Research Article

Yanmei Sun1 and Zengqin Zhao2

1Department of Mathematics and Information Sciences, Weifang University, Shandong, Weifang 261061, China
2Department of Mathematics, Qufu Normal University, Shandong, Qufu 273165, China

Correspondence should be addressed to Yanmei Sun, sunyanmei2009@126.com

Received 11 January 2012; Accepted 5 March 2012

Academic Editor: Giuseppe Marino

Copyright © 2012 Y. Sun and Z. Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.

1. Introduction

In this paper, we consider the following Sturm-Liouville boundary value problems on the half-line

\[
\begin{align*}
(p(t)u'(t))' + \Phi(t)f(t,u(t),u'(t)) &= 0, \quad 0 < t < +\infty, \\
\alpha_1 u(0) - \beta_1 \lim_{t \to 0^+} p(t)u'(t) &= T(u), \\
\alpha_2 \lim_{t \to +\infty} u(t) + \beta_2 \lim_{t \to +\infty} p(t)u'(t) &= K(u),
\end{align*}
\]

(1.1)

where $f: R^+ \times R^+ \times R \to R^*$ is a continuous function, $f \neq 0$ on any subinterval of R^*, here $R^* = [0, +\infty)$; $\Phi: R^+ \to R^*$ is a Lebesgue integrable function and may be singular at
Journal of Applied Mathematics

In this paper, we always assume that the following conditions hold.

\((H_1) \) \(\Psi(t, y_1, y_2) \leq q(t)Q(y_1, y_2), \quad q(t) \in C(R^+, R^+), \quad Q(y_1, y_2) \in C(R^+ \times R, R^+) \) and \(\int_0^{+\infty} \Phi(s)q(s)ds < +\infty. \)

\((H_2) \) For any constant \(\tau \in [0, +\infty), \quad 0 < T(a(\tau)) < \rho, \quad 0 < K(b(\tau)) < \rho \) and

\[
\Delta = \left| \frac{\rho - T(b(\tau))}{\rho - K(a(\tau))} \right| > 0. \quad (1.5)
\]
Motivated and inspired by [5–9], we are concerned with the existence of multiple positive solutions for BVP (1.1) by applying Leggett-Williams fixed theorem. The main new features presented in this paper are as follows. Firstly, Sturm-Liouville nonhomogeneous boundary value problems with linear functional boundary conditions are seldom researched, it brings about many difficulties when we imply the integral equations of BVP (1.1). To solve the problem, we use a new method of undetermined coefficient to obtain the integral equations of boundary value problems with nonhomogeneous boundary conditions. Secondly, we discuss the existence of triple positive solutions and $2m - 1$ positive solutions of BVP (1.1). Finally, the methods used in this paper are different from [1, 6, 7] and the results obtained in this paper generalize and involve some results in [5].

The rest of paper is organized as follows. In Section 2, we present some preliminaries and lemmas. We state and prove the main results in Section 3. Finally, in Section 4, one example with a singular nonlinearity is presented to demonstrate the application of Theorem 3.1.

2. Preliminary

In order to discuss the main results, we need the following lemmas.

Lemma 2.1. Under the condition $\int_{0}^{+\infty} ds/p(s) < +\infty$ and $\rho > 0$, the boundary value problem

\[
\begin{align*}
(p(t)u'(t))' + y(t) &= 0, \quad 0 < t < +\infty, \\
\alpha_1 u(0) - \beta_1 \lim_{t \to 0} p(t)u'(t) &= T(u), \\
\alpha_2 \lim_{t \to +\infty} u(t) + \beta_2 \lim_{t \to +\infty} p(t)u'(t) &= K(u),
\end{align*}
\]

has a unique solution for any $y \in L[0, +\infty)$. Moreover, this unique solution can be expressed in the form

\[
u(t) = \int_{0}^{+\infty} G(t, s)y(s) ds + A(y)a(t) + B(y)b(t),
\]

where $G(t, s)$, $A(y)$, and $B(y)$ are defined by

\[
G(t, s) = \rho^{-1} \begin{cases}
 a(t)b(s), & 0 \leq t \leq s < \infty, \\
 a(s)b(t), & 0 \leq s < t < \infty,
\end{cases}
\]

\[
A(y) = \frac{1}{\Delta} \begin{vmatrix}
 T \left(\int_{0}^{+\infty} G(\tau, s)y(s) ds \right) & \rho - T(b(\tau)) \\
 -K \left(\int_{0}^{+\infty} G(\tau, s)y(s) ds \right) & K(b(\tau))
\end{vmatrix},
\]

\[
B(y) = \frac{1}{\Delta} \begin{vmatrix}
 K \left(\int_{0}^{+\infty} G(\tau, s)y(s) ds \right) & \rho - K(b(\tau)) \\
 -T \left(\int_{0}^{+\infty} G(\tau, s)y(s) ds \right) & T(b(\tau))
\end{vmatrix},
\]

and the results obtained in this paper involve some results in [5].
Proof. $a(t)$ and $b(t)$ in (1.3) are two linear independent solutions of the equation $(p(t)u'(t))' = 0$, so the general solutions for the equation $(p(t)u'(t))' + y(t) = 0$ can be expressed in the form

$$u(t) = \int_{0}^{t} G(t,s)y(s)ds + Ca(t) + Db(t),$$

(2.4)

where C, D are undetermined constants. Through verifying directly, when C and D satisfy (a) and (b) separately, $u(t)$ in (2.4) is a solution of BVP(2.1).

Now we need to prove that when $u(t)$ in (2.4) is a solution of BVP(2.1), C and D satisfy (a) and (b) separately.

