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Abstract. 
Blow-up criteria of smooth solutions for the 3D micropolar fluid equations are investigated. Logarithmically improved blow-up criteria are established in the Morrey-Campanto space.


1. Introduction
This paper concerns the initial value problem for the micropolar fluid equations in 
	
		
			

				ℝ
			

			

				3
			

		
	

	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				𝜕
			

			

				𝑡
			

			
				𝜕
				𝑢
				−
				(
				𝜇
				+
				𝜒
				)
				Δ
				𝑢
				+
				𝑢
				⋅
				∇
				𝑢
				+
				∇
				𝑝
				−
				𝜒
				∇
				×
				𝑤
				=
				0
				,
			

			

				𝑡
			

			
				𝑤
				−
				𝛾
				Δ
				𝑤
				−
				𝜅
				∇
				∇
				⋅
				𝑤
				+
				2
				𝜒
				𝑤
				+
				𝑢
				⋅
				∇
				𝑤
				−
				𝜒
				∇
				×
				𝑢
				=
				0
				,
				∇
				⋅
				𝑢
				=
				0
			

		
	

					with the initial value
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				𝑡
				=
				0
				∶
				𝑢
				=
				𝑢
			

			

				0
			

			
				(
				𝑥
				)
				,
				𝑤
				=
				𝑤
			

			

				0
			

			
				(
				𝑥
				)
				,
			

		
	

					where 
	
		
			
				𝑢
				(
				𝑡
				,
				𝑥
				)
			

		
	
, 
	
		
			
				𝑤
				(
				𝑡
				,
				𝑥
				)
			

		
	
, and 
	
		
			
				𝑝
				(
				𝑡
				,
				𝑥
				)
			

		
	
 stand for the velocity field, microrotation field, and the scalar pressure, respectively. And 
	
		
			
				𝜈
				>
				0
			

		
	
 is the Newtonian kinetic viscosity, 
	
		
			
				𝜅
				>
				0
			

		
	
 is the dynamics micro-rotation viscosity, and 
	
		
			
				𝛼
				,
				𝛽
				,
				𝛾
				>
				0
			

		
	
 are the angular viscosity (see, i.e., Lukaszewicz [1]).
The micropolar fluid equations were first proposed by Eringen [2]. It is a type of fluids which exhibits the micro-rotational effects and micro-rotational inertia and can be viewed as a non-Newtonian fluid. Physically, it may represent adequately the fluids consisting of bar-like elements. Certain anisotropic fluids, for example, liquid crystals that are made up of dumbbell molecules, are of the same type. For more background, we refer to [1] and references therein. Besides their physical applications, the micropolar fluid equations are also mathematically significant. Fundamental mathematical issues such as the global regularity of their solutions have generated extensive research, and many interesting results have been obtained (see [3–8]). Regularity criterion of weak solutions to (1.1) and (1.2) in terms of the pressure was obtained (see [4]). Gala [5] established a Serrin-type regularity criterion for the weak solutions to (1.1) and (1.2) in Morrey-Campanato space. Wang and Chen [7] established the regularity criteria of weak solutions to (1.1) and (1.2) via the derivative of the velocity in one direction. A new logarithmically improved blow-up criterion of smooth solutions to (1.1) and (1.2) in an appropriate homogeneous Besov space is established by Wang and Yuan [8].
If 
	
		
			
				𝜅
				=
				0
			

		
	
 and 
	
		
			
				𝑤
				=
				0
			

		
	
, then (1.1) reduces to be the Navier-Stokes equations. Besides its physical applications, the Navier-Stokes equations are also mathematically significant. In the last century, Leray [9] and Hopf [10] constructed weak solutions to the Navier-Stokes equations. The solution is called the Leray-Hopf weak solution. Later on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations. Different criteria for regularity of the weak solutions have been proposed and many interesting results are established (see [11–26]). Regularity criteria of weak solutions to the Navier-Stokes equations in Morrey space were obtained in [13, 21].
The main aim of this paper is to establish two logarithmically blow-up criteria of smooth solution to (1.1), (1.2). Our results state as follows.
Theorem 1.1.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				,
				𝑤
			

			

				0
			

			
				∈
				𝐻
			

			

				𝑚
			

			
				(
				ℝ
			

			

				3
			

			
				)
				(
				𝑚
				≥
				3
				)
			

		
	
 with 
	
		
			
				∇
				⋅
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
. Assume that 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 is a smooth solution to (1.1) and (1.2) on [0, 
	
		
			

				𝑇
			

		
	
). If 
	
		
			

