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Abstract. 
Fabric tensor has proved to be an effective tool statistically characterizing directional data in a smooth and frame-indifferent form. Directional data arising from microscopic physics and mechanics can be summed up as tensor-valued orientation distribution functions (ODFs). Two characterizations of the tensor-valued ODFs are proposed, using the asymmetric and symmetric fabric tensors respectively. The later proves to be nonconvergent and less accurate but still an available solution for where fabric tensors are required in full symmetry. Analytic solutions of the two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued ODFs are presented in terms of orthogonal irreducible decompositions in both two- and three-dimensional (2D and 3D) spaces. Accuracy analysis is performed on normally distributed random ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of higher orders are employed. It is shown that the fitness is dominated by the dispersion degree of the original ODFs rather than the orders of fabric tensors. One application of tensor-valued ODF and fabric tensor in continuum damage mechanics is presented.


1. Introduction
Many quantities arising from microscopic physics and mechanics are directional dependent, and as is often the case, are randomly and discontinuously distributed along the orientations. Statistical characterization of such directional data is essential [1–4]. With regard to physical problems, such characterization must take a frame-indifferent form, or a tensorial form which is invariant to coordinate transformations; see, for example, Kanatani [5], Advani and Tucker [6], and Yang et al. [7].
Directional data can be generalized as orientation distribution functions (ODFs). In its classical definition [3–5, 8, 9], an ODF is actually a probability density function of a continuous random orientational variable, which practically represents the fraction of the total number of directional elements per unit stereo-angle along a certain direction. The classically defined ODFs can be abstracted as scalar-valued directional functions, because from a vector-space viewpoint, their values on each orientation are nothing but normalized scalars. Therefore, the classical ODFs are referred to as scalar-valued ODFs in this paper, following Yang et al. [7], in regard to the generality of tensor-valued ODFs.
The scalar-valued ODFs can be statistically characterized by their fabric tensors [5, 6, 9–21]. Such tensors are labeled fabric because they were first and have been extensively introduced to describe the fabric (or texture) of structured solid materials, such as granular [5, 10–12] and microcracked [13–16] media, polycrystals and polymers [17, 18], and bones [19], and prove to be an effective tool bridging the multiscale behaviors of the materials. Recent applications of fabric tensors extend beyond material studies to wherever directional variables are focused, such as mixed fluids [6, 20] and medical imaging [9, 21], whether being called fabric tensors or not. The analytic solutions of fabric tensors of higher orders are obtained by Kanatani [5], who characterized the scalar-valued ODFs in expansions of three kinds of fabric tensors and addressed their equivalence to the Fourier series expansion in 2D and to the spherical harmonics expansion in 3D. Yang et al. [22] showed that fabric tensors of different orders are not independent: fabric tensors of lower orders can be precisely determined by those of higher orders. 
The concept of the tensor-valued ODFs is relatively new, but their objectivity in physics and mechanics is visible. Yang et al. [7, 23] proved that the damage effective stress in damage mechanics is inherently a vector-valued ODF, which cannot be fully described by a Cauchy-like stress tensor of order two. In fabric-tensor-based micromechanics of granular media; see, for example, Rahmoun et al. [11] and Li and Yu [12], the contact forces and contact vectors should both be taken for vector-valued ODFs. In the microplane theory of Bažant and Gambarova [24] and Carol and Bažant [25], the microplane elasticity tensor is essentially a second-order tensor-valued ODF that defines a one-to-one linear map between the stress and strain vector-valued ODFs. The fabric tensor algebra of vector-valued ODFs is preliminarily studied by Yang et al. [7], who derived the explicit expressions of symmetric fabric tensors up to the sixth order. Li and Yu [12] provided a stepwise repetitive method to determine asymmetric fabric tensors of higher orders. However, general analytic solution is not found in previous studies.

