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Abstract. 
A multi-degree-of-freedom dynamical system with local cubic nonlinearities subjected to super/subharmonic excitation is considered in this paper. The purpose of this paper is to approximate the
nonlinear response of system at super/sub harmonic resonance. For many situations, single resonance mode is often observed to be leading as system enters into super/sub harmonic resonance. In this case, the single modal natural resonance theory can be applied to reduce the system model and a simplified model with only a single DOF is always obtained. Thus, an approximate solution and the analytical expression of frequency response relation are then derived using classical perturbation analysis. While the system is controlled by multiple modes, modal analysis for linearized system is used to decide dominant modes. The reduced model governed by these relevant modes is found and results in an approximate numerical solutions. An illustrative example of the discrete mass-spring-damper nonlinear vibration system with ten DOFs is examined. The approximation results are validated by comparing them with the calculations from direct numerical integration of the equation of motion of the original nonlinear system. Comparably good agreements are obtained.


1. Introduction
In engineering, many dynamical systems consisting of large complex components with local physical nonlinearities are found everywhere. For example, in structural dynamics, finite element analysis is often used to obtain accurate discrete models of continuous systems, usually with hundreds of DOFs. If a nonlinear component, such as a joint or a crack, is added to the finite element model, then the system is wholly nonlinear. Other examples of these systems are a pipeline supported by stiffening springs and the exhaust of a road vehicle in which dry friction hinges. A great class of nonlinearities in most of these systems is of cubic type. A typical cubic-type nonlinear system is known as Duffing system [1]. Duffing system has many physical applications seen in the literature [2].
The super or subharmonic responses of a dynamical system have been received much attentions. As examples, one can refer to the literature [3]. Other related studies are found in [4–8]. In [4], Ji and Hansen used the averaging method to research a periodically excited nonlinear oscillator with a piecewise nonlinear-linear characteristic and derived an approximate solution for the superharmonic resonance. The validity of the developed analysis was confirmed by comparing the approximate solutions with the results of direct numerical integration of the original equation. Elnaggar and El-Bassyouny [5] studied harmonic, subharmonic, superharmonic, and combination resonances of the additive type of self-excited two coupled-second order systems subjected to multifrequency excitation. The theoretical results were obtained by the multiple-scales method. The same method was used by Eissa and El-Bassyouny [6] to research the nonlinear rolling response of a ship in regular beam seas.The steady-state amplitude and phase of harmonic oscillations for primary and superharmonic resonance were constructed in his work. The harmonic balance method was used to analyze super or sub harmonic response of torsional system with two DOFs in the literatures [7, 8]. 
The objective of this paper is to seek an approximate solution, especially analytic solution, of a MDOFs’ system with local nonlinearities under super or sub harmonic resonance conditions. Though the analytic methods mentioned in [3–8], such as the averaging method, the multiple scales method and the harmonic balance method can produce the analytical solutions for the system and give a stability analysis about the solutions; they are often applied to nonlinear systems with low DOFs [4–8]. For large systems, especially large-scale systems, the use of analytic methods results in heavy algebraic manipulation and high-dimensional nonlinear equations. Many challenging problems [9], for example, ill-conditioned iterative matrix and serious stiffness problem, are in solving large nonlinear equations, and special numerical algorithms [10] are required. Consequently, analytic methods often lose their performances for high-dimensional dynamical system. Here, the author attempts to provide with a way to give super/sub harmonic solutions of large nonlinear dynamical systems in this paper. For this purpose, the model reduction method based on the single natural modal resonance theory [11] is employed. The used method is originated from the classical model reduction techniques [12, 13] but has great advantage in reducing the total sizes of system model. The reduced order model owing to the used method of this paper has a smaller of DOFs, usually one or two DOFs in many applications. 
The outline of this paper is as follows. The reduction method based on the single natural mode resonance theory is briefly introduced in first section. Some applicable conditions for the presented method are also involved in this section. An illustratable example of mass-spring-damper system with ten DOFs is examined, and some important results are obtained and discussed in the subsequent section. The results obtained from the presented method will be verified with numerically solving the original system. Conclusions are drawn in the last section.
2. Theoretical Fundamentals and Formulations
The motion equations of an 
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In this paper, the mass matrix 
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Introduce the transformation 
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				[
				Φ
				]
				{
				𝑥
				}
				=
				{
				𝑞
				}
				,
			