				𝑢
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝑡
				<
				∞
				,
				0
				<
				𝑟
				<
				1
				,
			

		
	

						then the solution 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 can be extended beyond 
	
		
			
				𝑡
				=
				𝑇
			

		
	
. 
We have the following corollary immediately.
Corollary 1.2.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				,
				𝑤
			

			

				0
			

			
				∈
				𝐻
			

			

				𝑚
			

			
				(
				ℝ
			

			

				3
			

			
				)
				(
				𝑚
				≥
				3
				)
			

		
	
 with 
	
		
			
				∇
				⋅
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
. Assume that 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 is a smooth solution to (1.1) and (1.2) on [0, 
	
		
			

				𝑇
			

		
	
). Suppose that 
	
		
			

				𝑇
			

		
	
 is the maximal existence time, then
							
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝑡
				=
				∞
				,
				0
				<
				𝑟
				<
				1
				.
			

		
	

Theorem 1.3.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				,
				𝑤
			

			

				0
			

			
				∈
				𝐻
			

			

				𝑚
			

			
				(
				ℝ
			

			

				3
			

			
				)
				(
				𝑚
				≥
				3
				)
			

		
	
 with 
	
		
			
				∇
				⋅
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
. Assume that 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 is a smooth solution to (1.1) and (1.2) on [0, 
	
		
			

				𝑇
			

		
	
). If 
	
		
			

				𝑢
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝑡
				<
				∞
				,
				0
				<
				𝑟
				<
				1
				,
			

		
	

						then the solution 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 can be extended beyond 
	
		
			
				𝑡
				=
				𝑇
			

		
	
.
One has the following corollary immediately.
Corollary 1.4.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				,
				𝑤
			

			

				0
			

			
				∈
				𝐻
			

			

				𝑚
			

			
				(
				ℝ
			

			

				3
			

			
				)
				(
				𝑚
				≥
				3
				)
			

		
	
 with 
	
		
			
				∇
				⋅
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
. Assume that 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 is a smooth solution to (1.1) and (1.2) on [0, 
	
		
			

				𝑇
			

		
	
). Suppose that 
	
		
			

				𝑇
			

		
	
 is the maximal existence time, then
							
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝑡
				=
				∞
				,
				0
				<
				𝑟
				<
				1
				.
			

		
	

The paper is organized as follows. We first state some important inequalities in Section 2, which play an important role in the proof of our main result. Then, we prove the main result in Section 3 and Section 4, respectively.
2. Preliminaries
Firstly, we recall the definition and some properties of the space that we are going to use. The space plays an important role in studying the regularity of solutions to nonlinear differential equations. 
Definition 2.1. For 
	
		
			
				1
				<
				𝑝
				≤
				𝑞
				≤
				+
				∞
			

		
	
, the Morrey-Campanato space 
	
		
			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

		
	
 is defined by
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

			
				=
				
				𝑓
				∈
				𝐿
			

			
				𝑝
				l
				o
				c
			

			
				
				ℝ
			

			

				3
			

			
				
				∣
				‖
				𝑓
				‖
			

			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

			
				=
				s
				u
				p
			

			
				𝑥
				∈
				ℝ
			

			

				3
			

			
				s
				u
				p
			

			
				𝑅
				>
				0
			

			

				𝑅
			

			
				3
				/
				𝑞
				−
				3
				/
				𝑝
			

			
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				𝐵
				(
				𝑥
				,
				𝑅
				)
				)
			

			
				
				,
				<
				∞
			

		
	

						where 
	
		
			
				𝐵
				(
				𝑥
				,
				𝑅
				)
			

		
	
 denotes the ball of center 
	
		
			

				𝑥
			

		
	
 with radius 
	
		
			

				𝑅
			

		
	
.It is easy to verify that 
	
		
			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

		
	
 is a Banach space under the norm 
	
		
			
				‖
				⋅
				‖
			

			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

		
	
. Furthermore, it is easy to check the following:
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑓
				(
				𝜆
				⋅
				)
				‖
			

			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

			
				=
				𝜆
			

			
				−
				3
				/
				𝑞
			

			
				‖
				𝑓
				‖
			

			
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

			
				,
				𝜆
				>
				0
				.
			

		
	

						Morrey-Campanato spaces can be seen as a complement to 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
 spaces. In fact, for 
	
		
			
				𝑝
				≤
				𝑞
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑞
			

			
				=
				̇
				𝑀
			

			
				𝑞
				,
				𝑞
			

			
				⊂
				̇
				𝑀
			

			
				𝑝
				,
				𝑞
			

			

				.
			

