with \(a, b \neq 0 \), deduced its explicit expressions, and some necessary and sufficient conditions for the existence of the group inverse of \(aP + bQ + cPQ \).

In this paper, we will investigate the following problem: when \(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ \) is group involutory. To this end, we need the results below.

Lemma 1.1 (see [16, Theorems 2.1 and 2.4]). Let \(P, Q \in \mathbb{C}^{n \times n} \) be two different nonzero idempotent matrices. Suppose \((QP)^2 = (PQ)^2\). Then for any scalars \(a, b, c, d, e, f, g \), where \(a, b \neq 0 \) and \(\theta = a + b + c + d + e + f + g \), \(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ \) is group invertible, and

(i) if \(\theta \neq 0 \), then

\[
\begin{align*}
(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ) &= \frac{1}{a} P + \frac{1}{b} Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP \\
&\quad + \left(\frac{2}{a} + \frac{1}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} \right) PQP + \left(\frac{1}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - af}{ab^2} \right) QPQ \\
&\quad - \left(\frac{2}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} + \frac{cd - af}{ab^2} - \frac{1}{\theta} \right) PQPQ.
\end{align*}
\]

(ii) if \(\theta = 0 \), then

\[
\begin{align*}
(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ) &= \frac{1}{a} P + \frac{1}{b} Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP \\
&\quad + \left(\frac{2}{a} + \frac{1}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} \right) PQP + \left(\frac{1}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - af}{ab^2} \right) QPQ \\
&\quad - \left(\frac{2}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} + \frac{cd - af}{ab^2} \right) (PQ)^2.
\end{align*}
\]

Lemma 1.2 (see [16, Theorem 3.1]). Let \(P, Q \in \mathbb{C}^{n \times n} \) be two different nonzero idempotent matrices. Suppose \((QP)^2 = 0\). Then for any scalars \(a, b, c, d, e, f, \) and \(g \), where \(a, b \neq 0 \), \(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ \) is group invertible, and

\[
\begin{align*}
(aP + bQ + cPQ + dQP + ePQP + f QPQ + gQPQ) &= \frac{1}{a} P + \frac{1}{b} Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP
\end{align*}
\]
Let \(P, Q \in \mathbb{C}^{n \times n} \) be two different nonzero idempotent matrices with \((PQ)^2 = (QP)^2\), and let \(A \) be a combination of the form

\[
A = aP + bQ + cPQ + dQP + ePQP + fQPQ + gPQPQ,
\]

where \(a, b, c, d, e, f, g \in \mathbb{C} \) with \(a, b \neq 0 \). Denote \(\theta = a + b + c + d + e + f + g \). Then the following list comprises characteristics of all cases where \(A \) is the group involutory matrix:

(a) the cases denoted by \((a_1) \sim (a_3)\), in which

\[
PQ = QP,
\]

and any of the following sets of additional conditions hold:

(a1) either \(a = 1 \) or \(a = -1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \), and \(Q = PQ \);

(a2) either \(b = 1 \) or \(b = -1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \), and \(P = PQ \);

(a3) either \(a = 1 \) or \(a = -1 \), either \(b = 1 \) or \(b = -1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \) or \(PQ = 0 \).

(b) the cases denoted by \((b_1) \sim (b_6)\), in which

\[
PQ \neq QP, \quad PQP = QQP,
\]

and any of the following sets of additional conditions hold:

(b1) \(a = \pm 1, b = \mp 1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \) or \(PQP = 0 \);

(b2) \(a = b = \pm 1, c = d = \mp 1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \) or \(PQP = 0 \);

(b3) \(a = b = \pm 1, c = \mp 1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \), and \(QP = PQP \);

(b4) \(a = b = \pm 1, c = \mp 1 \), either \(\theta = 1 \) or \(\theta = -1 \) or \(\theta = 0 \), and \(PQ = PQP \);

(b5) \(a = b = \pm 1, c = \mp 1 \), and \(QP = 0 \);

(b6) \(a = b = \pm 1, d = \mp 1 \), and \(PQ = 0 \),

(c) the cases denoted by \((c_1) \sim (c_{18})\), in which

\[
PQP \neq QPQ, \quad PQPQ = QQPQ,
\]
and any of the following sets of additional conditions hold:

\((c_1) \) \(a = \pm 1, b = \mp 1, c + d + 2e \pm cd = \pm 1, \) either \(\theta = 1 \) or \(\theta = -1, \) and \(PQP = PQP; \)
\((c_2) \) \(a = b = e = \pm 1, c = d = \mp 1, \) either \(\theta = 1 \) or \(\theta = -1, \) and \(PQP = PQP; \)
\((c_3) \) \(a = b = f = \pm 1, c = d = \mp 1, \) either \(\theta = 1 \) or \(\theta = -1, \) and \(PQP = PQP; \)
\((c_4) \) \(a = b = f = \pm 1, c = d = \mp 1, \) either \(\theta = 1 \) or \(\theta = -1, \) and \(PQP = PQP; \)
\((c_5) \) \(a = b = f = \pm 1, c = d = \mp 1, \) either \(\theta = 1 \) or \(\theta = -1, \) and \(PQP = PQP; \)
\((c_6) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) either \(g = 1 \) or \(g = -1; \)
\((c_7) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) either \(g = 1 \) or \(g = 3; \)
\((c_8) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) and \(PQP = 0; \)
\((c_9) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) and \(PQP = 0; \)
\((c_{10}) \) \(a = b = f = \pm 1, c = d = \mp 1, \) and \(PQP = 0; \)
\((c_{11}) \) \(a = \pm 1, b = \mp 1, c + d + 2e \pm cd = \pm 1, c + d + 2f \mp cd = \mp 1, \) and \(PQP = 0; \)
\((c_{12}) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) and \(PQP = 0; \)
\((c_{13}) \) \(a = \pm 1, b = \mp 1, 2e + c + d \pm cd = \pm 1, \) and \(PQP = PQP; \)
\((c_{14}) \) \(a = b = e = f = \pm 1, c = d = \mp 1, \) and \(PQP = PQP; \)
\((c_{15}) \) \(a = \pm 1, b = \mp 1, 2f + c + d \pm cd = \pm 1, \) and \(PQP = PQP; \)
\((c_{16}) \) \(a = \pm 1, b = \mp 1, 2f + c + d \mp cd = \mp 1, \) and \(PQP = PQP; \)
\((c_{17}) \) \(a = \pm 1, b = \mp 1, 2f + c + d \pm cd = \pm 1, \) and \(PQP = 0; \)
\((c_{18}) \) \(a = \pm 1, b = \mp 1, 2f + c + d \mp cd = \mp 1, \) and \(PQP = 0; \)

Proof. Obviously, the condition (2.2) implies that the group inverse of \(A \) exists and is of the form (1.2) when \(\theta \neq 0 \) or the form (1.3) when \(\theta = 0 \) by Lemma 1.1. So do the conditions (2.2), (2.3), and (2.4). We will straightforwardly show that a matrix \(A \) of the form (2.1) is the group involutory matrix if and only if \(A - A^*_g = 0. \)

(a) Under the condition (2.2), \(A = aP + bQ + \mu PQ, \) where \(\mu = c + d + e + f + g. \)

(i) If \(\theta \neq 0, \) then

\[
A^*_g = \frac{1}{a} P + \frac{1}{b} Q + \left(\frac{1}{\theta} - \frac{1}{a} - \frac{1}{b} \right) PQ. \tag{2.5}
\]

and so

\[
A - A^*_g = \left(a - \frac{1}{a} \right) P + \left(b - \frac{1}{b} \right) Q + \left(\mu - \frac{1}{\theta} + \frac{1}{a} + \frac{1}{b} \right) PQ = 0. \tag{2.6}
\]

Multiplying (2.6) by \(P \) and \(Q, \) respectively, leads to

\[
\left(a - \frac{1}{a} \right) P + \left(b - \frac{1}{b} \right) PQ + \left(\mu - \frac{1}{\theta} + \frac{1}{a} + \frac{1}{b} \right) PQ = 0, \tag{2.7}
\]

\[
\left(a - \frac{1}{a} \right) PQ + \left(b - \frac{1}{b} \right) Q + \left(\mu - \frac{1}{\theta} + \frac{1}{a} + \frac{1}{b} \right) PQ = 0.
\]
Thus, we have three situations:

\[(a - \frac{1}{a})P + (b - \frac{1}{b})PQ = (a - \frac{1}{a})PQ + (b - \frac{1}{b})Q. \]

(2.8)

Multiplying the above equation, respectively, by \(P \) and by \(Q \), we get

\[(a - \frac{1}{a})(P - PQ) = 0, \quad (b - \frac{1}{b})(Q - PQ) = 0. \]

(2.9)

Thus, since \(P \neq Q \), we have three situations: \(P = PQ \) and \(b = b^{-1}; a = a^{-1} \) and \(Q = PQ; a = a^{-1} \) and \(b = b^{-1} \).