		
	

					where 
	
		
			
				{
				𝑞
				}
			

		
	
 is the 
	
		
			

				𝑛
			

		
	
-vector of normal mode coordinates.
Substituting (2.6) into (2.1) yields 
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The eigenvector matrix satisfies the following orthogonality properties with respect to the mass and stiffness matrix 
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In case of Rayleigh damping, the damping term 
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Using (2.9) and (2.10), then (2.8) is transformed to 
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Comparing (2.1) with (2.11) or (2.12), one can find that they are equivalent in mathematics. Unlike (2.1), the terms in (2.11) or (2.12) expect the nonlinear force are uncouple. 
Equation (2.11) or (2.12) gives the modal response equations of system. For a MDOFs system, the total response of system is a sum of the response of all natural modes. Generally, higher modes contribute less toward the total response of system. Thus, an approximate response can be determined by some lower modes, that is, (2.6) can be approximately written in 
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 denotes the number of lower modes and is always no more than the number of degrees of freedom of the original system. 
Obviously, (2.12) and (2.13) describe a reduced order model in the form of mode coordinates with l-DOFs for the original model. Based on the above model, one can quickly get some important results in quantity. It is the key of classical model reduction technique.
After observation and investigation on engineering problems for a long time, Prof. Zheng discloses that actual engineering systems are always controlled by a few modes, almost one or two modes in many situations. He further points out that only a single mode (corresponding to the resonance mode) is maybe leading as system enters into resonance state. His finding has a general significance. For many engineering problems, one cares more for dynamics of system under resonance state. Undoubtedly, this finding powers and strengthens traditional model reduction techniques. In this paper, we follow his studies and apply his theory to investigate nonlinear dynamics of a nonlinear MDOFs system under super/sub harmonic resonance conditions. 
Suppose that only the 
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th mode of system is leading and the other modes are minor as the super or sub harmonic resonance of the 
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					Substituting (2.14) into (2.11) or (2.12), one can get the equations of reduced model in the form of resonance modal coordinate 
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					Considering cubic nonlinearities and harmonic excitation (e.g., cosine excitation) in system, (2.15) can be compactly rewritten to
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Obviously, (2.17) is a single DOF equation. One can easily get its solution by the analytic methods or numerical methods. Then, one can obtaine the approximate response of the system, associated with (2.14). 
As described in the above text, the theory presented by Zheng [11] is powerful. However, this theory is semiempirical and is not strictly formulated in mathematics. After investigations, the author of this paper finds that the theory may be generally available under the following conditions.(i)The nature frequencies of system have sparsely in distribution. It means that only the resonance mode is leading while the non-resonance modes contribute less toward the total response of system at resonance.(ii)The resonance mode should not interact with other non-resonance modes. It implies that internal resonance does not occur. (iii)For multifrequency excitation, combination resonance may occur, but the response of combination resonance is not preponderant compared with that of interested resonance mode.
Now, we use the above theory to seek an approximate solution. In weak vibration, an approximate steady solution of first order for (2.17) is supposed to be in the form 
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					Substituting (2.18) into (2.17) and equating the coefficients of the same power of small parameter 
	
		
			

				𝜀
			

		
	
, one obtains 
						
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			

				𝐷
			

			
				2
				0
			

			

				𝑞
			

			
				𝑗
				0
			

			
				+
				𝜔
			

			
				2
				𝑗
			

			

				𝑞
			

			
				𝑗
				0
			

			
				=
				𝐹
			

			

				0
			

			
				
				c
				o
				s
				𝜔
				𝑇
			

			

				0
			

			
				
				,
				𝐷
			

			
				2
				0
			

			

				𝑞
			

			
				𝑗
				1
			

			
				+
				𝜔
			

			
				2
				𝑗
			

			

				𝑞
			

			
				𝑗
				1
			

			
				=
				−
				2
				𝐷
			

			

				0
			

			

				𝐷
			

			

				1
			

			

				𝑞
			

			
				𝑗
				0
			

			
				−
				2
				𝜇
				𝐷
			

			

				0
			

			

				𝑞
			

			
				𝑗
				0
			

			
				−
				𝛼
				𝑞
			

			
				3
				𝑗
				0
			

			

				.
			