		
	

						one has the following comparison between Lorentz spaces and Morrey-Campanato spaces: for 
	
		
			
				𝑝
				≥
				2
			

		
	
,
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝐿
			

			
				3
				/
				𝑟
			

			
				
				ℝ
			

			

				3
			

			
				
				⊂
				𝐿
			

			
				3
				/
				𝑟
				,
				∞
			

			
				
				ℝ
			

			

				3
			

			
				
				⊂
				̇
				𝑀
			

			
				𝑝
				,
				3
				/
				𝑟
			

			
				
				ℝ
			

			

				3
			

			
				
				,
			

		
	

						where 
	
		
			

				𝐿
			

			
				𝑝
				,
				∞
			

		
	
 denotes the usual Lorentz (weak 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
) space.In the proof of our main result, we need the following lemma which was given in [27]. 
Lemma 2.2.  For 
	
		
			
				0
				≤
				𝑟
				<
				3
				/
				2
			

		
	
, the space 
	
		
			
				̇
				𝑍
			

			

				𝑟
			

		
	
 is defined as the space of 
	
		
			
				𝑓
				(
				𝑥
				)
				∈
				𝐿
			

			
				2
				l
				o
				c
			

			
				(
				ℝ
			

			

				3
			

			

				)
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				̇
				𝑍
			

			

				𝑟
			

			
				=
				s
				u
				p
			

			
				‖
				𝑔
				‖
			

			
				̇
				𝐵
				𝑟
				2
				,
				1
			

			
				≤
				1
			

			
				‖
				𝑓
				𝑔
				‖
			

			

				𝐿
			

			

				2
			

			
				<
				∞
				.
			

		
	

						Then 
	
		
			
				̇
				𝑀
				𝑓
				∈
			

			
				2
				,
				3
				/
				𝑟
			

		
	
 if and only if 
	
		
			
				̇
				𝑍
				𝑓
				∈
			

			

				𝑟
			

		
	
 with equivalence of norms. And the fact that
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝐿
			

			

				2
			

			
				
				̇
				𝐻
			

			

				1
			

			
				⊂
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				⊂
				̇
				𝐻
			

			

				𝑟
			

			
				,
				0
				<
				𝑟
				<
				1
				,
			

		
	

						one has
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				̇
				𝑋
			

			

				𝑟
			

			
				⊂
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			

				,
			

		
	

						where 
	
		
			
				̇
				𝑋
			

			

				𝑟
			

		
	
 denotes the pointwise multiplier space from 
	
		
			
				̇
				𝐻
			

			

				𝑟
			

		
	
 to 
	
		
			

				𝐿
			

			

				2
			

		
	
.
We need the following lemma that is basically established in [28]. For completeness, the proof will be also sketched here.
Lemma 2.3.  For 
	
		
			
				0
				<
				𝑟
				<
				1
			

		
	
, the inequality
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				𝐿
				1
				−
				𝑟
			

			

				2
			

			
				‖
				∇
				𝑓
				‖
			

			
				𝑟
				𝐿
			

			

				2
			

		
	

						holds, where 
	
		
			

				𝐶
			

		
	
 is a positive constant that depends on 
	
		
			

				𝑟
			

		
	
. 
Proof. It follows from the definition of Besov spaces that
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				=
				
			

			
				𝑖
				∈
				ℤ
			

			

				2
			

			
				𝑖
				𝑟
			

			
				‖
				‖
				Δ
			

			

				𝑖
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				
			

			
				𝑖
				≤
				𝑗
			

			

				2
			

			
				𝑖
				𝑟
			

			
				‖
				‖
				Δ
			

			

				𝑖
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				
			

			
				𝑖
				>
				𝑗
			

			

				2
			

			
				𝑖
				(
				𝑟
				−
				1
				)
			

			

				2
			

			

				𝑖
			

			
				‖
				‖
				Δ
			

			

				𝑖
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				
				
			

			
				𝑖
				≤
				𝑗
			

			

				2
			

			
				2
				𝑖
				𝑟
			

			

				
			

			
				1
				/
				2
			

			
				
				
			

			
				𝑖
				≤
				𝑗
			

			
				‖
				‖
				Δ
			

			

				𝑖
			

			
				𝑓
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			
				+
				
				
			

			
				𝑖
				≤
				𝑗
			

			

				2
			

			
				2
				𝑖
				(
				𝑟
				−
				1
				)
			

			

				
			

			
				1
				/
				2
			

			
				
				
			

			
				𝑖
				>
				𝑗
			

			

				2
			

			
				2
				𝑖
			

			
				‖
				‖
				Δ
			

			