The approximation quality of the fabric tensor characterization is not so frequently stressed in previous studies, perhaps because there are few alternative ways to characterize directional data in a tensorial form. Kanatani [5] suggested the test of uniformity to evaluate the fitness. Li and Yu [12] simply defined the proximity index for both scalar- and vector-valued ODFs. One can intuitively estimate the accuracy of the zeroth-, second-, and fourth-order fabric tensor approximations to randomly distribute scalar-valued ODFs in many of the referred studies [5, 6, 9, 11, 13, 14, 16]. Nevertheless, systematic accuracy analysis has not been reported yet, even for scalar-valued ODFs.

In this paper, we complete the fabric tensor algebra for the largest generality of tensor-valued ODFs. A strict but asymmetric characterization is presented in complete parallel to that of the scalar-valued ODFs by Kanatani [5]. The relationship of fabric tensors of different orders [22] holds for the tensor-valued ODFs in this case. However, the asymmetric fabric tensors may be inconvenient for practical use because of potential inconsistency with physical hypotheses and observations. Therefore, a nonstandard symmetric characterization is proposed, which is proved to be nonconvergent but still available for most irregular tensor-valued ODFs. Analytic solutions of the two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued ODFs in 2D and 3D are presented in the forms of orthogonal irreducible decompositions by Zheng and Zou [26]. Accuracy analysis is performed on normally distributed random ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of higher orders are employed. 
2. Notation and Operation of Tensor and Orientation
In this paper, we mainly use the abstract notation of tensors to simplify the expressions. For this purpose, quite a few notations and operators must be predefined. The abstract form of a generic tensor is written in bold and nonitalic, with its order shown in the subscript, for example, a fourth-order tensor 
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In the abstract notation, the symmetrization is simply represented by the overbared orders, for example, 
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							The alternating product is actually a modified inner product in which the left-hand operand tensor participates on alternate orders. Equation (2.2) makes itself explicit in the component form
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2.2. Tensor Deviatorization and Orthogonal Irreducible Decomposition
In this subsection, we only consider full symmetric tensors. Successive contraction of a full symmetric tensor 
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The orthogonal irreducible decomposition theorem of symmetric tensors of higher orders is proposed by Zheng and Zou [26], which states that any symmetric tensor 
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2.3. Definition and Integral of Orientation
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			,
		

		

			1
		

		
			
		
		
			4
			𝜋
		

		

			∮
		

		

			𝑆
		

		

			2
		

		

			(
		

		

			⋅
		

		

			)
		

		

			d
		

		
			𝐴
			=
		

		

			1
		

		
			
		
		
			4
			𝜋
		

		

			∫
		

		

			𝜋
		

		

			0
		

		

			∫
		

		
			2
			𝜋
		

		

			0
		

		

			(
		

		

			⋅
		

		

			)
		

		
			s
			i
			n
			𝜃
		

		

			d
		

		

			𝜙
		

		

			d
		

		
			𝜃
			,
		

		
			i
			n
		

		

			3
		

		

			D
		

		

			.
		

	

							Noting that 
	
		
			2
			𝜋
		

	
 and 
	
		
			4
			𝜋
		

	
 are the circumference of 
	
		

			𝑆
		

		

			1
		

	
 and the spherical area of 
	
		

			𝑆
		

		

			2
		

	
, respectively, so the integral 
	
		

			∮
		

		
			(
			⋅
			)
		

		

			d
		

		

			𝐧
		

	
 represents an average value of the distribution 
	
		
			(
			⋅
			)
		

	
 over all orientations.
The identity tensors are related to the integral of orientations by
								
	
 		
			(
			2
			.
			1
			2
			)
		
 	

	
		

			𝐈
		

		
			2
			𝑛
		

		
			=
			𝟏
		

		

			⨂
		

		

			𝑛
		

		
			
		
		

			2
		

		
			=
			𝛼
		

		
			2
			𝑛
		

		

			
		

		

			𝐧
		

		

			⨂
		

		
			2
			𝑛
		

		

			d
		

		
			𝐧
			=
			𝛼
		

		
			2
			𝑛
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			,
		

	

							where 
	
		