		
	

					The general solution of (2.19) can be expressed in the form 
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Substituting (2.21) into (2.20) yields
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				𝑇
			

			

				0
			

			
				
				
				−
				𝛼
				3
				𝐴
				Λ
			

			

				2
			

			

				𝑒
			

			
				3
				𝑖
				(
				𝜔
			

			

				𝑗
			

			
				+
				2
				𝜔
				)
				𝑇
			

			

				0
			

			
				+
				3
				𝐴
				Λ
			

			

				2
			

			

				𝑒
			

			
				𝑖
				(
				𝜔
			

			

				𝑗
			

			
				−
				2
				𝜔
				)
				𝑇
			

			

				0
			

			
				
				
				−
				Λ
				−
				2
				𝑖
				𝜇
				𝜔
				+
				3
				𝛼
				Λ
			

			

				2
			

			
				+
				6
				𝛼
				𝐴
			

			
				
			
			
				𝐴
				
				𝑒
			

			
				𝑖
				𝜔
				𝑇
			

			

				0
			

			

				.
			

		
	

					Two cases of resonance are considered next: superharmonic and subharmonic.
2.1. Superharmonic Resonance
In this case, we put  
								
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				3
				𝜔
				=
				𝜔
			

			

				𝑗
			

			
				+
				𝜀
				𝜎
				,
			

		
	

							where 
	
		
			

				𝜎
			

		
	
 is turning parameter.
Inserting (2.23) into (2.22), the condition for the elimination of secular terms in (2.22) is 
								
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			
				2
				𝑖
				𝜔
			

			

				𝑗
			

			
				
				𝐷
			

			

				1
			

			
				
				𝐴
				+
				𝜇
				𝐴
				+
				6
				𝛼
				𝐴
				Λ
			

			

				2
			

			
				+
				3
				𝛼
				𝐴
			

			

				2
			

			
				
			
			
				𝐴
				+
				𝛼
				Λ
			

			

				3
			

			

				𝑒
			

			
				𝑖
				𝜎
				𝑇
			

			

				1
			

			
				=
				0
				.
			

		
	

							To this order, 
	
		
			

				𝐴
			

		
	
 is considered to be a function of 
	
		
			

				𝑇
			

			

				1
			

		
	
 only. Then, substituting the polar form 
								
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			
				
				1
				𝐴
				=
			

			
				
			
			
				2
				
				𝑎
				
				𝑇
			

			

				1
			

			
				
				𝑒
			

			
				𝑖
				𝜃
				𝑇
			

			

				1
			

		
	

							into (2.24) and equating the real and imaginary parts, one gets 
								
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			
				̇
				𝑎
				=
				−
				𝜇
				𝑎
				−
				𝛼
				Λ
			

			

				3
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				
				s
				i
				n
				𝜎
				𝑇
			

			

				1
			

			
				
				,
				𝑎
				̇
				𝛼
				−
				𝜃
				𝜃
				=
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				
				
				Λ
				3
				𝑎
			

			

				2
			

			
				+
				𝑎
			

			

				2
			

			
				
			
			
				8
				
				+
				Λ
			

			

				3
			

			
				
				c
				o
				s
				𝜎
				𝑇
			

			

				1
			

			
				
				
				.
				−
				𝜃
			

		
	

							Introduce 
	
		
			
				𝛾
				=
				𝜎
				𝑇
			

			

				1
			

			
				−
				𝜃
			

		
	
, then (2.26) can be written to
								
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			
				̇
				𝑎
				=
				−
				𝜇
				𝑎
				−
				𝛼
				Λ
			

			

				3
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				𝑎
				̇
				𝛼
				s
				i
				n
				𝛾
				,
				𝜃
				=
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				
				