				𝑖
			

			
				𝑓
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			
				
				2
				≤
				𝐶
			

			
				𝑗
				𝑟
			

			
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				2
			

			
				𝑗
				(
				𝑟
				−
				1
				)
			

			
				‖
				𝑓
				‖
			

			
				̇
				𝐻
			

			

				1
			

			
				
				
				2
				=
				𝐶
			

			
				𝑗
				𝑟
			

			

				𝐴
			

			
				−
				𝑟
			

			
				+
				2
			

			
				𝑗
				(
				𝑟
				−
				1
				)
			

			

				𝐴
			

			
				1
				−
				𝑟
			

			
				
				‖
				𝑓
				‖
			

			
				𝐿
				1
				−
				𝑟
			

			

				2
			

			
				‖
				𝑓
				‖
			

			
				𝑟
				̇
				𝐻
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			
				𝐴
				=
				(
				‖
				𝑓
				‖
			

			
				̇
				𝐻
			

			

				1
			

			
				)
				/
				(
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				2
			

			

				)
			

		
	
. Choosing 
	
		
			

				𝑗
			

		
	
 such that 
	
		
			
				1
				/
				2
				≤
				2
			

			
				𝑗
				𝑟
			

			

				𝐴
			

			
				−
				𝑟
			

			
				≤
				1
			

		
	
, from (2.9) we get
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				≤
				
				1
				+
				2
			

			
				𝑗
				(
				𝑟
				−
				1
				)
			

			

				𝐴
			

			
				1
				−
				𝑟
			

			
				
				‖
				𝑓
				‖
			

			
				𝐿
				1
				−
				𝑟
			

			

				2
			

			
				‖
				𝑓
				‖
			

			
				𝑟
				̇
				𝐻
			

			

				1
			

			
				
				
				1
				≤
				𝐶
				1
				+
			

			
				
			
			
				2
				
			

			
				−
				1
				/
				𝑟
			

			
				
				‖
				𝑓
				‖
			

			
				𝐿
				1
				−
				𝑟
			

			

				2
			

			
				‖
				∇
				𝑓
				‖
			

			
				𝑟
				𝐿
			

			

				2
			

			

				.
			

		
	

						Therefore, we have completed the proof of Lemma 2.3.
 The following Lemma comes from [29].
Lemma 2.4.  Assume that 
	
		
			
				1
				<
				𝑝
				<
				∞
			

		
	
. For 
	
		
			
				𝑓
				,
				𝑔
				∈
				𝑊
			

			
				𝑚
				,
				𝑝
			

		
	
, and 
	
		
			
				1
				<
				𝑞
				≤
				∞
			

		
	
, 
	
		
			
				1
				<
				𝑟
				<
				∞
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				‖
				∇
			

			

				𝛼
			

			
				(
				𝑓
				𝑔
				)
				−
				𝑓
				∇
			

			

				𝛼
			

			
				𝑔
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				
				≤
				𝐶
				‖
				∇
				𝑓
				‖
			

			

				𝐿
			

			
				𝑞
				1
			

			
				‖
				‖
				∇
			

			
				𝛼
				−
				1
			

			
				𝑔
				‖
				‖
			

			

				𝐿
			

			
				𝑟
				1
			

			
				+
				‖
				𝑔
				‖
			

			

				𝐿
			

			
				𝑞
				2
			

			
				‖
				∇
			

			

				𝛼
			

			
				𝑓
				‖
			

			

				𝐿
			

			
				𝑟
				2
			

			
				
				,
			

		
	

						where 
	
		
			
				1
				≤
				𝛼
				≤
				𝑚
			

		
	
 and 
	
		
			
				1
				/
				𝑝
				=
				1
				/
				𝑞
			

			

				1
			

			
				+
				1
				/
				𝑟
			

			

				1
			

			
				=
				1
				/
				𝑞
			

			

				2
			

			
				+
				1
				/
				𝑟
			

			

				2
			

		
	
.
 In order to prove Theorem 1.1, we need the following interpolation inequalities in three space dimensions.
Lemma 2.5.  In three space dimensions, the following inequalities
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				‖
				∇
				𝑓
				‖
			

			

				𝐿
			

			

				4
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				𝐿
				1
				/
				8
			

			

				2
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑓
				‖
				‖
			

			
				𝐿
				7
				/
				8
			

			

				2
			

			
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				4
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				𝐿
				3
				/
				4
			

			

				2
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑓
				‖
				‖
			

			
				𝐿
				1
				/
				4
			

			

				2
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			

				4
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				𝐿
				1
				/
				1
				2
			

			

				2
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑓
				‖
				‖
			

			
				𝐿
				1
				1
				/
				1
				2
			

			