Let $u(t) = \int_{0}^{t} G(t,s)y(s)ds + Ca(t) + Db(t)$ be a solution of BVP(2.1), then

$$u(t) = \int_{0}^{t} \frac{1}{\rho} a(s)b(t)y(s)ds + \int_{0}^{t} \frac{1}{\rho} a(t)b(s)y(s)ds + Ca(t) + Db(t),$$

$$u'(t) = \frac{b'(t)}{\rho} \int_{0}^{t} a(s)y(s)ds + \frac{1}{\rho} \int_{0}^{t} a(t)y(s)ds + \frac{Ca_1}{p(t)} - \frac{Da_2}{p(t)},$$

(2.5)

$$\left(p(t)u'(t)\right)' = -\frac{a_2}{\rho} a(t)y(t) - \frac{a_1}{\rho} b(t)y(t) = -\frac{a_2a(t) + a_1b(t)}{\rho} y(t) = -y(t).$$

That is, $(p(t)u'(t))' + y(t) = 0$.

By (2.4), we have

$$u(0) = \frac{\beta_1}{\rho} \int_{0}^{\infty} b(s)y(s)ds + C\beta_1 + D\beta_2 + Da_2 \int_{0}^{\infty} \frac{ds}{p(s)},$$

$$u'(0) = \frac{1}{p(0)} \left(\frac{a_1}{\rho} \int_{0}^{\infty} b(s)y(s)ds + Ca_1 - Da_2 \right),$$

$$u(\infty) = \frac{\beta_2}{\rho} \int_{0}^{\infty} a(s)y(s)ds + C\beta_1 + D\beta_2 + Ca_1 \int_{0}^{\infty} \frac{ds}{p(s)},$$

$$u'(\infty) = \frac{1}{p(\infty)} \left(-\frac{a_2}{\rho} \int_{0}^{\infty} a(s)y(s)ds + Ca_1 - Da_2 \right),$$

(2.6)

then

$$D\rho = T \left(\int_{0}^{\infty} G(\tau,s)y(s)ds \right) + CT(a(\tau)) + DT(b(\tau)),$$

$$C\rho = K \left(\int_{0}^{\infty} G(\tau,s)y(s)ds \right) + CK(a(\tau)) + DK(b(\tau)).$$

(2.7)

From (2.7), we obtain that C and D satisfy (a) and (b) separately. The proof is completed. \qed
Remark 2.2. Assume that (H2) holds. Then \(0 \leq A(y) < +\infty\), \(0 \leq B(y) < +\infty\) for any \(y \geq 0\) and any solution \(u(t)\) of BVP(2.1) is nonnegative.

Lemma 2.3. From (1.3) and (2.3), it is easy to get the following properties.

1. \(G(t,s)/\rho^{-1}[1+a(t)b(t)] \leq 1\), \(a(t)/1 + a(t)b(t) < 1/b(t) \leq 1/\beta_2\), \(b(t)/1 + a(t)b(t) < 1/a(t) \leq 1/\beta_1\).

2. \(\overline{G}(s) = \lim_{t \to +\infty} G(t,s) = (\beta_2/\rho)a(s) < +\infty\).

3. \(G(t,s) \leq G(s,s) \leq a(s)b(s)/\rho < +\infty\).

Lemma 2.4. For any constant \(0 < a^* < b^* < \infty\), there exists \(0 < c^* < 1\), such that, for \(\tau, s \in [0, \infty)\), \(G(t,s)/\rho^{-1}[1+a(t)b(t)] \geq c^* G(\tau, s)/\rho^{-1}[1+a(\tau)b(\tau)]\), \(a(t)/\rho^{-1}[1+a(t)b(t)] \geq c^* a(\tau)/\rho^{-1}[1+a(\tau)b(\tau)]\), \(b(t)/\rho^{-1}[1+a(t)b(t)] \geq c^* b(\tau)/\rho^{-1}[1+a(\tau)b(\tau)]\), \(t \in [a^*, b^*]\).

Proof. By (1.3), it is obvious that \(a(t)\) is increasing, and \(b(t)\) is decreasing on \(t \in [0, +\infty)\); therefore, by (2.3), we have

\[
\frac{G(t,s)}{\rho^{-1}[1+a(t)b(t)]} = \begin{cases}
\frac{a(t)b(s)}{1+a(t)b(t)} \geq \frac{a(a^*)\beta_2}{1+a(b^*)b(a^*)}, & t \leq s, \\
\frac{a(s)b(t)}{1+a(t)b(t)} \geq \frac{b(b^*)\beta_1}{1+a(b^*)b(a^*)}, & s \leq t.
\end{cases}
\] (2.8)

We take \(c^* = \min\{a(a^*)\beta_2/(1+a(b^*)b(a^*)), (b(b^*)\beta_1/(1+a(b^*)b(a^*))\}\), then \(0 < c^* < 1\); this is because that

\[
\frac{a(a^*)\beta_2}{1+a(b^*)b(a^*)} \leq \frac{a(b^*)b(a^*)}{1+a(b^*)b(a^*)} < 1, \quad \frac{b(b^*)\beta_1}{1+a(b^*)b(a^*)} \leq \frac{a(b^*)b(a^*)}{1+a(b^*)b(a^*)} < 1.
\] (2.9)

By Lemma 2.3(1), we have \(G(\tau, s)/\rho^{-1}[1+a(\tau)b(\tau)] \leq 1\), then

\[
\frac{G(t,s)}{\rho^{-1}[1+a(t)b(t)]} \geq c^* \geq \frac{G(\tau, s)}{\rho^{-1}[1+a(\tau)b(\tau)]},
\] (2.10)

\[
\frac{a(t)}{1+a(t)b(t)} \geq \frac{a(a^*)}{1+a(b^*)b(a^*)} = \frac{a(a^*)\beta_2}{1+a(b^*)b(a^*)} \geq c^* \frac{1}{\beta_2} \geq c^* \frac{a(\tau)}{1+a(\tau)b(\tau)}.
\]

Similarly, we can obtain that \(b(t)/(1+a(t)b(t)) \geq c^*(b(\tau)/(1+a(\tau)b(\tau)))\). The proof is completed.