When \(Q = PQ \) and \(a = a^{-1} \), (2.6) becomes \((\theta - \theta^{-1})Q = 0\) and then \(\theta = \pm 1 \). Therefore, we obtain \((a_1)\) except the situation \(\theta = 0 \). Similarly, when \(b = b^{-1} \) and \(P = PQ \), we have \((a_2)\) except the situation \(\theta = 0 \). When \(a = a^{-1} \) and \(b = b^{-1} \), (2.6) becomes \((\theta - \theta^{-1})PQ = 0\) and then \(\theta = \pm 1 \) or \(PQ = 0 \). Therefore, we obtain \((a_3)\) except the situation \(\theta = 0 \).

(2) If \(\theta = 0 \), then

\[A_s = \frac{1}{a}P + \frac{1}{b}Q - \left(\frac{1}{a} + \frac{1}{b} \right)PQ, \]

(2.10)

and then

\[A - A_s = \left(a - \frac{1}{a} \right)P + \left(b - \frac{1}{b} \right)Q + \left(\mu + \frac{1}{a} + \frac{1}{b} \right)PQ = 0. \]

(2.11)

Analogous to the process of reaching (2.9) in \((a)(1)\), we have

\[\left(b - \frac{1}{b} \right)(Q - PQ) = 0, \quad \left(a - \frac{1}{a} \right)(P - PQ) = 0. \]

(2.12)

Thus, we have three situations: \(P = PQ \) and \(b = b^{-1}; a = a^{-1} \) and \(Q = PQ; a = a^{-1} \) and \(b = b^{-1} \), since \(P \neq Q \). Similar to the argument in \((a)(1)\), substituting them, respectively, into (2.11), we can obtain the situation \(\theta = 0 \), respectively, in \((a_1), (a_2), \) and \((a_3)\).

(b) Under the condition (2.3), \(A = aP + bQ + cPQ + dQP + vPQP \), where \(v = e + f + g \).

(1) If \(\theta \neq 0 \), then

\[A_s = \frac{1}{a}P + \frac{1}{b}Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right)PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right)QP \]
\[+ \left(\frac{1}{a} + \frac{1}{b} + \frac{c + d}{ab} + \frac{1}{\theta} \right)PQP, \]

(2.13)
and so

\[A - A_x = \left(a - \frac{1}{a} \right) P + \left(b - \frac{1}{b} \right) Q + \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ \]

\[+ \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP + \left(v - \frac{1}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{1}{\theta} \right) PQP = 0. \tag{2.14} \]

Multiplying the above equation, respectively, on the two sides by \(P \) yields

\[0 = \left(a - \frac{1}{a} \right) P + \left(c + b + \frac{1}{a} + \frac{c}{ab} \right) PQ + \left(v + d - \frac{c}{ab} - \frac{1}{\theta} \right) PQP; \tag{2.15} \]

\[0 = \left(a - \frac{1}{a} \right) P + \left(b + d + \frac{1}{a} + \frac{d}{ab} \right) QP + \left(v + c - \frac{d}{ab} - \frac{1}{\theta} \right) PQP. \tag{2.16} \]

Multiplying (2.15) on the left sides by \(Q \) and (2.16) on the right sides by \(Q \), by (2.3), we have

\[\left(a - \frac{1}{a} \right) QP + \left(b + c + d + v + \frac{1}{a} - \frac{1}{\theta} \right) QPQ = 0, \]

\[\left(a - \frac{1}{a} \right) PQ + \left(b + c + d + v + \frac{1}{a} - \frac{1}{\theta} \right) PQP = 0, \tag{2.17} \]

and then \((a - a^{-1})(Q P - P Q) = 0\). Since \(Q P \neq P Q, a = a^{-1} \). Similarly, \(b = b^{-1} \).

Substituting \(a = a^{-1} \) inside (2.17) yields \((\theta - \theta^{-1})Q P Q = 0\) and then \(\theta = \theta^{-1} \) or \(Q P Q = 0 \).

We will discuss the remainder for detail as follows:

When \(a = a^{-1}, b = b^{-1} \), (2.14) becomes

\[0 = \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ + \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP \]

\[+ \left(v - \frac{1}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{1}{\theta} \right) PQP, \tag{2.18} \]

(i) if \(a + b = 0 \), then

\[c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} = 0, \quad d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} = 0, \tag{2.19} \]

and so it follows from (2.18) that

\[\left(\theta - \frac{1}{\theta} \right) PQP = \left(v + c + d - \frac{1}{\theta} \right) PQP = 0. \tag{2.20} \]

Therefore, either \(\theta = \theta^{-1} \) or \(PQ P = 0 \) implies that (2.18) holds, namely, (2.14) holds. Thus, we have \((b_1)\) except the situation \(\theta = 0 \).
(ii) if $a = b$, then (2.18) becomes

$$0 = (2c + 2a)PQ + (2d + 2a)QP + \left(2v - \theta - \frac{1}{\theta}\right)PQP.$$