			𝐍
		

		
			2
			𝑛
		

		
			(
			𝐧
			)
		

		
			d
			e
			f
		

		
			=
			𝐧
		

		

			⨂
		

		
			2
			𝑛
		

	
 and the coefficient 
	
		

			𝛼
		

		
			2
			𝑛
		

	
 is given by
								
	
 		
			(
			2
			.
			1
			3
			)
		
 	

	
		

			𝛼
		

		
			2
			𝑛
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎩
		

		

			2
		

		
			2
			𝑛
		

		
			
		
		

			
		

		
			2
			𝑛
		

		

			𝑛
		

		

			
		

		

			,
		

		
			i
			n
		

		

			2
		

		

			D
		

		

			,
		

		
			2
			𝑛
			+
			1
			,
		

		
			i
			n
		

		

			3
		

		

			D
		

		

			.
		

	

							Noting that 
	
		
			𝐧
			⋅
			𝐧
			=
			1
		

	
, the successive contraction of 
	
		

			𝐈
		

		
			2
			𝑛
		

	
 for 
	
		
			𝑛
			−
			𝑟
		

	
 times takes the form
								
	
 		
			(
			2
			.
			1
			4
			)
		
 	

	
		

			𝐈
		

		
			
		
		
			2
			𝑛
			⊖
			2
			(
			𝑛
			−
			𝑟
			)
		

		

			=
		

		

			𝛼
		

		
			2
			𝑛
		

		
			
		
		

			𝛼
		

		
			2
			𝑟
		

		

			𝐈
		

		
			
		
		
			2
			𝑟
		

		

			.
		

	

							For example, in 3D, 
	
		

			𝛿
		

		
			𝑖
			𝑗
		

		
			=
			3
		

		

			∮
		

		

			𝑛
		

		

			𝑖
		

		

			𝑛
		

		

			𝑗
		

		

			d
		

		

			𝐧
		

	
, 
	
		

			𝐼
		

		
			𝑖
			𝑗
			𝑘
			𝑙
		

		
			=
			5
		

		

			∮
		

		

			𝑛
		

		

			𝑖
		

		

			𝑛
		

		

			𝑗
		

		

			𝑛
		

		

			𝑘
		

		

			𝑛
		

		

			𝑙
		

		

			d
		

		

			𝐧
		

	
, and 
	
		

			𝐼
		

		
			𝑖
			𝑗
			𝑘
			𝑘
		

		
			=
			(
			3
			/
			5
			)
			𝛿
		

		
			𝑖
			𝑗
		

	
. 
3. Asymmetric Characterization of Tensor-Valued ODFs
A tensor-valued ODF is a tensor function dependent on the predefined orientation 
	
		

			𝐧
		

	
. A generic tensor-valued ODF of order 
	
		

			𝑚
		

	
 is denoted by 
	
		

			𝐭
		

		

			𝑚
		

		
			=
			𝐭
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, which may be randomly and discontinuously distributed along the orientations. The fabric tensor characterization first requires that 
	
		

			𝐭
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 be decomposed into the centrosymmetric and anticentrosymmetric parts namely, 
	
		

			𝐭
		

		

			𝑚
		

		
			(
			𝐧
			)
			=
			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
			+
			𝐚
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, where
						
	
 		
			(
			3
			.
			1
			)
		
 	

	
		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			=
		

		

			1
		

		
			
		
		

			2
		

		

			
		

		

			𝐭
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			+
			𝐭
		

		

			𝑚
		

		

			(
		

		
			−
			𝐧
		

		

			)
		

		

			
		

		
			,
			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			=
			𝐬
		

		

			𝑚
		

		

			(
		

		
			−
			𝐧
		

		

			)
		

		

			,
		

		

			𝐚
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			=
		

		

			1
		

		
			
		
		

			2
		

		

			
		

		

			𝐭
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			−
			𝐭
		

		

			𝑚
		

		

			(
		

		
			−
			𝐧
		

		

			)
		

		

			
		

		
			,
			𝐚
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			=
			−
			𝐚
		

		

			𝑚
		

		

			(
		

		
			−
			𝐧
		

		

			)
		

		

			.
		