				Λ
				3
				𝑎
			

			

				2
			

			
				+
				𝑎
			

			

				2
			

			
				
			
			
				8
				
				+
				Λ
			

			

				3
			

			
				
				.
				c
				o
				s
				𝛾
			

		
	

							Let 
	
		
			
				̇
				̇
				𝑎
				=
				𝜃
				=
				0
			

		
	
, the stable period solutions 
	
		
			

				𝑎
			

			

				𝑠
			

		
	
 and 
	
		
			

				𝛾
			

			

				𝑠
			

		
	
 are satisfied with 
								
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			
				𝜇
				𝑎
			

			

				𝑠
			

			
				=
				−
				𝛼
				Λ
			

			

				3
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				s
				i
				n
				𝛾
			

			

				𝑠
			

			
				,
				
				𝜎
				−
				3
				𝛼
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				
				Λ
			

			

				2
			

			
				+
				𝑎
			

			
				2
				𝑠
			

			
				
			
			
				8
				𝑎
				
				
			

			

				𝑠
			

			
				=
				𝛼
				Λ
			

			

				3
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				c
				o
				s
				𝛾
			

			

				𝑠
			

			

				.
			

		
	

							Thus, the steady solution is
								
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			

				𝑞
			

			

				𝑗
			

			
				(
				𝑡
				)
				=
				Λ
				c
				o
				s
				(
				𝜔
				𝑡
				)
				+
				𝜀
				𝑎
			

			

				𝑠
			

			
				
				c
				o
				s
				3
				𝜔
				𝑡
				+
				𝛾
			

			

				𝑠
			

			
				
				.
			

		
	

Considering (2.28), the frequency response curve for superharmonic resonance is
								
	
 		
 			
				(
				2
				.
				3
				0
				)
			
 		
	

	
		
			
				
				𝜇
			

			

				2
			

			
				+
				
				𝜎
				−
				3
				𝛼
				Λ
			

			

				2
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				−
				3
				𝛼
				𝑎
			

			
				2
				𝑠
			

			
				
			
			
				8
				𝜔
			

			

				𝑗
			

			

				
			

			

				2
			

			
				
				𝑎
			

			
				2
				𝑠
			

			
				=
				𝛼
			

			

				2
			

			

				Λ
			

			

				6
			

			
				
			
			

				𝜔
			

			
				2
				𝑗
			

			

				.
			

		
	

							With (2.29) and (2.14), one can get the stable superharmonic response of system (2.1). Similarly, combinated using (2.30) and (2.14), the frequency response characteristic of original system is obtained.
2.2. Sub Harmonic Resonance
In this case, we take
								
	
 		
 			
				(
				2
				.
				3
				1
				)
			
 		
	

	
		
			
				𝜔
				=
				3
				𝜔
			

			

				𝑗
			

			
				+
				𝜀
				𝜎
				.
			

		
	

							Inserting (2.31) into (2.22), the condition for the elimination of secular terms is
								
	
 		
 			
				(
				2
				.
				3
				2
				)
			
 		
	

	
		
			
				2
				𝑖
				𝜔
			

			

				𝑗
			

			
				
				𝐷
			

			

				1
			

			
				
				𝐴
				+
				𝜇
				𝐴
				+
				6
				𝛼
				𝐴
				Λ
			

			

				2
			

			
				+
				3
				𝛼
				𝐴
			

			

				2
			

			
				
			
			
				𝐴
				+
				3
				𝛼
			

			
				
			
			

				𝐴
			

			

				2
			

			
				Λ
				𝑒
			

			
				𝑖
				𝜎
				𝑇
			

			

				1
			

			
				=
				0
				.
			

