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Abstract. 
A modified spectral PRP conjugate gradient method is presented
for solving unconstrained optimization problems. The constructed search direction
is proved to be a sufficiently descent direction of the objective function. With an
Armijo-type line search to determinate the step length, a new spectral PRP conjugate
algorithm is developed. Under some mild conditions, the theory of global convergence is established. Numerical results demonstrate that this algorithm is promising,
particularly, compared with the existing similar ones.


1. Introduction
Recently, it is shown that conjugate gradient method is efficient and powerful in solving large-scale unconstrained minimization problems owing to its low memory requirement and simple computation. For example, in [1–17], many variants of conjugate gradient algorithms are developed. However, just as pointed out in [2], there exist many theoretical and computational challenges to apply these methods into solving the unconstrained optimization problems. Actually, 14 open problems on conjugate gradient methods are presented in [2]. These problems concern the selection of initial direction, the computation of step length, and conjugate parameter based on the values of the objective function, the influence of accuracy of line search procedure on the efficiency of conjugate gradient algorithm, and so forth.
The general model of unconstrained optimization problem is as follows:
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 stands for the Euclidean norm of vector, then (1.2)–(1.4) are called Polak-Ribiére-Polyak (PRP) conjugate gradient method (see [8, 18]).
It is well known that PRP method has the property of finite termination when the objective function is a strong convex quadratic function combined with the exact line search. Furthermore, in [7], for a twice continuously differentiable strong convex objective function, the global convergence has also been proved. However, it seems to be nontrivial to establish the global convergence theory under the condition of inexact line search, especially for a general nonconvex minimization problem. Quite recently, it is noticed that there are many modified PRP conjugate gradient methods studied (see, e.g., [10–13, 17]). In these methods, the search direction is constructed to possess the sufficient descent property, and the theory of global convergence is established with different line search strategy. In [17], the search direction 
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					Similar to the idea in [17], a new spectral PRP conjugate gradient algorithm will be developed in this paper. On one hand, we will present a new spectral conjugate gradient direction, which also possess the sufficiently descent feature. On the other hand, a modified Armijo-type line search strategy is incorporated into the developed algorithm. Numerical experiments will be used to make a comparison among some similar algorithms.
The rest of this paper is organized as follows. In the next section, a new spectral PRP conjugate gradient method is proposed. Section 3 will be devoted to prove the global convergence. In Section 4, some numerical experiments will be done to test the efficiency, especially in comparison with the existing other methods. Some concluding remarks will be given in the last section.
2. New Spectral PRP Conjugate Gradient Algorithm
In this section, we will firstly study how to determine a descent direction of objective function.
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					In this case, the proposed spectral PRP conjugate gradient method reduces to the standard PRP method. However, it is often that the exact line search is time-consuming and sometimes is unnecessary. In the following, we are going to develop a new algorithm, where the search direction 
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Remark 2.4. From Proposition 2.3, it is known that Algorithm 2.2 is well defined. In addition, it is easy to see that more descent magnitude can be obtained at each step by the modified Armijo-type line search (2.7) than the standard Armijo rule.
3. Global Convergence
In this section, we are in a position to study the global convergence of Algorithm 2.2. We first state the following mild assumptions, which will be used in the proof of global convergence.
Assumption 3.1. The level set 
	
		
			
				Ω
				=
				{
				𝑥
				∈
				𝑅
			

			

				𝑛
			

			
				|
				𝑓
				(
				𝑥
				)
				≤
				𝑓
				(
				𝑥
			

			

				0
			

			
				)
				}
			

		
	
 is bounded.
Assumption 3.2. In some neighborhood 
	
		
			

				𝑁
			

		
	
 of 
	
		
			

				Ω
			

		
	
, 
	
		
			

				𝑓
			

		
	
 is continuously differentiable and its gradient is Lipschitz continuous, namely, there exists a constant 
	
		
			
				𝐿
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑔
				(
				𝑥
				)
				−
				𝑔
				(
				𝑦
				)
				‖
				≤
				𝐿
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝑁
				.
			