In this paper, we use the space

\[
E = \left\{ u \in C^1(R^+) : \sup_{t \in [0, +\infty)} \frac{|u(t)|}{\rho^{-1}[1+a(t)b(t)]} < +\infty, \sup_{t \in [0, +\infty)} |u'(t)| < +\infty \right\}
\] (2.11)

with the norm \(\|u\| = \max\{|u|, \|u'\|_\infty\}\), where \(\|u\|_1 = \sup_{t \in [0, +\infty)} |u(t)|/\rho^{-1}[1+a(t)b(t)]\) and \(\|u\|_\infty = \sup_{t \in [0, +\infty)} |u(t)|\), then \((E, \|u\|)\) is a Banach space.
Let

\[P = \left \{ u \in E : u(t) = 0, \min_{t \in [a, b]} \frac{u(t)}{\rho^{-1}[1 + a(t)b(t)]} \geq \frac{c^*}{\rho^{-1}[1 + a(\tau)b(\tau)]}, \tau \in \mathbb{R}^+ \right \}. \tag{2.12} \]

Clearly \(P \) is a cone of \(E \).

Theorem 2.6 (see [11]). Let \(M \subseteq C_I(\mathbb{R}^+, \mathbb{R}) = \{ x \in C(\mathbb{R}^+, \mathbb{R}) \mid \lim_{t \to +\infty} x(t) \text{ exists} \} \), then \(M \) is precompact if the following conditions hold:

(a) \(M \) is bounded in \(C_I \);

(b) the functions belonging to \(M \) are locally equicontinuous on any interval of \(\mathbb{R}^+ \);

(c) the functions from \(M \) are equiconvergent; that is, given \(\varepsilon > 0 \), there corresponds \(T(\varepsilon) > 0 \) such that \(|x(t) - x(\infty)| < \varepsilon \) for any \(t \geq T(\varepsilon) \) and \(x \in M \).

We shall consider nonnegative continuous and concave functional \(a \) on \(P \); that is, \(a : P \to [0, \infty) \) is continuous and satisfies

\[a(t x + (1 - t) y) \geq t a(x) + (1 - t) a(y), \quad \forall x, y \in P, 0 \leq t \leq 1. \tag{2.13} \]

We denote the set \(\{ x \in P \mid a \leq a(x), \| x \| \leq b \} (b > a > 0) \) by \(P(a, a, b) \) and

\[P_r = \{ x \in P \mid \| x \| < r \}. \tag{2.14} \]

The key tool in our approach is the following Leggett-Williams fixed point theorem.

Theorem 2.6 (see [11]). Let \(T : \overline{P}_c \to P \) be completely continuous and \(a \) a nonnegative continuous concave functional on \(P \) with \(a(x) \leq \| x \| \) for any \(x \in \overline{P}_c \). Suppose that there exist \(0 < a < b < d \leq c \) such that

\begin{enumerate}
 \item [(c1)] \(\{ x \in P(a, b, d) \mid a(x) > b \} \neq \emptyset, \text{ and } a(Tx) > b, \text{ for } x \in P(a, b, d) \);
 \item [(c2)] \(\| Tx \| < a, \text{ for } x \in \overline{P}_a \);
 \item [(c3)] \(a(Tx) > b \text{ for } x \in P(a, b, c) \text{ with } \| Tx \| > d \).
\end{enumerate}

Then \(T \) has at least three fixed points \(x_1, x_2, x_3 \), with

\[\| x_1 \| < a, \quad b < a(x_2), \quad \| x_3 \| > a, \quad a(x_3) < b. \tag{2.15} \]

3. Existence Results

Define the operator \(T : P \to P \) by

\[(Tu)(t) = \int_0^{+\infty} G(t, s) \Phi(s) f'(s, u(s), u'(s)) ds + A(\Phi f) a(t) + B(\Phi f) b(t), \quad 0 < t < +\infty. \tag{3.1} \]

Then \(u(t) \) is a fixed point of operator \(T \) if and only if \(u(t) \) is a solution of BVP \((1.1) \).
For convenience, we denote $\delta, a(x)$ by

$$
0 < \delta \leq \frac{a(a^*)b(b^*)}{1 + a(b^*)b(a^*)} \int_0^b \Phi(s)ds, \quad \alpha(u) = \min_{t \in [a,b]} \frac{u(t)}{\rho^{-1}[1 + a(t)b(t)]}, \quad \forall u \in P.
$$

Theorem 3.1. Suppose that (H1), (H2) hold, and assume there exist $0 < r_1 < b_1 < l_1 < r_2$ with $l_1 = \max\{b_1/c^*, \sup_{t \in [0, +\infty]}(b_1/c^*p(t))\}$, such that

(H3) $Q(y_1, y_2) \leq \min\{r_2 / \int_0^{+\infty} \Phi(s)q(s)ds + A(\Phi q) / \rho^{-1}b_2 + B(\Phi q) / \rho^{-1}b_1, r_2 / \sup_{t \in [0, +\infty]}(1/p(t))(\int_0^{+\infty} \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2)\}, 0 \leq y_1 \leq r_2, |y_2| \leq r_2,$

(H4) $\Psi(t, y_1, y_2) > b_1 / \delta, \ t \in [a^*, b^*], \ b_1 \leq y_1 \leq r_2, \ |y_2| \leq r_2.$

(H5) $Q(y_1, y_2) < \min\{r_1 / \int_0^{+\infty} \Phi(s)q(s)ds + A(\Phi q) / \rho^{-1}b_2 + (B(\Phi q) / \rho^{-1}b_1), r_1 / \sup_{t \in [0, +\infty]}(1/p(t))(\int_0^{+\infty} \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2)\}, 0 \leq y_1 \leq r_1, |y_2| \leq r_1.$

Then BVP (1.1) has at least three positive solutions $u_1, u_2,$ and u_3 with

$$
\|u_1\| < r_1, \quad b_1 < a(u_2), \quad \|u_3\| > r_1, \quad a(u_3) < b_1.
$$

Proof. Firstly we prove that $T : P \rightarrow P$ is continuous.