				2
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				𝐿
				1
				/
				3
			

			

				2
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑓
				‖
				‖
			

			
				𝐿
				2
				/
				3
			

			

				2
			

		
	

						hold.
3. Proof of Theorem 1.1
Proof. Multiplying the first equation of (1.1) by 
	
		
			

				𝑢
			

		
	
 and integrating with respect to 
	
		
			

				𝑥
			

		
	
 over 
	
		
			

				ℝ
			

			

				3
			

		
	
, using integration by parts, we obtain
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				(
				𝜇
				+
				𝜒
				)
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				𝜒
			

			

				ℝ
			

			

				3
			

			
				(
				∇
				×
				𝑤
				)
				⋅
				𝑢
				𝑑
				𝑥
			

		
	

						Similarly, we get
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				𝜒
			

			

				ℝ
			

			

				3
			

			
				(
				∇
				×
				𝑢
				)
				⋅
				𝑤
				𝑑
				𝑥
				.
			

		
	

						Summing up (3.1) and (3.2), we deduce thats
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				+
				(
				𝜇
				+
				𝜒
				)
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				𝜒
			

			

				ℝ
			

			

				3
			

			
				
				(
				∇
				×
				𝑤
				)
				⋅
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				(
				∇
				×
				𝑢
				)
				⋅
				𝑤
				𝑑
				𝑥
				.
			

		
	

						Using integration by parts and Cauchy’s inequality, we obtain
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				𝜒
				
			

			

				ℝ
			

			

				3
			

			
				
				(
				∇
				×
				𝑤
				)
				⋅
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				(
				∇
				×
				𝑢
				)
				⋅
				𝑤
				𝑑
				𝑥
				≤
				𝜒
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

						Combining (3.3) and (3.4) yields
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				+
				𝜇
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				0
				.
			

		
	

						Integrating with respect to 
	
		
			

				𝑡
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				+
				2
			

			
				𝑡
				0
			

			
				
				𝜇
				‖
				∇
				𝑢
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
				‖
				∇
				𝑤
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				
				𝑑
				𝜏
				+
				2
				𝜅
			

			
				𝑡
				0
			

			
				‖
				∇
				⋅
				𝑤
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				𝑑
				𝜏
				+
				2
				𝜒
			

			
				𝑡
				0
			

			
				‖
				𝑤
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				𝑢
				𝑑
				𝜏
				≤
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				𝑤
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	
Taking 
	
		
			

				∇
			

		
	
 to the first equation of (1.1), then multiplying the resulting equation by 
	
		
			
				∇
				𝑢
			

		
	
 and using integration by parts, we obtain
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				(
				𝜇
				+
				𝜒
				)
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			
				
				∇
				(
				𝑢
				⋅
				∇
				𝑢
				)
				∇
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				∇
				(
				∇
				×
				𝑤
				)
				∇
				𝑢
				𝑑
				𝑥
				.
			

		
	

						Similarly, we get
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				⋅
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			
				
				∇
				(
				𝑢
				⋅
				∇
				𝑤
				)
				⋅
				∇
				𝑤
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				∇
				(
				∇
				×
				𝑢
				)
				⋅
				∇
				𝑤
				𝑑
				𝑥
				.
			

		
	

						Combining (3.7) and (3.8) yields
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				(
				𝜇
				+
				𝜒
				)
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			
				
				∇
				(
				𝑢
				⋅
				∇
				𝑢
				)
				∇
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				−
				
				∇
				(
				∇
				×
				𝑤
				)
				∇
				𝑢
				𝑑
				𝑥
			

			

				ℝ
			

			

				3
			

			
				
				∇
				(
				𝑢
				⋅
				∇
				𝑤
				)
				∇
				𝑤
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				∇
				(
				∇
				×
				𝑢
				)
				∇
				𝑤
				𝑑
				𝑥
				.
			

		
	

						Using integration by parts and Cauchy’s inequality, we obtain
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				𝜒
				
			

			

				ℝ
			

			

				3
			

			
				
				∇
				(
				∇
				×
				𝑤
				)
				⋅
				∇
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			
				‖
				‖
				∇
				∇
				(
				∇
				×
				𝑢
				)
				⋅
				∇
				𝑤
				𝑑
				𝑥
				≤
				𝜒
			

			

				2
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

						Using Hölder’s inequality, (2.8), and Young’s inequality, we obtain
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				3
			

			
				≤
				∇
				(
				𝑢
				⋅
				∇
				𝑢
				)
				∇
				𝑢
				𝑑
				𝑥
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				𝑢
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝐵
				2
				−
				𝑟
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑢
				‖
				‖
			