		
	

Since 
	
		
			
				{
				𝑓
				(
				𝑥
			

			

				𝑘
			

			
				)
				}
			

		
	
 is decreasing, it is clear that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 generated by Algorithm 2.2 is contained in a bounded region from Assumption 3.1. So, there exists a convergent subsequence of 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
. Without loss of generality, it can be supposed that 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 is convergent. On the other hand, from Assumption 3.2, it follows that there is a constant 
	
		
			

				𝛾
			

			

				1
			

			
				>
				0
			

		
	
 such that
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑔
				(
				𝑥
				)
				‖
				≤
				𝛾
			

			

				1
			

			
				,
				∀
				𝑥
				∈
				Ω
				.
			

		
	

					Hence, the sequence 
	
		
			
				{
				𝑔
			

			

				𝑘
			

			

				}
			

		
	
 is bounded.
In the following, we firstly prove that the stepsize 
	
		
			

				𝛼
			

			

				𝑘
			

		
	
 at each iteration is large enough.
Lemma 3.3.  With Assumption 3.2, there exists a constant 
	
		
			
				𝑚
				>
				0
			

		
	
 such that the following inequality
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑘
			

			
				‖
				‖
				𝑔
				≥
				𝑚
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

		
	

						holds for all 
	
		
			

				𝑘
			

		
	
 sufficiently large.
Proof. Firstly, from the line search rule (2.7), we know that 
	
		
			

				𝛼
			

			

				𝑘
			

			
				≤
				1
			

		
	
.If 
	
		
			

				𝛼
			

			

				𝑘
			

			
				=
				1
			

		
	
, then we have 
	
		
			
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				≤
				‖
				𝑑
			

			

				𝑘
			

			

				‖
			

		
	
. The reason is that 
	
		
			
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				>
				‖
				𝑑
			

			

				𝑘
			

			

				‖
			

		
	
 implies that 
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				>
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
				≥
				−
				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			

				,
			

		
	

						which contradicts (2.3). Therefore, taking 
	
		
			
				𝑚
				=
				1
			

		
	
, the inequality (3.3) holds.If 
	
		
			
				0
				<
				𝛼
			

			

				𝑘
			

			
				<
				1
			

		
	
, then the line search rule (2.7) implies that 
	
		
			

				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

		
	
 does not satisfy the inequality (2.7). So, we have
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				+
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				
				
				𝑥
				−
				𝑓
			

			

				𝑘
			

			
				
				>
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				−
				𝛿
			

			

				2
			

			

				𝜌
			

			
				−
				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	
Since 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				+
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				
				
				𝑥
				−
				𝑓
			

			

				𝑘
			

			
				
				=
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			
				𝑔
				
				𝑥
			

			

				𝑘
			

			
				+
				𝑡
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			

				
			

			

				𝑇
			

			

				𝑑
			

			

				𝑘
			

			
				=
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			
				
				𝑔
				
				𝑥
			

			

				𝑘
			

			
				+
				𝑡
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				
				−
				𝑔
			

			

				𝑘
			

			

				
			

			

				𝑇
			

			

				𝑑
			

			

				𝑘
			

			
				≤
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				𝐿
				𝜌
			

			
				−
				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑡
			

			

				𝑘
			

			
				∈
				(
				0
				,
				1
				)
			

		
	
 satisfies 
	
		
			

				𝑥
			

			

				𝑘
			

			
				+
				𝑡
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				∈
				𝑁
			

		
	
 and the last inequality is from (3.2), it is obtained that 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				−
				𝛿
			

			

				2
			

			

				𝜌
			

			
				−
				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				<
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				𝐿
				𝜌
			

			
				−
				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

		
	

						due to (3.5) and (3.1). It reads 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				
				1
				−
				𝛿
			

			

				1
			

			
				
				𝛼
			

			

				𝑘
			

			

				𝜌
			

			
				−
				1
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				
				𝐿
				+
				𝛿
			

			

				2
			

			
				
				𝜌
			

			
				−
				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				>
				0
				,
			

		
	

						that is,
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				
				𝐿
				+
				𝛿
			

			

				2
			

			
				
				𝜌
			

			
				−
				1
			

			

				𝛼
			

			

				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				>
				
				𝛿
			

			

				1
			

			
				
				𝑔
				−
				1
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			

				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑘
			

			
				>
				
				𝛿
			

			

				1
			

			
				
				−
				1
				𝜌
				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				
			
			
				
				𝐿
				+
				𝛿
			

			

				2
			

			
				
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	

						From Lemma 2.1, it follows that 
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑘
			

			
				>
				𝜌
				
				1
				−
				𝛿
			

			

				1
			

			
				
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				
				𝐿
				+
				𝛿
			

			

				2
			

			
				
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	
Taking 
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝜌
				
				𝑚
				=
				m
				i
				n
				1
				,
				1
				−
				𝛿
			

			

				1
			

			

				
			

			
				
			
			
				𝐿
				+
				𝛿
			

			

				2
			

			
				
				,
			

		
	

						then the desired inequality (3.3) holds.
From Lemmas 2.1 and 3.3 and Assumption 3.1, we can prove the following result.
Lemma 3.4.  Under Assumptions 3.1 and 3.2, the following results hold:  
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑘
				≥
				0
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				<
				∞
				,
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				=
				0
				.
			