(2.21)

Multiplying the above equation, respectively, on the right side by P and then on the left side by Q, we have

$$0 = (2c + 2a)PQ + \left(v + d - c - \frac{1}{\theta}\right)PQP,$$

(2.22)

$$0 = (2d + 2a)QP + \left(v + c - d - \frac{1}{\theta}\right)PQP.$$

(2.23)

So if $\theta = \theta^{-1}$, then the two equations above (2.22) and (2.23) become, respectively,

$$(c + a)(PQ - PQP) = 0, \quad (d + a)(QP - PQP) = 0.$$

(2.24)

Or if $PQP = 0$, then (2.22) and (2.23) become, respectively,

$$(c + a)PQ = 0, \quad (d + a)QP = 0.$$

(2.25)

Since $PQ \neq QP$, it follows from (2.24) and (2.25) that we have the six situations: $\theta = \theta^{-1}$ and $c = d = -a$; $\theta = \theta^{-1}$, $c = -a$ and $QP = PQP$; $\theta = \theta^{-1}$, $d = -a$, and $QP = PQP$; $c = d = -a$ and $QP = 0$; $d = -a$ and $QP = 0$; $c = d = -a$ and $PQP = 0$. Thus, we have $(b_2) \sim (b_4)$ except the situation $\theta = 0$, and (b_5) and (b_6).

(2) If $\theta = 0$, then

$$A_s = \frac{1}{a}P + \frac{1}{b}Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab}\right)PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab}\right)QP + \left(\frac{1}{a} + \frac{1}{b} + \frac{c + d}{ab}\right)PQP,$$

(2.26)

and then

$$A - A_s = \left(a - \frac{1}{a}\right)P + \left(b - \frac{1}{b}\right)Q + \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab}\right)PQ
+ \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab}\right)QP + \left(v - \frac{1}{a} - \frac{1}{b} - \frac{c + d}{ab}\right)PQP = 0.$$

(2.27)

Analogous to the process in (b)(1), using (2.27) we can obtain

$$\left(a - \frac{1}{a}\right)QP - \left(a - \frac{1}{a}\right)PQP = 0,$$

$$\left(a - \frac{1}{a}\right)PQ - \left(a - \frac{1}{a}\right)PQP = 0.$$

(2.28)
Thus, since $PQ \neq QP$, $PQ \neq QP$ and/or $QP \neq PQP$ and then $a = a^{-1}$. Similarly, $b = b^{-1}$. Hence, $a = \pm b$.

(i) If $a = -b$, then

$$c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} = 0,$$

$$d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} = 0,$$

$$\nu - \frac{1}{a} - \frac{1}{b} - \frac{c + d}{ab} = -2(a + b) = 0.$$ (2.29)

Thus, (2.27) holds. Hence we have the situation $\theta = 0$ in (b_1).

(ii) If $a = b$, then (2.27) becomes

$$(c + a)PQ + (d + a)QP + \nu PQP = 0.$$ (2.30)

Multiplying the above equation on the left side, respectively, by P and by Q, we have

$$(c + a)(PQ - PQP) = 0, \quad (d + a)(QP - PQ) = 0.$$ (2.31)

Thus, $c = d = -a; c = -a$ and $QP = PQP; d = -a$ and $PQ = PQ$. Hence, we have the situation $\theta = 0$, respectively, in $(b_2), (b_3)$, and (b_4).

(c) Under the condition (2.4),

$$A = aP + bQ + cQP + dQ + ePQP + fQPQ + gPQPQ.$$ (2.32)

(1) If $\theta \neq 0$, then

$$A_\theta = \frac{1}{a}P + \frac{1}{b}Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab}\right)PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab}\right)QP$$

$$+ \left(\frac{2}{a} + \frac{1}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b}\right)PQP + \left(\frac{1}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - af}{ab^2}\right)QQP$$

$$- \left(\frac{2}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} + \frac{cd - af}{ab^2} - \frac{1}{\theta}\right)PQPQ,$$ (2.33)

and so

$$A - A_\theta = \left(a - \frac{1}{a}\right)P + \left(b - \frac{1}{b}\right)Q + \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab}\right)PQ + \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab}\right)QP$$

$$+ \left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{cd - be}{a^2b}\right)PQP$$
Thus, a Journal of Applied Mathematics 9

\[+ \left(f - \frac{1}{a} - \frac{2}{b} - \frac{c + d}{ab} - \frac{cd - af}{ab^2} \right) \text{QPQ} \]

\[+ \left(g + \frac{2}{a} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} + \frac{cd - af}{ab^2} - \frac{1}{\theta} \right) \text{QPQ} = 0. \] (2.34)

If \(PQ = 0 \), then \(\text{QPQ} = 0 = \text{QP} \) and so it contradicts (2.4). Thus \(PQ \neq 0 \). Similarly, \(QP \neq 0 \).