			
				𝑟
				𝐿
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

						Similarly, we have the following estimate:
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				3
			

			
				≤
				∇
				(
				𝑢
				⋅
				∇
				𝑤
				)
				∇
				𝑤
				𝑑
				𝑥
				‖
				∇
				𝑤
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				𝑢
				∇
				𝑤
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				‖
				∇
				𝑤
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				̇
				𝐵
				2
				−
				𝑟
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑤
				‖
				‖
			

			
				𝑟
				𝐿
			

			

				2
			

			
				≤
				𝛾
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				2
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

						Combining (3.9)-(3.12) yields
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			

				2
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				
				
				‖
				‖
				∇
				1
				+
				l
				n
				𝑒
				+
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				,
				
				
			

		
	

						where we have used
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝐻
			

			

				2
			

			
				
				ℝ
			

			

				3
			

			
				
				↪
				𝐿
			

			

				∞
			

			
				
				ℝ
			

			

				3
			

			
				
				.
			

		
	

						For any 
	
		
			

				𝑇
			

			

				0
			

			
				≤
				𝑡
				≤
				𝑇
			

		
	
, we set
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				𝜗
				(
				𝑡
				)
				=
				s
				u
				p
			

			

				𝑇
			

			

				0
			

			
				≤
				𝜏
				≤
				𝑡
			

			
				
				‖
				‖
				∇
			

			

				3
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				‖
				‖
				𝑤
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				
				.
			

		
	

						Thus, from (3.13), we have
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			

				2
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				(
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				)
				,
				∀
				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
				.
			

		
	

						It follows from (3.8) and Gronwall’s inequality that
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				
				‖
				‖
				
				𝑇
				∇
				𝑢
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				
				𝑇
				∇
				𝑤
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				
				e
				x
				p
				𝐶
				(
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				)
			

			
				𝑡
				𝑇
			

			

				0
			

			
				‖
				∇
				𝑢
				(
				𝜏
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				⎫
				⎪
				⎬
				⎪
				⎭
				𝑑
				𝜏
				≤
				𝐶
			

			

				0
			

			
				[
				]
				}
				e
				x
				p
				{
				𝐶
				𝜀
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				≤
				𝐶
			

			

				0
			

			
				[
				]
				}
				e
				x
				p
				{
				2
				𝐶
				𝜀
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				≤
				𝐶
			

			

				0
			

			
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
			

			
				2
				𝐶
				𝜀
			

			

				,
			

		
	

						provided that
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝑇
			

			

				0
			

			
				‖
				∇
				𝑢
				(
				𝜏
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝜏
				<
				𝜀
				≪
				1
				,
			

		
	

						where 
	
		
			

				𝐶
			

			

				0
			

			
				=
				‖
				∇
				𝑢
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

		
	
.Applying 
	
		
			

				∇
			

			

				𝑚
			

		
	
 to the first equation of (1.1), then multiplying the resulting equation by 
	
		
			

				∇
			

			

				𝑚
			

			

				𝑢
			

		
	
 and using integration by parts, we have
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				∇
			

			

				𝑚
			

			
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				(
				𝜇
				+
				𝜒
				)
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				𝑢
				⋅
				∇
				𝑢
				)
				∇
			

			

				𝑚
			

			
				
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				∇
				×
				𝑤
				)
				∇
			

			

				𝑚
			

			
				𝑢
				𝑑
				𝑥
				.
			

		
	

						Likewise, from the second equation of (1.1), we obtain
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
			

			

				𝑚
			

			
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				𝑢
				⋅
				∇
				𝑤
				)
				∇
			

			

				𝑚
			

			
				
				𝑤
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				∇
				×
				𝑢
				)
				∇
			

			

				𝑚
			

			
				𝑤
				𝑑
				𝑥
				.
			

		
	

						Using 
	
		
			
				∇
				⋅
				𝑢
				=
				0
			

		
	
 and (3.19) and (3.20), we have
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
			

			

				𝑚
			

			
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				(
				𝜇
				+
				𝜒
				)
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
			

			

				𝑚
			

			
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				=
				−
			

			

				ℝ
			

			

				3
			

			
				
				∇
			

			

				𝑚
			

			
				(
				𝑢
				⋅
				∇
				𝑢
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				𝑚
			

			
				𝑢
				
				∇
			

			

				𝑚
			

			
				
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				∇
				×
				𝑤
				)
				∇
			

			

				𝑚
			

			
				−
				
				𝑢
				𝑑
				𝑥
			

			

				ℝ
			

			

				3
			

			
				
				∇
			

			

				𝑚
			

			
				(
				𝑢
				⋅
				∇
				𝑤
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				𝑚
			

			
				𝑤
				
				∇
			

			

				𝑚
			

			
				
				𝑤
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				𝑚
			

			
				(
				∇
				×
				𝑢
				)
				∇
			

			

				𝑚
			

			
				𝑤
				𝑑
				𝑥
				.
			