		
	

Proof. From the line search rule (2.7) and Assumption 3.1, there exists a constant 
	
		
			

				𝑀
			

		
	
 such that 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				−
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				𝛿
			

			

				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				
				
				𝑥
				−
				𝑓
			

			

				k
			

			
				+
				1
			

			
				
				𝑥
				
				
				=
				𝑓
			

			

				0
			

			
				
				
				𝑥
				−
				𝑓
			

			

				𝑛
			

			
				
				<
				2
				𝑀
				.
			

		
	

						Then, from Lemma 2.1, we have 
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				2
				𝑀
				≥
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				−
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				+
				𝛿
			

			

				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛿
			

			

				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
				≥
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝛿
			

			

				1
			

			
				𝑚
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛿
			

			

				2
			

			
				⋅
				𝑚
			

			

				2
			

			
				⋅
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				⋅
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝛿
			

			

				1
			

			
				+
				𝛿
			

			

				2
			

			
				𝑚
				
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				⋅
				𝑚
				.
			

		
	

						Therefore, the first conclusion is proved.Since 
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				2
				𝑀
				≥
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛿
			

			

				2
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
				≥
				𝛿
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						the series 
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

		
	

						is convergent. Thus, 
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛼
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				=
				0
				.
			

		
	
The second conclusion (3.14) is obtained.
In the end of this section, we come to establish the global convergence theorem for Algorithm 2.2.
Theorem 3.5.  Under Assumptions 3.1 and 3.2, it holds that
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				‖
				‖
				𝑔
				i
				n
				f
			

			

				𝑘
			

			
				‖
				‖
				=
				0
				.
			

		
	

Proof. Suppose that there exists a positive constant 
	
		
			
				𝜖
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
				≥
				𝜖
			

		
	

						for all 
	
		
			

				𝑘
			

		
	
. Then, from (2.1), it follows that 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				=
				𝑑
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				=
				
				−
				𝜃
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			
				+
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				𝑑
			

			
				𝑇
				𝑘
				−
				1
			

			
				
				
				−
				𝜃
			

			

				𝑘
			

			

				𝑔
			

			

				𝑘
			

			
				+
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				𝑑
			

			
				𝑘
				−
				1
			

			
				
				=
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
				𝜃
			

			

				𝑘
			

			

				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				𝑑
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑔
			

			

				𝑘
			

			
				+
				
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				=
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
				𝜃
			

			

				𝑘
			

			
				
				𝑑
			

			
				𝑇
				𝑘
			

			
				+
				𝜃
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			
				
				𝑔
			

			

				𝑘
			

			
				+
				
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				=
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
				𝜃
			

			

				𝑘
			

			

				𝑑
			

			
				𝑇
				𝑘
			

			

				𝑔
			

			

				𝑘
			

			
				−
				2
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				=
				
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
				𝜃
			

			

				𝑘
			

			

				𝑑
			

			
				𝑇
				𝑘
			

			

				𝑔
			

			

				𝑘
			

			
				−
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	

						Dividing by 
	
		
			
				(
				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			

				)
			

			

				2
			

		
	
 in the both sides of this equality, then from (1.4), (2.3), (3.1), and (3.21), we obtain 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				=
				
				𝛽
			

			
				P
				R
				P
			

			

				𝑘
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
				𝜃
			

			

				𝑘
			

			

				𝑑
			

			
				𝑇
				𝑘
			

			

				𝑔
			

			

				𝑘
			

			
				−
				𝜃
			

			
				2
				𝑘
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				=
				
				𝑔
			

			
				𝑇
				𝑘
			

			
				
				𝑔
			

			

				𝑘
			

			
				−
				𝑔
			

			
				𝑘
				−
				1
			

			
				
				
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				4
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				−
				
				𝜃
			

			

				𝑘
			

			
				
				−
				1
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				−
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				4
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				−
				
				𝜃
			

			

				𝑘
			

			
				
				−
				1
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				+
				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				−
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				4
			

			
				+
				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				<
				𝐿
			

			

				2
			

			

				𝛼
			

			
				2
				𝑘
				−
				1
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			

				𝜖
			

			

				2
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				4
			

			
				+
				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	

						From (3.14) in Lemma 3.4, it follows that 
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛼
			

			
				2
				𝑘
				−
				1
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				=
				0
				.
			