Multiplying (2.34) on the left side by \(QP \) yields

\[\left(a - \frac{1}{a} \right) \text{QP} + \left(b + c + \frac{1}{a} + \frac{c}{ab} \right) \text{QPQ} + \left(d + e + f + g - \frac{c}{ab} - \frac{1}{\theta} \right) \text{QPQ} = 0. \] (2.35)

Multiplying the above equation, respectively, on the left side by \(P \) and on the right side by \(PQ \) yields, by (2.4),

\[0 = \left(a - \frac{1}{a} \right) \text{PQP} + \left(\frac{1}{a} - a + \theta - \frac{1}{\theta} \right) \text{PQPQ}, \] (2.36)

\[0 = \left(a - \frac{1}{a} \right) \text{QPQ} + \left(\frac{1}{a} - a + \theta - \frac{1}{\theta} \right) \text{PQPQ}. \] (2.37)

Since \(\text{PQP} \neq \text{QPQ} \), \(a = a^{-1} \) by (2.36) and (2.37). Similarly, we can gain \(b = b^{-1} \). Substituting \(a = a^{-1} \) inside (2.36) yields \(\theta = \theta^{-1} \) or \(\text{PQPQ} = 0 \).

(i) Consider the case of \(a = a^{-1} \), \(b = b^{-1} \) and \(\theta = \theta^{-1} \).

Substituting \(a = a^{-1} \), \(b = b^{-1} \), and \(\theta = \theta^{-1} \) inside (2.35) yields

\[\left(a + b + c + \frac{c}{ab} \right) \left(\text{QPQ} - \text{PQPQ} \right) = 0. \] (2.38)

Similarly, we have

\[\left(a + b + d + \frac{d}{ab} \right) \left(\text{PQP} - \text{QPQ} \right) = 0. \] (2.39)

If \(\text{PQP} = \text{PQPQ} \), then \(\text{QPQ} \neq \text{PQPQ} \) by the hypothesis \(\text{PQP} \neq \text{QPQ} \) and so \(a + b + c + c/ab = 0 \) by (2.38). Multiplying (2.34) on the right side by \(Q \) yields

\[\left(a + c + d + 2f - \frac{cd}{a} \right) \left(\text{QPQ} - \text{PQPQ} \right) = 0. \] (2.40)

Thus, \(a + c + d + 2f - cd/a = 0 \) and then (2.14) becomes

\[\left(a + b + d + \frac{d}{ab} \right) \text{QP} + \left(f - a - 2b - \frac{c + d}{ab} - \frac{cd - af}{a} \right) \text{QPQ} \]

\[+ \left(2.38 \right) \text{QPQ} = 0. \] (2.41)
Multiplying the above equation on the right side by \(P \) yields

\[
(a + b + d + \frac{d}{ab}) (QP - PQP) = 0. \tag{2.42}
\]

Assume \(PQ = PQP \). Then \(QPQ = PQPQ = PQP = PQ = PQP \) and it contradicts the hypothesis \(PQP \neq QPQ \). Thus, \(a + b + d + d/ab = 0 \).

Similarly, if \(QPQ = PQPQ \), then we can obtain \(a + b + d + d/ab = 0 \) and \(a + b + c + c/ab = 0 \).

Obviously, if \(QPQ
eq PQPQ \) and \(QPQ
eq PQQP \), we have \(a + b + d + d/ab = 0 \), \(a + b + c + c/ab = 0 \), \(b + c + d + 2e - cd/b = 0 \), and \(a + c + d + 2f - cd/a = 0 \).

Next, we calculate these scalars. If \(a + b = 0 \), then \(a + b + c + c/ab = 0 \) for any \(c \) and \(a + b + d + d/ab = 0 \) for any \(d \), and so \(c, d, e \) are chosen to satisfy \(b + c + d + 2e - cd/b = 0 \).

Similarly, \(c, d, f \) are chosen to satisfy \(a + c + d + 2f - cd/a = 0 \).

If \(a = b \), then \(c = d = -a \), and \(e = a \) by solving \(b + c + d + 2e - cd/b = 0 \), and \(f = a \) by solving \(a + c + d + 2f - cd/a = 0 \).

Note that \(b + c + d + 2e - cd/b = 0 \) and \(a + c + d + 2f - cd/a = 0 \) imply \(g = \theta - (a + b) \).