		
	

						In what follows, for simplicity, we will set 
	
		
			
				𝑚
				=
				3
			

		
	
. By Hölder’s inequality, (2.11), (2.12), and Young’s inequality, we obtain
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				3
			

			
				
				∇
			

			

				3
			

			
				(
				𝑢
				⋅
				∇
				𝑢
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				3
			

			
				𝑢
				
				∇
			

			

				3
			

			
				≤
				‖
				‖
				∇
				𝑢
				𝑑
				𝑥
			

			

				3
			

			
				(
				𝑢
				⋅
				∇
				𝑢
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				3
				/
				4
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				/
				4
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				1
				2
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				1
				/
				1
				2
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				3
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				2
				/
				3
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				7
				/
				6
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				1
				/
				6
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				4
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				4
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				4
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
			

			
				1
				4
				𝐶
				𝜀
			

			
				,
				−
				
			

			

				ℝ
			

			

				3
			

			
				
				∇
			

			

				3
			

			
				(
				𝑢
				⋅
				∇
				𝑤
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				3
			

			
				𝑤
				
				∇
			

			

				3
			

			
				≤
				‖
				‖
				∇
				𝑤
				𝑑
				𝑥
			

			

				3
			

			
				(
				𝑢
				⋅
				∇
				𝑤
				)
				−
				𝑢
				⋅
				∇
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				3
				/
				4
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				/
				4
			

			

				2
			

			
				‖
				∇
				𝑤
				‖
			

			
				𝐿
				1
				/
				1
				2
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				𝐿
				1
				1
				/
				1
				2
			

			

				2
			

			
				‖
				∇
				𝑤
				‖
			

			
				𝐿
				1
				/
				3
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				𝐿
				2
				/
				3
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑤
				‖
			

			
				𝐿
				3
				/
				4
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				𝐿
				1
				/
				4
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				1
				2
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				1
				/
				1
				2
			

			

				2
			

			
				‖
				∇
				𝑤
				‖
			

			
				𝐿
				1
				/
				3
			

			

				2
			

			
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				𝐿
				2
				/
				3
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				4
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				9
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑤
				‖
			

			
				5
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				𝑤
				‖
			

			
				𝐿
				1
				3
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				4
				‖
				‖
				∇
			

			

				4
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝛾
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				4
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
			

			
				1
				4
				𝐶
				𝜀
			

			

				.
			

		
	

						It follows from integration by parts and Cauchy’s inequality that
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				𝜒
				
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				3
			

			
				(
				∇
				×
				𝑤
				)
				∇
			

			

				3
			

			
				
				𝑢
				𝑑
				𝑥
				+
				𝜒
			

			

				ℝ
			

			

				3
			

			

				∇
			

			

				3
			

			
				(
				∇
				×
				𝑢
				)
				∇
			

			

				3
			

			
				‖
				‖
				∇
				𝑤
				𝑑
				𝑥
				≤
				𝜒
			

			

				4
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝜒
			

			

				3
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

						Combining (3.21)-(3.24) yields
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
			

			

				𝑚
			

			
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				(
				𝜇
				+
				𝜒
				)
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			
				𝑚
				+
				1
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
			

			

				𝑚
			

			
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				2
				𝜒
				‖
				∇
			

			

				𝑚
			

			
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				𝐶
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
			

			
				1
				4
				𝐶
				𝜀
			

			
				,
				∀
				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
				.
			

		
	

						Taking 
	
		
			

				𝜀
			

		
	
 small enough yields
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				‖
				‖
				∇
				𝑑
				𝑡
			

			

				3
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				≤
				𝐶
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				,
				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
				,
			

		
	

						for all 
	
		
			

				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
			

		
	
. Integrating (3.26) with respect to time from 
	
		
			

				𝑇
			

			

				0
			

		
	
 to 
	
		
			

				𝜏
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑒
				+
			

			

				3
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				‖
				‖
				𝑤
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				≤
				𝑒
				+
			

			

				3
			

			
				𝑢
				
				𝑇
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				
				𝑇
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
			

			

				2
			

			

				
			

			
				𝜏
				𝑇
			

			

				0
			

			
				(
				𝑒
				+
				𝜗
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

						Owing to (3.27), we get
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑒
				+
				𝜗
				(
				𝑡
				)
				≤
				𝑒
				+
			