		
	

						Thus, there exists a sufficient large number 
	
		
			

				𝑘
			

			

				0
			

		
	
 such that for 
	
		
			
				𝑘
				≥
				𝑘
			

			

				0
			

		
	
, the following inequalities 
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				0
				≤
				𝛼
			

			
				2
				𝑘
				−
				1
			

			
				‖
				‖
				𝑑
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				<
				𝜖
			

			

				2
			

			
				
			
			

				𝐿
			

			

				2
			

		
	

						hold.Therefore, for 
	
		
			
				𝑘
				≥
				𝑘
			

			

				0
			

		
	
, 
							
	
 		
 			
				(
				3
				.
				2
				6
				)
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				‖
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				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				4
			

			
				+
				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑑
				≤
				⋯
				≤
			

			

				𝑘
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑘
			

			

				0
			

			
				‖
				‖
			

			

				4
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				𝑘
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			
				‖
				‖
				𝑔
			

			

				𝑖
			

			
				‖
				‖
			

			

				2
			

			
				<
				𝐶
			

			

				0
			

			
				
			
			

				𝜖
			

			

				2
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				𝑘
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			

				𝜖
			

			

				2
			

			
				=
				𝐶
			

			

				0
			

			
				+
				𝑘
				−
				𝑘
			

			

				0
			

			
				
			
			

				𝜖
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

			

				0
			

			
				=
				𝜖
			

			

				2
			

			
				‖
				𝑑
			

			

				𝑘
			

			

				0
			

			

				‖
			

			

				2
			

			
				/
				‖
				𝑔
			

			

				𝑘
			

			

				0
			

			

				‖
			

			

				2
			

		
	
 is a nonnegative constant.The last inequality implies 
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑘
				≥
				1
			

			
				‖
				‖
				𝑔
			

			

				𝑘
			

			
				‖
				‖
			

			

				4
			

			
				
			
			
				‖
				‖
				𝑑
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				‖
				‖
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				≥
				
			

			
				𝑘
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				𝑘
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				‖
				𝑔
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				‖
				‖
			

			

				4
			

			
				
			
			
				‖
				‖
				𝑑
			

			

				𝑘
			

			
				‖
				‖
			

			

				2
			

			
				>
				𝜖
			

			

				2
			

			

				
			

			
				𝑘
				>
				𝑘
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				1
			

			
				
			
			

				𝐶
			

			

				0
			

			
				+
				𝑘
				−
				𝑘
			

			

				0
			

			
				=
				∞
				,
			

		
	

						which contradicts the result of Lemma 3.4.The global convergence theorem is established.
4. Numerical Experiments
In this section, we will report the numerical performance of Algorithm 2.2. We test Algorithm 2.2 by solving the 15 benchmark problems from [19] and compare its numerical performance with that of the other similar methods, which include the standard PRP conjugate gradient method in [6], the modified FR conjugate gradient method in [16], and the modified PRP conjugate gradient method in [17]. Among these algorithms, either the updating formula or the line search rule is different from each other.
All codes of the computer procedures are written in MATLAB 7.0.1 and are implemented on PC with 2.0 GHz CPU processor, 1 GB RAM memory, and XP operation system.
The parameters are chosen as follows: 
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				𝜖
				=
				1
				0
			

			
				−
				6
			

			
				,
				𝜌
				=
				0
				.
				7
				5
				,
				𝛿
			

			

				1
			

			
				=
				0
				.
				1
				,
				𝛿
			

			

				2
			

			
				=
				1
				.
			

		
	

In Tables 1 and 2, we use the following denotations: Dim: the dimension of the objective function;GV: the gradient value of the objective function when the algorithm stops;NI: the number of iterations;NF: the number of function evaluations;CT: the run time of CPU;mfr: the modified FR conjugate gradient method in [16]; prp: the standard PRP conjugate gradient method in [6];msprp: the modified PRP conjugate gradient method in [17];mprp: the new algorithm developed in this paper.
Table 1: Comparison of efficiency with the other methods.
	