Hence, we have \((c_1) \sim (c_6) \).

(ii) Consider the case of \(a = a^{-1} \), \(b = b^{-1} \), and \(PQPQ = 0 \).

Multiplying (2.34), respectively, on the right side by \(QP \) and on the left side by \(PQ \) yields

\[
\left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQPQ = 0, \tag{2.43}
\]

\[
\left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) PQPQ = 0.
\]

If \(PQ = 0 \), then \(PQP \neq 0 \) and so \(a + b + d + d/ab = 0 \) and (2.34) becomes

\[
0 = \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ + \left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{cd - be}{a^2b} \right) PQP. \tag{2.44}
\]

Multiplying (2.44) on right side by \(Q \) yields

\[
\left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ = 0. \tag{2.45}
\]

Since \(PQ \neq 0 \), \(a + b + c + c/ab = 0 \) and then (2.44) becomes

\[
\left(2e + b + c + d - \frac{cd}{b} \right) PQP. \tag{2.46}
\]

Thus, \(2e + b + c + d - cd/b = 0 \).

If \(PQP = 0 \), then we, similarly, have \(a + b + c + c/ab = 0 \), \(a + b + d + d/ab = 0 \), and \(2f + a + c + d - cd/a = 0 \).
If \(PQP \neq 0 \) and \(QPQ \neq 0 \), then, multiplying (2.34), on the right side by \(Q \) and on the left side by \(P \) yields \(a + b + c + c/ab = 0 \), and multiplying (2.34) on the right side by \(P \) and on the left side by \(Q \) yields \(a + b + d + d/ab = 0 \). Thus, (2.34) becomes

\[
\left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{cd - be}{a^2b} \right) PQP + \left(f - \frac{1}{a} - \frac{2}{b} - \frac{c + d}{ab} - \frac{cd - af}{ab^2} \right) QPQ = 0. \tag{2.47}
\]

Multiplying the equation above on the right side, respectively, by \(P \) and by \(Q \) yields

\[
2e + b + c + d - \frac{cd}{b} = 0, \quad 2f + a + c + d - \frac{cd}{a} = 0. \tag{2.48}
\]

As the argument above in (i), we have \((c_7) \sim (c_{12}) \).

(2) If \(\theta = 0 \), then

\[
A_s = \frac{1}{a} P + \frac{1}{b} Q - \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ - \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP
+ \left(\frac{2}{a} + \frac{1}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} \right) PQP + \left(\frac{1}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - af}{ab^2} \right) QPQ \tag{2.49}
\]

and so

\[
A - A_s = \left(a - \frac{1}{a} \right) P + \left(b - \frac{1}{b} \right) Q + \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ
+ \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP + \left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{cd - be}{a^2b} \right) PQP
+ \left(f - \frac{1}{a} - \frac{2}{b} - \frac{c + d}{ab} - \frac{cd - af}{ab^2} \right) QPQ
+ \left(g + \frac{2}{a} + \frac{2}{b} + \frac{c + d}{ab} + \frac{cd - be}{a^2b} + \frac{cd - af}{ab^2} \right) PQPQ = 0. \tag{2.50}
\]

Analogous to the process in (c)(1), using (2.50), we can get

\[
\left(a - \frac{1}{a} \right) (PQP - PQPQ) = 0, \tag{2.51}
\]

\[
\left(a - \frac{1}{a} \right) (QPQ - PQPQ) = 0.
\]
Thus, since \(PQP \neq QPQ\), \(PQP \neq QPQ\) and/or \(QPQ \neq PQP\) and then \(a = a^{-1}\). Similarly, \(b = b^{-1}\). Therefore, multiplying (2.50) on the right side by \(Q\) and on the left side by \(P\) yields

\[
\left(a + b + c + \frac{c}{ab}\right)(PQ - PQP) = 0.
\]

Multiplying (2.50) on the right side by \(P\) and on the left side by \(Q\) yields

\[
\left(a + b + d + \frac{d}{ab}\right)(QP - PQP) = 0.
\]

Since \(PQ \neq PQPQ\) and \(QP \neq PQPQ\), \(a + b + c + ab = 0\) and \(a + b + d + ab = 0\). Multiplying (2.50) on the left side, respectively, by \(P\) and by \(Q\) yields

\[
\left(2e + b + c + d - \frac{cd}{b}\right)(PQP - PQPQ) = 0,
\]

\[
\left(2f + a + c + d - \frac{cd}{a}\right)(QPQ - PQPQ) = 0.
\]

Thus, we have \(2e + b + c + d - cd/b = 0\) and \(QPQ = PQPQ\); \(2f + a + c + d - cd/a = 0\) and \(PQP = PQPQ\); \(2e + b + c + d - cd/b = 0\) and \(2f + a + c + d - cd/a = 0\).