We will show that $T : P \rightarrow P$ is well defined and $T(P) \subset P.$ For all $u(t) \in P,$ by (H2), $\Phi(t)$ and f are nonnegative functions, and we have $Tu(t) \geq 0.$ From (H1), (H2), we obtain

$$
A(\Phi f) = \frac{1}{\Delta} \begin{vmatrix}
T\left(\int_0^{+\infty} G(\tau, s)\Phi(s)f(s, u(s), u'(s))ds\right) - T(b(\tau))
\end{vmatrix}
$$

$$
\leq \max_{y_1 \in [0, \|u\|], |y_2| \leq \|u\|} Q(y_1, y_2)
$$

In the same way, we have

$$
B(\Phi f) \leq B(\Phi q) \max_{y_1 \in [0, \|u\|], |y_2| \leq \|u\|} Q(y_1, y_2).
$$
By Lemma 2.3(1), (A), (B), and (H1), for all \(u(t) \in P \), we have

\[
\frac{(Tu)(t)}{\rho^{-1}[1 + a(t)b(t)]} = \int_0^\infty \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s)f(s, u(s), u'(s))ds + \frac{A(\Phi)f(\rho)}{\rho^{-1}[1 + a(t)b(t)]}
\]

\[
+ \frac{B(\Phi)f(b(t))}{\rho^{-1}[1 + a(t)b(t)]}
\]

\[
\leq \int_0^\infty \Phi(s)f(s, u(s), u'(s))ds + \frac{A(\Phi)f}{\rho^{-1}\beta_2} + \frac{B(\Phi)f}{\rho^{-1}\beta_1}
\]

\[
\leq \max_{y_1 \in [0, |u|], |y_2| \leq |u|} Q(y_1, y_2) \left(\int_0^\infty \Phi(s)q(s)ds + \frac{A(\Phi)\alpha_1 - B(\Phi)\alpha_2}{\rho} \right) < + \infty
\]

\[
\| (Tu)'(t) \| = \frac{1}{p(t)} \left| \int_0^t \frac{-\alpha_2a(s)}{\rho} \Phi(s)f(s, u(s), u'(s))ds
\right.
\]

\[
+ \int_t^\infty \frac{\alpha_1b(s)}{\rho} \Phi(s)f(s, u(s), u'(s))ds + A(\Phi)f \alpha_1 - B(\Phi)f \alpha_2 \left| \right.
\]

\[
\leq \sup_{t \in [0, +\infty)} \frac{1}{p(t)} \left(\max_{y_1 \in [0, |u|], |y_2| \leq |u|} Q(y_1, y_2) \right) \times \left(\int_0^\infty \Phi(s)q(s)ds + A(\Phi)\alpha_1 + B(\Phi)\alpha_2 \right) < + \infty
\]

Hence, \(T : P \rightarrow P \) is well defined. By (3.1), (H1), the Lebesgue dominated convergence theorem and the continuity of \(p(t) \), for any \(u \in P \), \(t_1, t_2 \in \mathbb{R}^+ \), we have

\[
\| (Tu)'(t_1) - (Tu)'(t_2) \| \leq \frac{\alpha_2a(\infty)}{\rho} \left| \frac{1}{p(t_1)} - \frac{1}{p(t_2)} \right| \int_0^{t_1} \Phi(s)f(s, u(s), u'(s))ds
\]

\[
+ \frac{\alpha_2a(\infty)}{p p(t_2)} \int_{t_1}^{t_2} \Phi(s)f(s, x(s), x'(s))ds
\]

\[
+ \frac{\alpha_1b(0)}{\rho} \left| \frac{1}{p(t_1)} - \frac{1}{p(t_2)} \right| \left| \int_0^\infty \Phi(s)f(s, u(s), u'(s))ds \right|
\]

\[
+ \frac{\alpha_1b(0)}{p p(t_2)} \int_{t_1}^{t_2} \Phi(s)f(s, x(s), x'(s))ds
\]

\[
+ (A(\Phi)f) \alpha_1 + B(\Phi)f) \alpha_2 \left| \frac{1}{p(t_1)} - \frac{1}{p(t_2)} \right| \rightarrow 0, \text{ as } t_1 \rightarrow t_2.
\]

That is, \((Tu)(t) \in C^1(\mathbb{R}^+_0) \); therefore, \((Tu)(t) \in E \).
By Lemma 2.4, we have

\[
\min_{t \in [a', b]'} \frac{(Tu)(t)}{\rho^{-1}[1 + a(t)b(t)]} = \min_{t \in [a', b']}
\left(\int_0^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s)f(s, u(s), u'(s))ds + \frac{a(t)A(\Phi f)}{\rho^{-1}[1 + a(t)b(t)]} + \frac{b(t)B(\Phi f)}{\rho^{-1}[1 + a(t)b(t)]} \right)
\geq c^* \left(\int_0^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s)f(s, u(s), u'(s))ds \right)
\geq c^* \left(\int_0^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s)f(s, u(s), u'(s))ds \right)
\geq c^* \left(\int_0^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s)f(s, u(s), u'(s))ds \right)
\]

Therefore, \(T : P \to P\).