			

				3
			

			
				𝑢
				
				𝑇
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				𝑤
				
				𝑇
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
			

			

				2
			

			

				
			

			
				𝑡
				𝑇
			

			

				0
			

			
				(
				𝑒
				+
				𝜗
				(
				𝜏
				)
				)
				𝑑
				𝜏
			

		
	

						For all 
	
		
			

				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
			

		
	
, with help of Gronwall inequality and (3.28), we have
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑒
				+
			

			

				3
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
			

			

				3
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				𝐶
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 depends on 
	
		
			
				‖
				∇
				𝑢
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

		
	
. From (3.29) and (3.5), we know that 
	
		
			
				(
				𝑢
				,
				𝑤
				)
				∈
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				3
			

			
				(
				ℝ
			

			

				3
			

			
				)
				)
			

		
	
. Thus, 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 can be extended smoothly beyond 
	
		
			
				𝑡
				=
				𝑇
			

		
	
. We have completed the proof of Theorem 1.1.
4. Proof of Theorem 1.3
We start to estimate every term on the right of (3.9). Using integration by parts, Hölder inequality, (2.8) and Young inequality, we obtain
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				3
			

			
				≤
				‖
				‖
				∇
				∇
				(
				𝑢
				⋅
				∇
				𝑢
				)
				∇
				𝑢
				𝑑
				𝑥
			

			

				2
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				𝑢
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑢
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				̇
				𝐵
				1
				−
				𝑟
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑢
				‖
				‖
			

			
				𝐿
				1
				+
				𝑟
			

			

				2
			

			
				≤
				𝜇
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

					Similarly, we have the following estimate
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				3
			

			
				≤
				‖
				‖
				∇
				∇
				(
				𝑢
				⋅
				∇
				𝑤
				)
				∇
				𝑤
				𝑑
				𝑥
			

			

				2
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				𝑢
				∇
				𝑤
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				̇
				𝐵
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑤
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				̇
				𝐵
				1
				−
				𝑟
			

			
				𝑟
				2
				,
				1
			

			
				‖
				‖
				∇
			

			

				2
			

			
				𝑤
				‖
				‖
			

			
				𝐿
				1
				+
				𝑟
			

			

				2
			

			
				≤
				𝛾
			

			
				
			
			
				2
				‖
				‖
				∇
			

			

				2
			

			
				‖
				‖
				𝑤
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

					Thus from (3.9), (3.10), (4.1), and (4.2), we obtain
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				‖
				∇
				+
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				‖
				∇
				+
				𝛾
			

			

				2
			

			
				𝑤
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜅
				‖
				∇
				∇
				⋅
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝜒
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				(
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				)
				,
				∀
				𝑇
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
				.
			

		
	

					It follows from (4.3) and Gronwall’s inequality that
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				
				‖
				‖
				
				𝑇
				∇
				𝑢
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				
				𝑇
				∇
				𝑤
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				
				e
				x
				p
				𝐶
				(
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				)
			

			
				𝑡
				𝑇
			

			

				0
			

			
				‖
				𝑢
				(
				𝜏
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				1
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				⎫
				⎪
				⎬
				⎪
				⎭
				𝑑
				𝜏
				≤
				𝐶
			

			

				0
			

			
				[
				]
				}
				e
				x
				p
				{
				𝐶
				𝜀
				1
				+
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				≤
				𝐶
			

			

				0
			

			
				[
				]
				}
				e
				x
				p
				{
				2
				𝐶
				𝜀
				l
				n
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
				≤
				𝐶
			

			

				0
			

			
				(
				𝑒
				+
				𝜗
				(
				𝑡
				)
				)
			

			
				2
				𝐶
				𝜀
			

			

				,
			

		
	

					provided that
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝑇
			

			

				0
			

			
				‖
				𝑢
				(
				𝜏
				)
				‖
			

			
				̇
				𝑀
				2
				/
				(
				2
				−
				𝑟
				)
			

			
				2
				,
				3
				/
				𝑟
			

			
				
			
			
				
				1
				+
				l
				n
				𝑒
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				𝑑
				𝜏
				<
				𝜀
				≪
				1
				,
			

		
	

					where 
	
		
			

				𝐶
			

			

				0
			

			
				=
				‖
				∇
				𝑢
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑤
				(
				𝑇
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

		
	
.
From (4.4), 
	
		
			

				𝐻
			

			

				𝑚
			

		
	
 estimate for Theorem 1.3 is same as that for Theorem 1.1. Thus, Theorem 1.3 is proved. 
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