	Function	 Algorithm	 Dim	 GV	 NI	NF	 CT(s)
	

	 Rrosenbrock	 mfr	 2	
	
		
			
				8
				.
				8
				8
				1
				8
				𝑒
				−
				0
				0
				7
			

		
	
	 328	 7069	 0.2970
	prp	 2	
	
		
			
				9
				.
				2
				4
				1
				5
				𝑒
				−
				0
				0
				7
			

		
	
	 760	 41189	 1.4370
	mprp	 2	
	
		
			
				8
				.
				6
				0
				9
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 124	 2816	 0.0940
	msprp	 2	
	
		
			
				6
				.
				9
				6
				4
				3
				𝑒
				−
				0
				0
				7
			

		
	
	 122	 2597	 0.1400 
	

	Freudenstein and Roth	 mfr	 2	
	
		
			
				5
				.
				5
				7
				2
				3
				𝑒
				−
				0
				0
				7
			

		
	
	 236	 5110	 0.2190
	prp	 2	
	
		
			
				7
				.
				1
				4
				2
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 331	 18798	 0.6250
	mprp	 2	
	
		
			
				2
				.
				4
				6
				6
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 67	 1904	 0.0940
	msprp	 2	
	
		
			
				8
				.
				6
				9
				6
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 62	 1437	 0.0780 
	

	Brown badly	 mfr	 2	—	—	—	—
	prp	 2	—	—	—	—
	mprp	 2	
	
		
			
				7
				.
				9
				8
				9
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 105	 10279	 0.2030
	msprp	 2	
	
		
			
				7
				.
				6
				0
				2
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 70	 7117	 0.2660 
	

	Beale	 mfr	 2	
	
		
			
				6
				.
				1
				7
				3
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 74	 714	 0.0780
	prp	 2	
	
		
			
				8
				.
				2
				4
				5
				5
				𝑒
				−
				0
				0
				7
			

		
	
	 292	 12568	 0.4370
	mprp	 2	
	
		
			
				6
				.
				2
				2
				5
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 130	 1539	 0.0940
	msprp	 2	
	
		
			
				8
				.
				7
				8
				6
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 91	 877	 0.0470 
	

	Powell singular	 mfr	 4	
	
		
			
				9
				.
				9
				8
				2
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 4122	 10578	 0.6870
	prp	 4	—	—	—	—
	mprp	 4	
	
		
			
				9
				.
				6
				9
				0
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 13565	 218964	 5.2660
	msprp	 4	
	
		
			
				9
				.
				8
				5
				1
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 11893	 169537	 7.2500 
	

	Wood	 mfr	 4	
	
		
			
				7
				.
				7
				9
				3
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 263	 5787	 0.2660
	prp	 4	
	
		
			
				9
				.
				9
				8
				4
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 1284	 69501	 2.3440
	mprp	 4	
	
		
			
				9
				.
				6
				4
				8
				4
				𝑒
				−
				0
				0
				7
			

		
	
	 280	 6432	 0.1720
	msprp	 4	
	
		
			
				7
				.
				9
				2
				2
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 404	 9643	 0.4070 
	

	Extended Powell singular	 mfr	 4	
	
		
			
				9
				.
				9
				8
				2
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 4122	 10578	 0.6800
	prp	 4	—	—	—	—
	mprp	 4	
	
		
			
				9
				.
				6
				9
				0
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 13565	 218964	 5.5310
	msprp	 4	
	
		
			
				9
				.
				8
				5
				1
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 11893	 169537	 7.4070 
	

	Broyden tridiagonal	 mfr	 4	
	
		
			
				4
				.
				8
				4
				5
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 53	 784	 0.0630
	prp	 4	
	
		
			
				6
				.
				6
				6
				2
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 87	 4460	 0.1180
	mprp	 4	
	
		
			
				5
				.
				8
				1
				6
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 39	 430	 0.0320
	msprp	 4	
	
		
			
				9
				.
				7
				1
				9
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 52	 785	 0.0780
	



Table 2: Comparison of efficiency with the other methods.
	