We show that \(T : P \to P\) is continuous. In fact suppose \(\|u_m\| \leq P, u_0 \in P\) and \(u_m \to u_0 (m \to +\infty)\), then there exists \(M > 0\), such that \(\|u_m\| \leq M\). By (H1), we have

\[
\int_0^{+\infty} \Phi(s)|f(s, u_m(s), u'_m(s)) - f(s, u_0(s), u'_0(s))|ds \leq 2 \int_0^{+\infty} \Phi(s)f(s, u(s), u'(s))ds
\leq 2 \max_{y_1 \in [0, M], y_2 \in [M]} Q(y_1, y_2)
\times \int_0^{+\infty} \Phi(s)q(s)ds
\leq +\infty.
\]

Therefore, by Lemma 2.3(1), the continuity of \(f\) and the Lebesgue dominated convergence theorem imply that

\[
\frac{|(Tu_m)(t) - (Tu_0)(t)|}{\rho^{-1}[1 + a(t)b(t)]} = \int_0^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]}
\times \Phi(s) \left|f(s, u_m(s), u'_m(s)) - f(s, u_0(s), u'_0(s))\right|ds
\leq \int_0^{+\infty} \Phi(s) \left|f(s, u_m(s), u'_m(s)) - f(s, u_0(s), u'_0(s))\right|ds \to 0,
\quad m \to +\infty.
\]
\[(Tu_m)'(t) - (Tu_0)'(t) \leq \sup_{t \in [0, +\infty)} \frac{1}{P(t)} \int_{0}^{+\infty} \Phi(s) |f(s, u_m(s), u_m'(s)) - f(s, u_0(s), u_0'(s))| ds \to 0, \quad m \to +\infty. \]

Thus, \[\|Tu_m - Tu_0\| \to 0 (m \to +\infty).\] Therefore \(T : P \to P\) is continuous.

Secondly we show that \(T : P \to P\) is compact operator.

For any bounded set \(B \subset P\), there exists a constant \(L > 0\) such that \(\|u\| \leq L\), for all \(u \in B\). By Lemma 2.3(1), (A), (B), and (H1), we have

\[(Tu(t)) = \rho^{-1}[1 + a(t)b(t)] \frac{(Tu)(t) - L}{\rho^{-1}[1 + a(t)b(t)]} \leq \rho^{-1}[1 + a(\infty)b(0)] \left(\int_{0}^{+\infty} \frac{G(t, s)}{\rho^{-1}[1 + a(t)b(t)]} \Phi(s) f(s, u(s), u'(s)) ds + \frac{A(\Phi f) a(t)}{\rho^{-1}[1 + a(t)b(t)]} + \frac{B(\Phi f) b(t)}{\rho^{-1}[1 + a(t)b(t)]} \right) \leq \rho^{-1}[1 + a(\infty)b(0)] \max_{y \in [0, L], |y| \leq L} Q(y_1, y_2) \left(\int_{0}^{+\infty} \Phi(s) q(s) ds + \frac{A(\Phi q) a(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} + \frac{B(\Phi q) b(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} \right) \leq \rho^{-1}[1 + a(\infty)b(\infty)] \left(\int_{0}^{+\infty} \Phi(s) q(s) ds + \frac{A(\Phi q) a(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} + \frac{B(\Phi q) b(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} \right) \leq +\infty. \]

Therefore, \((Tu)(t) \leq C_{t}(R^+, R)\).

By (3.4) and (3.5), we have

\[\|Tu\|_1 = \sup_{t \in [0, +\infty)} \frac{(Tu)(t)}{\rho^{-1}[1 + a(t)b(t)]} \leq \max_{y \in [0, L], |y| \leq L} Q(y_1, y_2) \left(\int_{0}^{+\infty} \Phi(s) q(s) ds + \frac{A(\Phi q) a(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} + \frac{B(\Phi q) b(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} \right) \leq +\infty. \]
\[\| (Tu) \|_\infty = \max_{t \in [0, r]} |(Tu)'(t)|\]
\[\leq \sup_{t \in [0, r]} \frac{1}{p(t)} \max_{y_1, y_2 \in [0, L], |y_1| \leq L} Q(y_1, y_2) \left(\int_0^{\infty} \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2 \right)\]
\[< + \infty, \quad \text{ (3.11)}\]

so \(TB \) is bounded.

Given \(T > 0, t_1, t_2 \in [0, T] \), by (H1) and Lemma 2.3(1), we have
\[\left| \frac{G(t_1, s)}{\rho^{-1}[1 + a(t_1)b(t_1)]} - \frac{G(t_2, s)}{\rho^{-1}[1 + a(t_2)b(t_2)]} \right| \Phi(s)f(s, u(s), u'(s)) \leq 2 \max_{y_1, y_2 \in [0, L], |y_1| \leq L} Q(y_1, y_2) \times \Phi(s)q(s). \quad \text{ (3.12)}\]

Therefore for any \(u \in B \), by (3.1), the Lebesgue dominated convergence theorem and the continuity of \(G(t, s), a(t), \) and \(b(t) \), we have
\[\left| \frac{(Tu)(t_1)}{\rho^{-1}[1 + a(t_1)b(t_1)]} - \frac{(Tu)(t_2)}{\rho^{-1}[1 + a(t_2)b(t_2)]} \right| \]
\[\leq \int_0^{\infty} \left| \frac{G(t_1, s)}{\rho^{-1}[1 + a(t_1)b(t_1)]} - \frac{G(t_2, s)}{\rho^{-1}[1 + a(t_2)b(t_2)]} \right| \times \Phi(s)f(s, u(s), u'(s))ds \]
\[+ A(\Phi f) \left| \frac{a(t_1)}{\rho^{-1}[1 + a(t_1)b(t_1)]} - \frac{a(t_2)}{\rho^{-1}[1 + a(t_2)b(t_2)]} \right| \]
\[+ B(\Phi f) \left| \frac{b(t_1)}{\rho^{-1}[1 + a(t_1)b(t_1)]} - \frac{b(t_2)}{\rho^{-1}[1 + a(t_2)b(t_2)]} \right| \]
\[\to 0, \quad \text{ as } t_1 \to t_2. \quad \text{ (3.13)}\]

By a similar proof as (3.6), we obtain \(|(Tu)'(t_1) - (Tu)'(t_2)| \to 0, \) as \(t_1 \to t_2. \) Thus, \(TB \) is equicontinuous on \([0, T] \). Since \(T > 0 \) is arbitrary, \(TB \) is locally equicontinuous on \([0, +\infty) \).