	

We first consider the centrosymmetric tensor-valued ODF 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
. Let 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 be approximated by another tensor-valued ODF 
	
		

			𝓈
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, which is precisely determined by a tensor 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	
 (even orders must be added due to the centrosymmetry of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
),
						
	
 		
			(
			3
			.
			2
			)
		
 	

	
		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			≈
			𝓈
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			d
			e
			f
		

		
			=
			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

		
			2
			𝑛
		

		
			⋅
			𝐍
		

		
			2
			𝑛
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			,
		

	

					for example, 
	
		

			𝐬
		

		

			2
		

		
			(
			𝐧
			)
			≈
			𝓈
		

		

			2
		

		
			(
			𝐧
			)
		

		
			d
			e
			f
		

		
			=
			𝐒
		

		

			4
		

		

			2
		

		
			⋅
			(
			𝐧
		

		

			⨂
		

		
			𝐧
			)
		

	
. Because 
	
		

			𝐍
		

		
			2
			𝑛
		

		
			(
			𝐧
			)
		

	
 is full symmetric, it is quite visible that 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

		
			=
			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

	
.
The tensor 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	
 is defined as the fabric tensor of the second kind (or simply referred to as fabric tensor where no ambiguity arises) of the tensor-valued ODF 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
  if the following condition of least-square minimization of error is imposed: 
						
	
 		
			(
			3
			.
			3
			)
		
 	

	
		

			Δ
		

		
			d
			e
			f
		

		

			=
		

		

			
		

		

			|
		

		

			|
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			−
			𝓈
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			|
		

		

			|
		

		

			2
		

		

			d
		

		
			𝐧
			,
		

		
			𝜕
			Δ
		

		
			
		
		
			𝜕
			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

		
			=
			0
			.
		

	

					Applied with (3.2), (3.3) yields
						
	
 		
			(
			3
			.
			4
			)
		
 	

	
		

			
		

		

			𝓈
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			=
		

		

			
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			,
		

	

					which can be further recast as
						
	
 		
			(
			3
			.
			5
			)
		
 	

	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

		
			2
			𝑛
		

		
			⋅
			𝐈
		

		
			4
			𝑛
		

		
			=
			𝛼
		

		
			4
			𝑛
		

		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			,
		

	

					where 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

	
 is defined as the fabric tensor of the first kind of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, 
						
	
 		
			(
			3
			.
			6
			)
		
 	

	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		
			d
			e
			f
		

		

			=
		

		

			
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			.
		

	

					One contracting property of 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

	
 is favorable, 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			⊖
			2
		

		
			=
			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			−
			2
		

	
.
Such asymmetric characterization of tensor-valued ODFs is the intrinsic extension of that of scalar-valued ODFs by Kanatani [5], in that the components of the tensor-valued ODF are handled as independent scalar-valued ODFs, whose fabric tensor expansion proves to be equivalent to the Fourier series expansion in 2D and to the spherical harmonics expansion in 3D. In other words, the asymmetric characterization is convergent; namely, the approximation error 
	
		

			Δ
		

	
 is a nonincreasing function of the used order 
	
		
			2
			𝑛
		

	
 and tends to zero when 
	
		
			2
			𝑛
		

	
 tends to infinity. 
3.1. Analytic Solution of 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	

Evidently, 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

	
 can be approximately determined by observed values of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 on finite numbers of orientations, so what left for us to do is to find the explicit expression of 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	
 with respect to 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

	
, or the inversed form of (3.5).
Resorting to (2.9a), the orthogonal irreducible decomposition of 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	
 takes the following form:
								
	
 		
			(
			3
			.
			7
			)
		
 	

	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

		
			=
			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		
			d
			e
			f
		

		

			=
		

		

			𝑛
		

		

			
		

		
			𝑟
			=
			0
		

		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑟
		

		

			
		