Note that \(2e + b + c + d - cd/b = 0\) and \(2f + a + c + d - cd/a = 0\) imply \(g = -(a + b)\) by \(\theta = 0\). As the argument above in (c)(1), we have \((c_{13}) \sim (c_{18})\).

Remark 2.2. Clearly, [15, (a) and (b) in Theorem] are the special cases in Theorem 2.1.

Example 2.3. Let

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
Q = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

(2.55)
Then they, obviously, are idempotent, and \((PQ)^2 = (QP)^2\) but \(PQP \neq QPQ\). By Theorem 2.1(c),

\[
A = P - Q + 2PQ + 2QP - \frac{7}{2} PQP - \frac{1}{2} QPQ + PQPQ
\]

(2.56)

is the group involutory matrix, namely, \(A = A_g\), since \(2 + 2 + 2 \cdot (-7/2) + 2 \cdot 2 = 1\) and \(2 + 2 + 2 \cdot (-1/2) - 2 \cdot 2 = -1\). By Theorem 2.1(c),

\[
P - Q + P - 2QP + 2PQP - QPQ
\]

(2.57)

is group involutory since \(1 - 2 + 2 \cdot 2 + 1 \cdot (-2) = 1\) and \(1 - 2 + 2 \cdot (-1) - 1 \cdot (-2) = -1\).

Next, we will study the situation \((PQ)^2 = 0\) or \((QP)^2 = 0\).

Theorem 2.4. Let \(P, Q \in \mathbb{C}^{n \times n}\) be two different nonzero idempotent matrices, and let \(A\) be a combination of the form

\[
A = aP + bQ + cPQ + dQP + ePQP + fQPQ + gPQPQ,
\]

where \(a, b, c, d, e, f, g \in \mathbb{C}\) with \(a, b \neq 0\). Suppose that

\[
PQPQ \neq 0, \quad QPQ = 0,
\]

(2.59)

and any of the following sets of additional conditions hold:

\((d_1)\) \(a = b = \pm 1, c = d = \mp 1, e = f = \pm 1, g = \mp 1\);

\((d_2)\) \(a = \pm 1, b = \mp 1, 2e + c + d \pm cd = \pm 1, 2f + c + d \mp cd = \mp 1\).

Then \(A\) is the group involutory matrix.

Proof. By Lemma 1.2,

\[
A - A_g = \left(\frac{1}{a} - \frac{1}{a}\right)P + \left(\frac{1}{b} - \frac{1}{b}\right)Q + \left(\frac{1}{a} + \frac{1}{b} + \frac{c}{ab}\right)PQ + \left(\frac{1}{a} + \frac{1}{b} + \frac{d}{ab}\right)QP
\]

\[
+ \left(\frac{e}{a} - \frac{2}{a} - \frac{1}{b} - \frac{c + d}{ab} - \frac{cd - be}{a^2 b}\right)PQP
\]

\[
+ \left(\frac{f}{a} - \frac{2}{b} - \frac{c + d}{ab} - \frac{cd - af}{a^2 b}\right)QPP
\]

\[
+ \left(\frac{g}{a} + \frac{2}{b} + \frac{2c + d + g}{ab} + \frac{cd - be - ce}{a^2 b} + \frac{cd - af - cf}{a^2 b^2} + \frac{c^2 d}{a^2 b^2}\right)(PQ)^2.
\]

(2.60)
Since \(PQPQ \neq 0 \), multiplying (2.60), respectively, on the right side and on the right side by \(PQPQ \) yields

\[
\left(a - \frac{1}{a} \right) PQPQ = 0, \quad \left(b - \frac{1}{b} \right) PQPQ = 0, \tag{2.61}
\]

and so \(a = a^{-1} \) and \(b = b^{-1} \). Substituting them inside (2.60), we get

\[
0 = \left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQ + \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP \\
+ \left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d - cd - be}{a^2 b} \right) PQP \\
+ \left(f - \frac{1}{a} - \frac{2}{b} - \frac{c + d - cd - af}{ab^2} \right) QPQ \\
+ \left(g + \frac{2}{a} + \frac{2}{b} + \frac{2c + d + g}{ab} + \frac{cd - be - ce}{a^2 b} + \frac{cd - af - cf}{ab^2} + \frac{c^2 d}{a^2 b^2} \right) PQPQ. \tag{2.62}
\]