By Lemma 2.3(2), (H2) and the Lebesgue dominated convergence theorem, we obtain
\[\lim_{t \to +\infty} \left| \frac{(Tu)(t)}{\rho^{-1}[1 + a(t)b(t)]} \right| = \frac{1}{\rho^{-1}[1 + a(\infty)b(\infty)]} \left| \int_0^{\infty} \beta_2 a(s)\Phi(s)f(s, x(s), x'(s))ds + A(\Phi f)a(\infty) + B(\Phi f)b(\infty) \right|\]
\[
\begin{align*}
&\leq \frac{\max_{y_i \in [0, L], |y_i| \leq \lambda} Q(y_1, y_2)}{\rho^{-1}(1 + \beta_1 \beta_2)} \left(\beta_2 a(\infty) \int_0^{+\infty} \Phi(s)q(s)ds + A(\Phi q) a(\infty) + B(\Phi q) b(\infty) \right) \\
&< +\infty,
\end{align*}
\]
\[
\left| \frac{(Tu)(t)}{\rho^{-1}[1 + a(t)b(t)]} - \frac{(Tu)(\infty)}{\rho^{-1}[1 + a(\infty)b(\infty)]} \right|
\]
\[
\leq \int_0^ta(s)b(t) \left| \frac{1}{1+a(t)b(t)} - \frac{1}{1+a(\infty)b(\infty)} \right| \Phi(s)f(s,x(s),x'(s))ds
\]
\[
+ \int_0^t \frac{a(s)}{1+a(\infty)b(\infty)} \left| b(t) - \beta_2 \right| \Phi(s)f(s,x(s),x'(s))ds
\]
\[
+ \int_t^{+\infty} b(s) \left| a(t) - a(s) \right| \Phi(s)f(s,x(s),x'(s))ds
\]
\[
+ \int_t^{+\infty} a(s)b(s) \left| \frac{1}{1+a(t)b(t)} - \frac{1}{1+a(\infty)b(\infty)} \right| \Phi(s)f(s,x(s),x'(s))ds
\]
\[
+ \int_t^{+\infty} \frac{a(s)}{1+a(\infty)b(\infty)} \left| b(s) - \beta_2 \right| \Phi(s)f(s,x(s),x'(s))ds + A(\Phi f) \frac{|a(t) - a(\infty)|}{\rho^{-1}[1+a(t)b(t)]}
\]
\[
+ B(\Phi f) \frac{|b(t) - b(\infty)|}{\rho^{-1}[1+a(t)b(t)]} + \left[A(\Phi f) a(\infty) + B(\Phi f) b(\infty) \right]
\]
\[
\times \left| \frac{1}{\rho^{-1}[1+a(t)b(t)]} - \frac{1}{\rho^{-1}[1+a(\infty)b(\infty)]} \right|
\]
\[
\leq \max_{y_i \in [0, L], |y_i| \leq \lambda} Q(y_1, y_2)
\]
\[
\times \left\{ b(0)a(\infty) \int_0^t \left| \frac{1}{1+a(t)b(t)} - \frac{1}{1+a(\infty)b(\infty)} \right| \Phi(s)q(s)ds
\right. \\
\left. + \frac{a(\infty)}{1+a(\infty)b(\infty)} \int_0^t \left| b(t) - \beta_2 \right| \Phi(s)q(s)ds + \frac{b(0)}{1+\beta_1 \beta_2} \int_t^{+\infty} |a(t) - a(s)| \Phi(s)q(s)ds
\right.
\]
\[
+ a(\infty)b(0) \int_t^{+\infty} \left| \frac{1}{1+a(t)b(t)} - \frac{1}{1+a(\infty)b(\infty)} \right| \Phi(s)q(s)ds
\]
\[
+ \frac{a(\infty)}{1+a(\infty)b(\infty)} \int_t^{+\infty} \left| b(s) - \beta_2 \right| \Phi(s)q(s)ds + A(\Phi q) \frac{|a(t) - a(\infty)|}{\rho^{-1}[1+a(t)b(t)]}
\]
\[
+ B(\Phi q) \frac{|b(t) - b(\infty)|}{\rho^{-1}[1+a(t)b(t)]} + \left(A(\Phi q) a(\infty) + B(\Phi q) b(\infty) \right)
\]
\[
\times \left| \frac{1}{\rho^{-1}[1+a(t)b(t)]} - \frac{1}{\rho^{-1}[1+a(\infty)b(\infty)]} \right|
\}
\to 0, \quad \text{as } t \to +\infty.
\]
(3.14)
By (3.5), we know that \(\lim_{t \to +\infty} |(Tu)'(t)| < +\infty \), then

\[
|(Tu)'(t) - (Tu)'(\infty)|
= \left| \frac{1}{p(t)} \int_{0}^{t} -\frac{\alpha_2 a(s)}{\rho} \Phi(s) f(s, u(s), u'(s)) ds + \frac{1}{p(t)} \int_{t}^{\infty} \frac{\alpha_1 b(s)}{\rho} \Phi(s) f(s, u(s), u'(s)) ds
\right.

\[+ \frac{1}{p(t)} A(\Phi f) \alpha_1 - \frac{1}{p(t)} B(\Phi f) \alpha_2 + \frac{1}{p(\infty)} \int_{0}^{t} \frac{\alpha_2 a(s)}{\rho} \Phi(s) f(s, u(s), u'(s)) ds
\]

\[
\left. + \frac{1}{p(\infty)} \int_{t}^{\infty} \frac{\alpha_2 a(s)}{\rho} \Phi(s) f(s, u(s), u'(s)) ds - \frac{1}{p(\infty)} A(\Phi f) \alpha_1 + \frac{1}{p(\infty)} B(\Phi f) \alpha_2 \right|
\]

\[
\leq \max_{y_1 \in [0,1], |y_2| \leq L} Q(y_1, y_2) \left| \frac{1}{p(t)} - \frac{1}{p(\infty)} \right|
\times \left(\int_{0}^{t} \frac{\alpha_2 a(s)}{\rho} \Phi(s) q(s) ds + \frac{1}{p(t)} \int_{t}^{\infty} \frac{\alpha_1 b(s)}{\rho} \Phi(s) q(s) ds + \frac{1}{p(\infty)} \right.
\]

\[
\left. \int_{t}^{\infty} \frac{\alpha_2 a(s)}{\rho} \Phi(s) q(s) ds + (A(\Phi q) \alpha_1 + B(\Phi q) \alpha_2) \left| \frac{1}{p(t)} - \frac{1}{p(\infty)} \right| \right) \to 0,
\]

as \(t \to +\infty \).