		

			𝐈
		

		
			
		
		
			2
			𝑛
			−
			2
			𝑟
		

		

			,
		

	

							where 
	
		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑟
		

	
 (
	
		
			𝑟
			=
			0
			,
			1
			,
			…
			,
			𝑛
		

	
) are defined by  [5] as the fabric tensors of the third kind of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, which are, however, barely perceptible in practical use. 
Applying (3.7) to (3.5), and noting that any contraction of 
	
		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑟
		

	
 vanishes, one obtains
								
	
 		
			(
			3
			.
			8
			)
		
 	

	
		

			𝑛
		

		

			
		

		
			𝑟
			=
			0
		

		

			𝜉
		

		
			2
			𝑟
		

		
			2
			𝑛
			,
			2
			𝑟
		

		
			
		
		

			𝛼
		

		
			2
			𝑛
			+
			2
			𝑟
		

		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑟
		

		

			
		

		

			𝐈
		

		
			
		
		
			2
			𝑛
			−
			2
			𝑟
		

		
			=
			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			,
		

	

							where the coefficient 
	
		

			𝜉
		

		
			2
			𝑟
		

		
			2
			𝑛
			,
			2
			𝑟
		

	
 is determined by (if one substitutes (3.7) to (3.5) and observes the result, he may realize that 
	
		

			𝜉
		

		
			2
			𝑠
		

		
			2
			𝑛
			,
			2
			𝑟
		

	
 is all about a ball and box puzzle. Assume that 
	
		
			2
			𝑛
			+
			2
			𝑟
		

	
 distinct balls, 
	
		
			2
			𝑛
		

	
 colored red and 
	
		
			2
			𝑟
		

	
 blue, are paired and placed into 
	
		
			𝑛
			+
			𝑟
		

	
 sequenced boxes, each box with a pair. And 
	
		

			𝜉
		

		
			2
			𝑠
		

		
			2
			𝑛
			,
			2
			𝑟
		

	
 is actually the probability of that 
	
		
			2
			𝑠
		

	
 boxes are filled with a pair in different colors)
								
	
 		
			(
			3
			.
			9
			)
		
 	

	
		

			𝜉
		

		
			2
			𝑠
		

		
			2
			𝑛
			,
			2
			𝑟
		

		
			=
			2
		

		
			2
			𝑠
		

		

			
		

		
			𝑛
			+
			𝑟
		

		
			2
			𝑠
		

		
			
			
		

		
			𝑛
			+
			𝑟
			−
			2
			𝑠
		

		
			𝑛
			−
			𝑠
		

		

			
		

		
			
		
		

			
		

		
			2
			𝑛
			+
			2
			𝑟
		

		
			2
			𝑟
		

		

			
		

		

			.
		

	

Successively contracting (3.8) for 
	
		
			𝑛
			−
			𝑡
		

	
 times on the symmetrized orders, taking in the property 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			⊖
			2
		

		
			=
			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			−
			2
		

	
, 
								
	
 		
			(
			3
			.
			1
			0
			)
		
 	

	
		

			𝑡
		

		

			
		

		
			𝑟
			=
			0
		

		

			𝜉
		

		
			2
			𝑟
		

		
			2
			𝑛
			,
			2
			𝑟
		

		

			𝜁
		

		
			2
			𝑡
		

		
			2
			𝑛
			,
			2
			𝑟
		

		
			
		
		

			𝛼
		

		
			2
			𝑛
			+
			2
			𝑟
		

		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑟
		

		

			
		

		

			𝐈
		

		
			
		
		
			2
			𝑡
			−
			2
			𝑟
		

		
			=
			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑡
		

		

			,
		

	

							where 
	
		

			𝜁
		

		
			2
			𝑡
		

		
			2
			𝑛
			,
			2
			𝑟
		

	
 is the product of the coefficients arising from each contraction,
								
	
 		
			(
			3
			.
			1
			1
			)
		
 	

	
		

			𝜁
		

		
			2
			𝑡
		

		
			2
			𝑛
			,
			2
			𝑟
		

		