		
	

							Reused the rule in the case of superharmonic resonance, the steady state solution is
								
	
 		
 			
				(
				2
				.
				3
				3
				)
			
 		
	

	
		
			

				𝑞
			

			

				𝑗
			

			
				(
				𝑡
				)
				=
				Λ
				c
				o
				s
				(
				𝜔
				𝑡
				)
				+
				𝜀
				𝑎
			

			

				𝑠
			

			
				
				c
				o
				s
				𝜔
				𝑡
			

			
				
			
			
				3
				+
				𝛾
			

			

				𝑠
			

			
				
				,
			

		
	

							where 
	
		
			

				𝑎
			

			

				𝑠
			

		
	
 and 
	
		
			

				𝛾
			

			

				𝑠
			

		
	
 are governed by
								
	
 		
 			
				(
				2
				.
				3
				4
				)
			
 		
	

	
		
			
				𝜇
				=
				−
				3
				𝛼
				Λ
			

			
				
			
			
				4
				𝜔
			

			

				𝑗
			

			

				𝑎
			

			

				𝑠
			

			
				s
				i
				n
				𝛾
			

			

				𝑠
			

			
				,
				𝜎
				−
				9
				𝛼
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				
				Λ
			

			

				2
			

			
				+
				𝑎
			

			
				2
				𝑠
			

			
				
			
			
				8
				
				=
				9
				𝛼
				Λ
			

			
				
			
			
				4
				𝜔
			

			

				𝑗
			

			

				𝑎
			

			

				𝑠
			

			
				c
				o
				s
				𝛾
			

			

				𝑠
			

			

				.
			

		
	

							The frequency response curve is
								
	
 		
 			
				(
				2
				.
				3
				5
				)
			
 		
	

	
		
			
				9
				𝜇
			

			

				2
			

			
				+
				
				𝜎
				−
				9
				𝛼
				Λ
			

			

				2
			

			
				
			
			

				𝜔
			

			

				𝑗
			

			
				−
				9
				𝛼
			

			
				
			
			
				8
				𝜔
			

			

				𝑗
			

			

				𝑎
			

			
				2
				𝑠
			

			

				
			

			

				2
			

			
				=
				8
				1
				𝛼
			

			

				2
			

			

				Λ
			

			

				2
			

			
				
			
			
				1
				6
				𝜔
			

			
				2
				𝑗
			

			

				𝑎
			

			
				2
				𝑠
			

			

				.
			

		
	

							With (2.33), (2.35), and (2.14), one can get steady state solution of system (2.1) and the nonlinear frequency response characteristic.
3. Numerical Examples
In this section, the mechanical model for discrete mass-damping-spring system is shown in Figure 1, which consists of ten mass blocks 
	
		
			

				𝑚
			

			

				𝑖
			

		
	
, supported by nonlinear springs and linear dampers with coefficient 
	
		
			

				𝑐
			

			

				𝑖
			

		
	
. The excitation 
	
		
			

				𝐹
			

			

				𝑖
			

		
	
 on the 
	
		
			

				𝑖
			

		
	
th mass block is assumed to be cosine, with amplitude 
	
		
			

				𝑓
			

			

				𝑖
			

		
	
, frequency Ω, and initial phase 
	
		
			

				𝜃
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
. The physical coordinate 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
 donates absolute displacement of the 
	
		
			

				𝑖
			

		
	
th mass block, which is measured from its equilibrium position.


	
	
		
	
	
	
		
			
	
	
		
	
	
		
	
		
			
	
	
		
	
		
	
		
			
	
	
		
	
		
	
	
		
	
	
		
	
	
		
	
		
	
	
		
	
		
			
	
	
		
	
		
	
		
			
	
	
		
	
		
	
	
		
	
	
		
	
	
		
	
		
	
	
		
	
		
			
	
	
		
	
		
	
		
			
	
	
		
	
		
	
	
		
	
		
			
	
	
		
			
	
	
		
			
	
	
		
			
	
	
	
	
		
	
		
	
		
	
		
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	


	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	

Figure 1: Schematic of a mass-damping-spring system.