(3.15)

Therefore, \(TB \) is equiconvergent at \(\infty \). By Lemma 2.5, \(TB \) is completely continuous.

Finally we will show that all conditions of Theorem 2.6 hold.

From the definition of \(a \), we can get \(a(u) \leq \|u\| \) for all \(u \in P \). For all \(u \in \overline{P}_{r_2} \), we have \(\|u\| \leq r_2 \); therefore \(0 \leq y_1 \leq r_2, |y_2| \leq r_2 \). By (3.4), (3.5), and (H_3), we have

\[
\frac{|(Tu)(t)|}{p^{-1}[1 + a(t)b(t)]} \leq \max_{y_1 \in [0,r_1], |y_2| \leq r_2} Q(y_1, y_2) \left(\int_{0}^{\infty} \Phi(s) q(s) ds + \frac{A(\Phi q)}{\rho^{-1}\beta_2} + \frac{B(\Phi q)}{\rho^{-1}\beta_1} \right)
\]

\[
\leq r_2,
\]

\[
|(Tu)'(t)| \leq \sup_{t \in [0, +\infty)} \frac{1}{p(t)} \max_{y_1 \in [0,r_1], |y_2| \leq r_2} Q(y_1, y_2)
\]

\[
\times \left(\int_{0}^{\infty} \Phi(s) q(s) ds + A(\Phi q) \alpha_1 + B(\Phi q) \alpha_2 \right)
\]

\[
\leq r_2,
\]

that is, \(\|Tu\| \leq r_2 \) for \(u \in \overline{P}_{r_2} \). Thus \(T : \overline{P}_{r_2} \to \overline{P}_{r_2} \).

Similarly for any \(u \in \overline{P}_{r_1} \), we have \(\|Tu\| < r_1 \), which means that condition \((c_2)\) of Theorem 2.6 holds.
In order to apply condition (c₁) of Theorem 2.6, we choose \(u(t) = b_1 \rho^{-1}[1 + a(t)b(t)]/c^* \), \(t \in \mathbb{R}_0^+ \), then \(\|u\| \leq l_1 \); this is because

\[
\|u\|_1 = \frac{b_1}{c^*} \leq l_1,
\]

\[
\|u\|_\infty = \sup_{t \in [0, \infty)} |u(t)| = \sup_{t \in [0, \infty)} \left| \frac{b_1 \rho^{-1}[a'(t)b(t) + a(t)b'(t)]}{c^*} \right| \leq \sup_{t \in [0, \infty)} \frac{1}{\rho(t)} \frac{b_1}{c^*} \leq l_1,
\]

(3.17)

and \(a(u) = \min_{t \in [a^*, b^*]} (u(t)/\rho^{-1}[1 + a(t)b(t)]) = b_1/c^* > b_1 \), which means that \(\{u \in P(\alpha, b_1, l_1) | a(u) > b_1\} \neq \phi \). For all \(u \in P(\alpha, b_1, l_1) \), we have \(a(u) \geq b_1 \) and \(\|u\| \leq l_1 \), thus

\[
b_1 \leq \frac{u(t)}{\rho^{-1}[1 + a(t)b(t)]} \leq l_1, \quad |u(t)| \leq l_1, \quad \text{that is,} \quad b_1 \leq y_1 \leq l_1, |y_2| \leq l_1. \]

By (H₄), we can get

\[
a(Tu(t)) = \min_{t \in [a^*, b^*]} \frac{(Tu(t))}{\rho^{-1}[1 + a(t)b(t)]} \geq \min_{t \in [a^*, b^*]} \frac{1}{\rho^{-1}[1 + a(t)b(t)]}
\]

\[
\times \left(\int_0^{a'} \frac{a(s)b(t)}{\rho} \Phi(s) f(s, u(s), u'(s))ds + \int_{a'}^{t} \frac{a(s)b(t)}{\rho} \Phi(s) f(s, u(s), u'(s))ds + \int_{t}^{b'} \frac{a(s)b(t)}{\rho} \Phi(s) f(s, u(s), u'(s))ds + \int_{b'}^{\infty} \frac{a(s)b(t)}{\rho} \Phi(s) f(s, u(s), u'(s))ds \right)
\]

\[
> \frac{a(a^*)b(b^*)}{1 + a(b^*)b(a^*)} \int_{a'}^{b'} \Phi(s) f(s, u(s), u'(s))ds
\]

\[
> \frac{a(a^*)b(b^*)}{1 + a(b^*)b(a^*)} \int_{a'}^{b'} \Phi(s)ds \frac{b_1}{\delta}
\]

\[
\geq b_1.
\]

(3.18)

Consequently condition (c₁) of Theorem 2.6 holds.

We will prove that condition (c₃) of Theorem 2.6 holds. If \(u \in P(\alpha, b_1, r_2) \), and \(\|Tu(t)\| > l_1 \), by (H₄), we have

\[
a(Tu(t)) = \min_{t \in [a^*, b^*]} \frac{(Tu(t))}{\rho^{-1}[1 + a(t)b(t)]} \geq \frac{a(a^*)b(b^*)}{1 + a(b^*)b(a^*)} \int_{a'}^{b'} \Phi(s)ds \frac{b_1}{\delta} \geq b_1.
\]

(3.19)

Therefore, condition (c₃) of Theorem 2.6 is satisfied. Then we can complete the proof of this theorem by Leggett-Williams fixed point theorem. □

Theorem 3.2. Suppose that (H₁), (H₂) hold, and assume there exist \(0 < r_1 < b_1 < l_1 < r_2 < b_2 < l_2 < r_3 < \cdots < r_m \) with \(l_i = \max\{b_i/c^*, \sup_{t \in [0, \infty)} b_i/c^* p(t)\} \), such that
(H₆) \(Q(y_1, y_2) < \min \{r_i / \int_0^{r_i} \Phi(s)q(s)ds + A(\Phi q)/\rho^{-1} \beta_1 + B(\Phi q)/\rho^{-1} \beta_1, r_i \sup_{t \in [0, r_i]} (1/p(t))(\int_0^{t} \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2) \}, 0 \leq y_1 \leq r_i, |y_2| \leq r_i, 1 \leq i \leq m \).