			=
		

		
			𝑛
			−
			𝑡
			−
			1
		

		

			
		

		
			𝑠
			=
			0
		

		
			
			
			
		

		

			𝛼
		

		
			2
			𝑛
			−
			2
			𝑠
			−
			2
			𝑟
		

		

			
		

		

			/
		

		

			
		

		

			𝛼
		

		
			2
			𝑛
			−
			2
			𝑠
			−
			2
			𝑟
			−
			2
		

		
			
			
			
		

		
			2
			𝑛
			−
			2
			𝑠
			−
			2
			𝑟
		

		

			2
		

		

			
		

		

			+
		

		

			
		

		
			2
			𝑛
			−
			2
			𝑠
			−
			2
			𝑟
		

		

			1
		

		
			
			
		

		
			2
			𝑟
		

		

			1
		

		
			
			
		

		
			
		
		

			
		

		
			2
			𝑛
			−
			2
			𝑠
		

		

			2
		

		

			
		

		

			.
		

	

Taking the deviatorization of (3.10) on the remaining symmetric orders, noting that any term in the left-hand side vanishes except the last one, one finally acquires the fabric tensors of the third kind of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, 
								
	
 		
			(
			3
			.
			1
			2
			)
		
 	

	
		

			𝒟
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑡
		

		

			=
		

		

			𝛼
		

		
			2
			𝑛
			+
			2
			𝑡
		

		
			
		
		

			𝜉
		

		
			2
			𝑡
		

		
			2
			𝑛
			,
			2
			𝑡
		

		

			𝜁
		

		
			2
			𝑡
		

		
			2
			𝑛
			,
			2
			𝑡
		

		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			⟦
			2
			𝑡
			⟧
		

		
			=
			𝜂
		

		
			2
			𝑡
		

		
			2
			𝑛
		

		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			⟦
			2
			𝑡
			⟧
		

		

			.
		

	

							The coefficient 
	
		

			𝜂
		

		
			2
			𝑡
		

		
			2
			𝑛
		

	
 is fully simplified by taking in (2.13), which turns out to be independent of 
	
		

			𝑛
		

	
, 
								
	
 		
			(
			3
			.
			1
			3
			)
		
 	

	
		

			𝜂
		

		
			2
			𝑡
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎩
		

		

			2
		

		
			2
			𝑡
		

		

			,
		

		
			i
			n
		

		

			2
		

		

			D
		

		

			,
		

		
			4
			𝑡
			+
			1
		

		
			
		
		

			2
		

		
			2
			𝑡
		

		

			
		

		
			4
			𝑡
		

		
			2
			𝑡
		

		

			
		

		

			,
		

		
			i
			n
		

		

			3
		

		

			D
		

		

			.
		

	

The analytic solution of fabric tensors of the second kind of 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 is finally obtained by applying (3.12) and (2.6a) to (3.7),
								
	
 		
			(
			3
			.
			1
			4
			)
		
 	

	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			=
		

		

			𝑛
		

		

			
		

		
			𝑡
			=
			0
		

		

			𝜂
		

		
			2
			𝑡
		

		

			𝑡
		

		

			
		

		
			𝑟
			=
			0
		

		

			𝜅
		

		

			𝑟
		

		
			2
			𝑡
		

		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑡
			−
			2
			𝑟
		

		

			
		

		

			𝐈
		

		
			
		
		
			2
			𝑛
			−
			2
			𝑡
			+
			2
			𝑟
		

		

			.
		

	

For the anticentrosymmetric tensor-valued ODF 
	
		

			𝐚
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, odd orders must be appended to the fabric tensors of the second kind,
								
	
 		
			(
			3
			.
			1
			5
			)
		
 	

	
		

			𝐚
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			≈
			𝒶
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			d
			e
			f
		

		
			=
			𝐀
		

		
			𝑚
			+
			2
			𝑛
			+
			1
		

		
			2
			𝑛
			+
			1
		

		
			⋅
			𝐍
		

		
			2
			𝑛
			+
			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			.
		