	Function	 Algorithm	 Dim	 GV	 NI	NF	 CT(s)
	

	Kowalik and Osborne	 mfr	 4	 —	—	—	—
	prp	 4	
	
		
			
				8
				.
				9
				5
				2
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 833	 26191	 1.2970
	mprp	 4	
	
		
			
				9
				.
				9
				6
				9
				8
				𝑒
				−
				0
				0
				7
			

		
	
	 6235	 35425	 3.5940
	msprp	 4	
	
		
			
				9
				.
				9
				5
				6
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 7059	 37976	 4.9850 
	

	Broyden banded	 mfr	 6	
	
		
			
				8
				.
				9
				4
				6
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 40	 505	 0.0780
	prp	 6	
	
		
			
				8
				.
				4
				6
				8
				4
				𝑒
				−
				0
				0
				7
			

		
	
	 268	 9640	 0.4840
	mprp	 6	
	
		
			
				8
				.
				9
				0
				2
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 102	 1319	 0.0940
	msprp	 6	
	
		
			
				9
				.
				3
				2
				7
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 44	 556	 0.0940 
	

	Discrete boundary	 mfr	 6	
	
		
			
				9
				.
				1
				5
				3
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 107	 509	 0.0780
	prp	 6	
	
		
			
				7
				.
				8
				9
				7
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 269	 11449	 0.4690
	mprp	 6	
	
		
			
				8
				.
				2
				8
				0
				7
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 157	 1473	 0.0930
	msprp	 6	
	
		
			
				9
				.
				9
				4
				3
				6
				𝑒
				−
				0
				0
				7
			

		
	
	 165	 1471	 0.1410 
	

	Variably dimensioned	 mfr	 8	
	
		
			
				7
				.
				3
				4
				1
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 57	 1233	 0.1250
	prp	 8	
	
		
			
				7
				.
				3
				4
				1
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 113	 7403	 0.3290
	mprp	 8	
	
		
			
				9
				.
				0
				9
				0
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 69	 1544	 0.0780
	msprp	 8	
	
		
			
				7
				.
				3
				4
				1
				1
				𝑒
				−
				0
				0
				7
			

		
	
	 57	 1233	 0.1100 
	

	Broyden tridiagonal	 mfr	 9	
	
		
			
				9
				.
				1
				8
				1
				5
				𝑒
				−
				0
				0
				7
			

		
	
	 129	 2173	 0.1250
	prp	 9	
	
		
			
				6
				.
				4
				5
				8
				4
				𝑒
				−
				0
				0
				7
			

		
	
	 113	 5915	 0.2500
	mprp	 9	
	
		
			
				7
				.
				3
				5
				2
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 187	 2967	 0.1250
	msprp	 9	
	
		
			
				9
				.
				2
				3
				6
				3
				𝑒
				−
				0
				0
				7
			

		
	
	 82	 1304	 0.1100 
	

	Linear-rank1	 mfr	 10	
	
		
			
				9
				.
				7
				4
				6
				2
				𝑒
				−
				0
				0
				7
			

		
	
	 84	 3762	 0.1720
	prp	 10	
	
		
			
				4
				.
				5
				6
				4
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 98	 6765	 0.2810
	mprp	 10	
	
		
			
				6
				.
				9
				1
				4
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 51	 2216	 0.0780
	msprp	 10	
	
		
			
				6
				.
				6
				6
				3
				0
				𝑒
				−
				0
				0
				7
			

		
	
	 50	 2162	 0.1250 
	

	Linear-full rank	 mfr	 12	
	
		
			
				7
				.
				6
				9
				1
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 9	 36	 0.0160
	prp	 12	
	
		
			
				8
				.
				2
				5
				0
				7
				𝑒
				−
				0
				0
				7
			

		
	
	 47	 1904	 0.1090
	mprp	 12	
	
		
			
				7
				.
				6
				9
				1
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 9	 36	 0.0630
	msprp	 12	
	
		
			
				7
				.
				6
				9
				1
				9
				𝑒
				−
				0
				0
				7
			

		
	
	 9	 36	 0.0150
	



From the above numerical experiments, it is shown that the proposed algorithm in this paper is promising.
5. Conclusion
In this paper, a new spectral PRP conjugate gradient algorithm has been developed for solving unconstrained minimization problems. Under some mild conditions, the global convergence has been proved with an Armijo-type line search rule. Compared with the other similar algorithms, the numerical performance of the developed algorithm is promising.
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