Multiplying (2.62) on the left side by \(PQP \) yields

\[
\left(c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} \right) PQPQ = 0, \tag{2.63}
\]

and then

\[
c + \frac{1}{a} + \frac{1}{b} + \frac{c}{ab} = 0. \tag{2.64}
\]

So (2.62) becomes

\[
0 = \left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) QP + \left(e - \frac{2}{a} - \frac{1}{b} - \frac{c + d - cd - be}{a^2 b} \right) PQP \\
+ \left(f - \frac{1}{a} - \frac{2}{b} - \frac{c + d - cd - af}{ab^2} \right) QPQ \\
+ \left(g + \frac{2}{a} + \frac{2}{b} + \frac{2c + d + g}{ab} + \frac{cd - be - ce}{a^2 b} + \frac{cd - af - cf}{ab^2} + \frac{c^2 d}{a^2 b^2} \right) PQPQ. \tag{2.65}
\]

Multiplying (2.65) on the left side by \(PQ \) and on the right side by \(P \) yields

\[
\left(d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} \right) PQPQ = 0. \tag{2.66}
\]
Therefore,
\[
d + \frac{1}{a} + \frac{1}{b} + \frac{d}{ab} = 0.
\] (2.67)

Similarly, we can obtain
\[
0 = e - \frac{c + d}{a} - \frac{cd - be}{ab^2},
\]
\[
0 = f - \frac{1}{a} - \frac{c + d}{ab} - \frac{cd - af}{ab^2},
\]
\[
0 = g + \frac{2}{a} + \frac{2c + d + g}{ab} + \frac{cd - be - ce}{a^2b} + \frac{cd - af - cf}{ab^2} + \frac{c^2d}{a^2b^2}.
\] (2.68)

By (2.64) and (2.67), we can obtain
\[
\frac{1}{b} + c + d + 2e - \frac{cd}{b} = 0, \quad \frac{1}{a} + c + d + 2f - \frac{cd}{a} = 0.
\] (2.69)

Since \(a = a^{-1}\) and \(b = b^{-1}\), \(a = \pm b\). If \(a = -b\), then (2.64) holds for any \(c\), (2.67) holds for any \(d\), and, for any \(c, d, e, f\) satisfying (2.69) and any \(g\),
\[
g + \frac{2}{a} + \frac{2c + d + g}{ab} + \frac{cd - be - ce}{a^2b} + \frac{cd - af - cf}{ab^2} + \frac{c^2d}{a^2b^2}
\]
\[
= c^2d - 2c - d - (e + f) + \frac{c}{a}(e - f)
\]
\[
= c^2d - 2c - d + (c + d) + \frac{c}{a}\left(1 - \frac{cd}{a}\right) = 0.
\] (2.70)

If \(a = b\), then, by (2.64) - (2.69), \(c = d = -a\) and \(e = f = a\) and so \(g = -a\) from (2.68).

Hence, we have \((d_1)\) and \((d_2)\). \(\square\)

Example 2.5. Let
\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad Q = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & -1 & 1
\end{pmatrix}.
\] (2.71)

Obviously they are idempotent, and \((QP)^2 = 0\) but \((PQ)^2 \neq 0\). By Theorem 2.4(d2),
\[
P - Q + 2PQ - 2QP + \frac{5}{2}PQP - \frac{5}{2}QQP - 2PQP
\] (2.72)

is group involutory since \(2 - 2 + 2 \cdot (5/2) + 2 \cdot (-2) = 1\) and \(2 - 2 + 2 \cdot (-5/2) - 2 \cdot (-2) = -1\).
Similarly, we have the following result.

Theorem 2.6. Let \(P, Q \in \mathbb{C}^{n \times n} \) be two different nonzero idempotent matrices, and let \(A \) be a combination of the form

\[
A = aP + bQ + cPQ + dQP + ePQP + fQPQ + hQPQP,
\]

where \(a, b, c, d, e, f, h \in \mathbb{C} \) with \(a, b \neq 0 \). Suppose that

\[
QPQP \neq 0, \quad PQP = 0,
\]

and any of the following sets of additional conditions hold:

\((e_1)\) \(a = b = \pm 1, \quad c = d = \mp 1, \quad e = f = \pm 1, \quad h = \mp 1; \)

\((e_2)\) \(a = \pm 1, \quad b = \mp 1, \quad 2e + c + d \pm cd = \pm 1, \quad 2f + c + d \mp cd = \mp 1. \)

Then \(A \) is the group involutory matrix.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11061005) and the Ministry of Education Science and Technology Key Project (210164) and Grants (HCIC201103) of Guangxi Key Laborarory of Hybrid Computational and IC Design Analysis Open Fund.

References