	

Accordingly, the fabric tensors of the first kind are defined as
								
	
 		
			(
			3
			.
			1
			6
			)
		
 	

	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			+
			1
		

		
			d
			e
			f
		

		

			=
		

		

			
		

		

			𝐚
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
			+
			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			.
		

	

The analytic solution of 
	
		

			𝐀
		

		
			𝑚
			+
			2
			𝑛
			+
			1
		

	
 with respect to 
	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			+
			1
		

	
 can be acquired completely parallel to that of 
	
		

			𝐒
		

		
			𝑚
			+
			2
			𝑛
		

	
, which takes the following form:
								
	
 		
			(
			3
			.
			1
			7
			)
		
 	

	
		

			𝐀
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
			+
			1
		

		

			=
		

		

			𝑛
		

		

			
		

		
			𝑡
			=
			0
		

		

			𝜂
		

		
			2
			𝑡
			+
			1
		

		

			𝑡
		

		

			
		

		
			𝑟
			=
			0
		

		

			𝜅
		

		

			𝑟
		

		
			2
			𝑡
			+
			1
		

		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑡
			+
			1
			−
			2
			𝑟
		

		

			
		

		

			𝐈
		

		
			
		
		
			2
			𝑛
			−
			2
			𝑡
			+
			2
			𝑟
		

		

			,
		

	

							where 
	
		

			𝜂
		

		
			2
			𝑡
			+
			1
		

	
 is calculated just by replacing 
	
		
			2
			𝑡
		

	
 with 
	
		
			2
			𝑡
			+
			1
		

	
 in (3.13).
For the generic tensor-valued ODF 
	
		

			𝐭
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
, its centrosymmetric part 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 and anticentrosymmetric part 
	
		

			𝐚
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	
 are characterized independently, which means that the order of 
	
		

			𝐀
		

	
 is unnecessarily one larger than that of 
	
		

			𝐒
		

	
 (anyway, we take this assumption in the accuracy analysis). For quick reference, the ultimately solved coefficients of the fabric tensors of the second kind up to the sixth and seventh approximation orders are listed in Table 1.
Table 1: Coefficients of lower order fabric tensors of the second kind using asymmetric characterization for tensor-valued ODFs (2D and 3D).
	

	
	
		

			𝐬
		

		

			𝑚
		

	
(n)	
	
		

			𝓢
		

		

			𝑚
		

	
	
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			2
		

	
	
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			4
		

	
	
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			6
		

	
	
	
		

			𝐚
		

		

			𝑚
		

	
(n)	
	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			1
		

	
	
	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			3
		

	
	
	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			5
		

	
	
	
		

			𝓐
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			7
		

	

	

	
	
		

			𝐒
		

		

			𝑚
		

	
	
	
		
			1
			,
			1
		

	
	 	 	 	
	
		

			𝐀
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			1
		

	
	
	
		
			2
			,
			3
		

	
	 	 	
	
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			2
		

	
	
	
		
			−
			1
			,
			−
		

		

			3
		

		
			
		
		

			2
		

	
	
	
		
			4
			,
		

		
			1
			5
		

		
			
		
		

			2
		

	
	 	 	
	
		

			𝐀
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			3
		

	
	
	
		
			−
			4
			,
			−
		

		
			1
			5
		

		
			
		
		

			2
		

	
	
	
		
			8
			,
		

		
			3
			5
		

		
			
		
		

			2
		

	
	 	
	
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			4
		

	
	
	
		
			1
			,
		

		
			1
			5
		

		
			
		
		

			8
		

	
	
	
		
			−
			1
			2
			,
			−
		

		
			1
			0
			5
		

		
			
		
		

			4
		

	
	
	
		
			1
			6
			,
		

		
			3
			1
			5
		

		
			
		
		

			8
		

	
	 	
	
		

			𝐀
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			5
		

	
	
	
		
			6
			,
		

		
			1
			0
			5
		

		
			