The restoring force of the 
	
		
			

				𝑖
			

		
	
th spring is determined by 
						
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝐹
			

			

				𝑖
			

			
				
				𝑢
			

			

				𝑖
			

			
				
				=
				𝑘
			

			

				𝑖
			

			

				𝑢
			

			

				𝑖
			

			
				+
				𝛼
			

			

				𝑖
			

			

				𝑢
			

			
				3
				𝑖
			

			

				,
			

		
	

					where 
	
		
			

				𝑘
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝛼
			

			

				𝑖
			

		
	
 are linear and nonlinear coefficients, 
	
		
			

				𝑢
			

			

				𝑖
			

		
	
 denotes the deformation of spring.
Utilizing the Newton second law, the equations governing the motion of the system are then, given in matrix form as
						
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				[
				𝑀
				]
				
				̈
				𝑋
				
				+
				[
				𝐶
				]
				
				̇
				𝑋
				
				+
				[
				𝐾
				]
				
				𝐹
				{
				𝑋
				}
				=
				{
				𝐹
				(
				𝑡
				)
				}
				+
			

			

				𝑁
			

			
				
				,
				(
				𝑋
				)
			

		
	

					where the mass matrix 
	
		
			
				[
				𝑀
				]
			

		
	
 is
						
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				[
				𝑀
				]
				𝑚
				=
				d
				i
				a
				g
				
				
			

			

				1
			

			

				𝑚
			

			

				2
			

			
				⋯
				𝑚
			

			
				1
				0
			

			
				,
				
				
			

		
	

					the stiffness matrix 
	
		
			
				[
				𝐾
				]
			

		
	
 is
						
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				[
				𝐾
				]
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑘
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				−
				𝑘
			

			

				2
			

			
				−
				𝑘
			

			

				2
			

			

				𝑘
			

			

				2
			

			
				+
				𝑘
			

			

				3
			

			
				−
				𝑘
			

			

				3
			

			
				⋱
				⋱
				⋱
				−
				𝑘
			

			

				9
			

			

				𝑘
			

			

				9
			

			
				+
				𝑘
			

			
				1
				0
			

			
				−
				𝑘
			

			
				1
				0
			

			
				−
				𝑘
			

			
				1
				0
			

			

				𝑘
			

			
				1
				0
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

					the excitation force 
	
		
			
				{
				𝐹
				(
				𝑡
				)
				}
			

		
	
 is
						
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑓
				{
				𝐹
				(
				𝑡
				)
				}
				=
			

			

				1
			

			
				
				c
				o
				s
				Ω
				𝑡
				+
				𝜃
			

			

				1
			

			
				
				𝑓
			

			

				2
			

			
				
				c
				o
				s
				Ω
				𝑡
				+
				𝜃
			

			

				2
			

			
				
				⋮
				𝑓
			

			
				1
				0
			

			
				
				c
				o
				s
				Ω
				𝑡
				+
				𝜃
			

			
				1
				0
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

					the nonlinear component of the restoring force 
	
		
			
				{
				𝐹
			

			

				𝑁
			

			
				(
				𝑋
				)
				}
			

		
	
 is
						
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				
				𝐹
			

			

				𝑁
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝛼
				(
				𝑋
				)
			

			

				2
			

			
				
				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			

				
			

			

				3
			

			
				−
				𝛼
			

			

				1
			

			

				𝑥
			

			
				3
				1
			

			

				𝛼
			

			

				3
			

			
				
				𝑥
			

			

				3
			

			
				−
				𝑥
			

			

				2
			

			

				
			

			

				3
			

			
				−
				𝛼
			

			

				2
			

			
				
				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			

				
			

			

				3
			

			
				⋮
				𝛼
			

			
				1
				0
			

			
				
				𝑥
			

			
				1
				0
			

			
				−
				𝑥
			

			

				9
			

			

				
			

			

				3
			

			
				−
				𝛼
			

			

				9
			

			
				
				𝑥
			

			

				9
			

			
				−
				𝑥
			

			

				8
			

			

				
			

			

				3
			

			
				−
				𝛼
			

			
				1
				0
			

			
				
				𝑥
			

			
				1
				0
			

			
				−
				𝑥
			

			

				9
			

			

				
			

			

				3
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

					In case of Rayleigh damping, the damping matrix 
	
		
			
				[
				𝐶
				]
			

		
	
 is
						
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				[
				𝐶
				]
				[
				𝑀
				]
				[
				𝐾
				]
				.
				=
				𝑎
				+
				𝑏
			