(H₇) \(\Psi(t, y_1, y_2) > b_i/\delta, t \in [a^*, b^*], b_i \leq y_1 \leq r_{i+1}, |y_2| \leq r_{i+1}, 1 \leq i \leq m - 1 \).

Then BVP (1.1) has at least \(2m - 1 \) positive solutions.

Proof. When \(m = 1 \), it follows from (H₆) that \(T \) has at least one positive solution by the Schauder fixed point theorem. When \(m = 2 \), it is clear that Theorem 3.1 holds. Then we can obtain three positive solutions. In this way, we can finish the proof by the method of induction. \(\square \)

4. Example

Consider the following singular Sturm-Liouville singular boundary value problems for second-order differential equation on the half-line

\[
(1 + t)^2u'(t) + \frac{e^{-s}(1 + t)}{\sqrt{t}} f(t, u(t), u'(t)) = 0, \quad 0 < t < +\infty,
\]

\[
u(0) - \lim_{t \to 0^+} p(t)u'(t) = \sum_{i=1}^{m-2} \left(\frac{1}{3} \right)^i u(\xi_i), \quad 0 < \xi_i < +\infty, \tag{4.1}
\]

\[
\lim_{t \to +\infty} u(t) + \lim_{t \to +\infty} p(t)u'(t) = \int_0^{+\infty} e^{-s}(1 + s)u(s)ds,
\]

where

\[
f(t, u(t), u'(t)) = \Psi(t, y_1, y_2) = \begin{cases} y_1^4 + \frac{1}{550} |y_2|, & y_1 \leq 1, \\ 1 + \frac{1}{550} |y_2|, & y_1 \geq 1, \end{cases} \tag{4.2}
\]

\[p(t) = (1 + t)^2, \quad \alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 1, \quad a(t) = 2 - 1/(1 + t), \quad b(t) = 1 + 1/(1 + t), \quad \Phi(t) = e^{-s}(1 + t)/\sqrt{t}\]

which is singular at \(t = 0 \), \(p = 3 \), \(T(u) = \sum_{i=1}^{m-2} (1/3)^i u(\xi_i) \), \(K(u) = \int_0^{+\infty} (1/3)e^{-s}(1 + s)u(s)ds \).

Set \(q(t) = 1 \) and

\[
Q(y_1, y_2) = \begin{cases} y_1^4 + \frac{1}{550} |y_2|, & y_1 \leq 1, \\ 1 + \frac{1}{550} |y_2|, & y_1 \geq 1, \end{cases} \tag{4.3}
\]

then \(\int_0^{+\infty} \Phi(s)q(s)ds < 3 \), \(a(0) = 1 \), \(a(\infty) = 2 \), \(b(0) = 2 \), \(b(\infty) = 1 \), \(1/2 < T(a(\tau)) < 1 \), \(1/2 < T(b(\tau)) < 1 \), \(K(a(\tau)) = K(b(\tau)) = 1 \), \(\Delta > 3 \), \(A(\Phi q) < 26/9 \), \(B(\Phi q) < 20/9 \).
Choose \(r_1 = 1/3, b_1 = 7/5, r_2 = 19 \). When \(a^* = 1, b^* = 2 \), by the definition of \(\delta \), we may choose \(\delta = 8/5 \). By direct calculations, we imply that

\[
\begin{align*}
\min \left\{ \int_0^\infty \Phi(s)q(s)ds + A(\Phi q)/\rho^{-1}\beta_2 + B(\Phi q)/\rho^{-1}\beta_1, \right. \\
\left. \frac{r_1}{\sup_{t \in [0, \infty)} (1/p(t)) \left(\int_0^\infty \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2 \right)} > \frac{3r_1}{55}, \right. \\
\end{align*}
\]

\[
\begin{align*}
\min \left\{ \int_0^\infty \Phi(s)q(s)ds + A(\Phi q)/\rho^{-1}\beta_2 + B(\Phi q)/\rho^{-1}\beta_1, \right. \\
\left. \frac{r_2}{\sup_{t \in [0, \infty)} (1/p(t)) \left(\int_0^\infty \Phi(s)q(s)ds + A(\Phi q)\alpha_1 + B(\Phi q)\alpha_2 \right)} > \frac{3r_2}{55}, \right. \\
\end{align*}
\]

(4.4)

\[
Q(y_1, y_2) \leq \left(\frac{1}{3} \right)^4 + \frac{1}{550} \times \frac{1}{3} < \frac{1}{55} = \frac{3r_1}{55}, \quad \text{for } 0 \leq y_1 \leq \frac{1}{3}, \quad |y_2| \leq \frac{1}{3},
\]

\[
Q(y_1, y_2) \leq 1 + \frac{19}{550} < \frac{3 \times 19}{55} = \frac{3r_2}{55}, \quad \text{for } 0 \leq y_1 \leq 19, \quad |y_2| \leq 19,
\]

\[
\Psi(t, y_1, y_2) \geq 1 > \frac{7/5}{8/5} = \frac{b_1}{\delta}, \quad \text{for } t \in [1, 2], \quad 7/5 \leq y_1 \leq 19, \quad |y_2| \leq 19.
\]

Therefore, the conditions (H_1)–(H_5) hold. Applying Theorem 3.1 we conclude that BVP(4.1) has at least three positive solutions.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (10871116) and the Natural Science Foundation of Shandong Province of China (ZR2010AM005).

References