		
		

			8
		

	
	
	
		
			−
			3
			2
			,
			−
		

		
			3
			1
			5
		

		
			
		
		

			4
		

	
	
	
		
			3
			2
			,
		

		
			6
			9
			3
		

		
			
		
		

			8
		

	
	
	
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			6
		

	
	
	
		
			−
			1
			,
			−
		

		
			3
			5
		

		
			
		
		
			1
			6
		

	
	
	
		
			2
			4
			,
		

		
			9
			4
			5
		

		
			
		
		
			1
			6
		

	
	
	
		
			−
			8
			0
			,
			−
		

		
			3
			4
			6
			5
		

		
			
		
		
			1
			6
		

	
	
	
		
			6
			4
			,
		

		
			3
			0
			0
			3
		

		
			
		
		
			1
			6
		

	
	
	
		

			𝐀
		

		

			𝑚
		

		

			⨁
		

		
			
		
		

			7
		

	
	
	
		
			−
			8
			,
			−
		

		
			3
			1
			5
		

		
			
		
		
			1
			6
		

	
	
	
		
			8
			0
			,
		

		
			3
			4
			6
			5
		

		
			
		
		
			1
			6
		

	
	
	
		
			−
			1
			9
			2
			,
			−
		

		
			9
			0
			0
			9
		

		
			
		
		
			1
			6
		

	
	
	
		
			1
			2
			8
			,
		

		
			6
			4
			3
			5
		

		
			
		
		
			1
			6
		

	

	



3.2. Relationship between Fabric Tensors of Different Orders
Assume that two fabric tensors 
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			1
		

	
 and 
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			2
		

	
, where 
	
		

			𝑛
		

		

			1
		

		
			<
			𝑛
		

		

			2
		

	
, are used to characterize the centrosymmetric tensor-valued ODF 
	
		

			𝐬
		

		

			𝑚
		

		
			(
			𝐧
			)
		

	

	
 		
			(
			3
			.
			1
			8
			)
		
 	

	
		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			≈
			𝓈
		

		

			1
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			=
			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			1
		

		
			2
			𝑛
		

		

			1
		

		
			⋅
			𝐍
		

		
			2
			𝑛
		

		

			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			,
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			≈
			𝓈
		

		

			2
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		
			=
			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			2
		

		
			2
			𝑛
		

		

			2
		

		
			⋅
			𝐍
		

		
			2
			𝑛
		

		

			2
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			.
		

	

							In view of (3.4), the fabric tensors of the first kind defined by (3.6) take the following form:
	
 		
			(
			3
			.
			1
			9
			a
			)
		
 		
			(
			3
			.
			1
			9
			b
			)
		
 	

	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			1
		

		
			d
			e
			f
		

		

			=
		

		

			
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			=
		

		

			
		

		

			𝓈
		

		

			1
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			,
		

		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			2
		

		
			d
			e
			f
		

		

			=
		

		

			
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			2
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			=
		

		

			
		

		

			𝓈
		

		

			2
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			2
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			.
		

	
The following relation between 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			1
		

	
 and 
	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			2
		

	
 is evident:
								
	
 		
			(
			3
			.
			2
			0
			)
		
 	

	
		

			𝓢
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			1
		

		

			=
		

		

			
		

		

			𝐬
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			=
		

		

			
		

		

			𝓈
		

		

			2
		

		

			𝑚
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			
		

		

			𝐍
		

		
			2
			𝑛
		

		

			1
		

		

			(
		

		

			𝐧
		

		

			)
		

		

			d
		

		
			𝐧
			,
		

	

							where the second equality is achieved by contracting (3.19b) for 
	
		

			𝑛
		

		

			2
		

		
			−
			𝑛
		

		

			1
		

	
 times. 
Equation (3.20) indicates that once a fabric tensor 
	
		

			𝐒
		

		

			𝑚
		

		

			⨁
		

		
			
		
		
			2
			𝑛
		

		

			2
		

	
 of the original ODF