		
	

					The parameters used in this simulation are
						
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝑘
				=
				1
				0
				0
				0
				0
				0
				,
				𝑚
			

			

				𝑖
			

			
				=
				1
				0
				0
				0
				k
				g
				,
				𝛼
			

			

				𝑖
			

			
				=
				2
				5
				𝑘
			

			

				2
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑓
			

			

				𝑖
			

			
				𝑓
				=
				0
				,
				𝑖
				≠
				1
				0
				,
			

			
				1
				0
			

			
				=
				5
				0
				N
				,
				𝑎
				=
				0
				.
				0
				1
				8
				,
				𝑏
				=
				0
				.
				0
				0
				2
				,
				𝑘
			

			

				1
			

			
				=
				𝑘
			

			

				2
			

			
				=
				5
				𝑘
				N
				/
				m
				,
				𝑘
			

			

				3
			

			
				=
				𝑘
			

			

				4
			

			
				=
				4
				𝑘
				N
				/
				m
				,
				𝑘
			

			

				5
			

			
				=
				𝑘
			

			

				6
			

			
				𝑘
				=
				3
				𝑘
				N
				/
				m
				,
			

			

				7
			

			
				=
				𝑘
			

			

				8
			

			
				=
				2
				𝑘
				N
				/
				m
				,
				𝑘
			

			

				9
			

			
				=
				𝑘
			

			
				1
				0
			

			
				=
				𝑘
				N
				/
				m
				.
			

		
	

3.1. The Vibration Characteristic Analysis


The eigenfrequency analysis for the dynamic system discovers the fundamental vibration characteristic of the system, for example, resonance frequency and vibration shape. For this purpose, we first perform the eigenfrequency analysis. This problem is equivalent to solve eigenvalues of undamper, free vibration equations of (3.2). The QR method is used to find its eigenvalues. The first four natural frequencies are reported in Table 1.
Table 1: The first four natural frequencies.
	

	Mode	Freq. (rad/s)
	

	1	2.7502
	2	6.6523
	3	10.8492
	4	15.0825
	



In terms of nonlinear vibration theory, the system subjected to harmonic excitation with its frequency Ω approaching one third of or three times of any of natural frequency of the system may enters into resonance state: the superharmonic resonance or sub harmonic resonance. The dynamic response of the system under superharmonic or sub harmonic resonance condition is studied in the next section.
3.2. Super Harmonic Resonance
In this section, we use the presented method to investigate the super harmonic resonance. Only the superharmonic resonance corresponding to the first two natural frequencies is considered.
3.2.1. The Case for 
	
		
			
				3
				Ω
				≈
				𝜔
			

		
	

In the case of excitation frequency near one third of the first natural frequency, we first carry out an analysis of the vibration response of all modes with a series of given frequencies. To perform it, (3.2) is transformed to the one in the form of mode coordinates. The modes’ responses at different excitation frequencies are then obtained from the numerical integration for the modal equation by using the fifth fourth order Runge-Kutta-Fehlberg (RKF) method with adaptive step size.In simulation, the excitation frequency is taken to be 0.9267 rad/s, 0.9617 rad/s, and 0.9767 rad/s, respectively. Numerical results are plotted in Figure 2. Figure 2 illustrates the time response curve of the first four modes of system. Figures 2(a), 2(b), and 2(d) are for the excitation frequency 0.9267 rad/s, 0.9617 rad/s, and 0.9767 rad/s, respectively. Figures 2(b) and 2(c) are for the same excitation frequency but different integral initial conditions. Clearly shown in Figure 2, the response of the first mode is leading, while the response of other modes is weak as the excitation frequency is around one-third of the first natural frequency.
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(d)
Figure 2: The time response of the first four modes for different excitation frequency Ω:      black line, first mode; red line, second mode; blue line, third mode; green line, fourth mode.  (a) 
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 (rad/s).


From the data curve plotted in Figure 2, one can infer the total response of system that is governed by the first mode. Based on the presented method, the motion equation for the first mode 
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.
The numerical integration of (3.9) by RKF method yields the response of the first mode. Considering the law giv