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The extended hyperbolic function method is used to derive abundant exact solutions for
generalized forms of nonlinear heat conduction and Huxley equations. The extended hyperbolic
function method provides abundant solutions in addition to the existing ones. Some previous
results are supplemented and extended greatly.

1. Introduction

The quasi-linear diffusion equations with a nonlinear source arise in many scientific
applications such as mathematical biology, diffusion process, plasma physics, combustion
theory, neural physics, liquid crystals, chemical reactions, and mechanics of porous media. It
is well known that wave phenomena of plasma media and fluid dynamics are modeled by
kink-shaped tanh solution or by bell-shaped sech solutions.

The exact solution, if available, of nonlinear partial differential equations facilitates
the verification of numerical solvers and aids in the stability analysis of solutions. It can
also provide much physical information and more inside into the physical aspects of the
nonlinear physical problem. During the past decades, much effort has been spent on the
subject of obtaining the exact analytical solutions to the nonlinear evolution PDEs. Many
powerful methods have been proposed such as inverse scattering transformation method
[1], Bäcklund and Darboux transformation method [2, 3], Hirota bilinear method [4], Lie
group reduction method [5], the tanh method [6], the tanh-coth method [7], the sine-cosine
method [8, 9], homogeneous balancemethod [10–12], Jacobi elliptic functionmethod [13, 14],
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extended tanh method [15, 16], F-expansion method and Exp-function method [17, 18],
the first integral method and Riccati method [19, 20], as well as extended improved tanh-
function method [21, 22]. With the development of symbolic computation, the tanh method,
the Exp-function method, sine-Gordon equation expansionmethod, and all kinds of auxiliary
equation methods attract more andmore researchers. We present an effective extension to the
projective Riccati equation method [19, 20] and extended improved tanh-function method
[21, 22], namely, the extended hyperbolic function method in [23]. Our method can also be
regarded as an extension of the recent works by Wazwaz [24–28].

The proposed method supply a unified formulation to construct abundant traveling
wave solutions to nonlinear evolution partial differential equations of special physical
significance. Furthermore, the presented method is readily computerized by using symbolic
software Maple. Based on the extended hyperbolic function method and computer symbolic
software, we develop a Maple software package “PDESolver.

′′

The balancing parameter m plays an important role in the extended hyperbolic
function method in that it should be a positive integer to derive a closed-form analytic
solution. However, for noninteger values of m, we usually use a transformation formula to
overcome this difficulty.

For illustration, we investigate generalized forms of the nonlinear heat conduction
equation and Huxley equation expressed by

ut − α(un)xx − u + un = 0, (1.1)

ut − αuxx − u
(
β − un)(un − 1) = 0, (1.2)

respectively. Equation (1.1) is used to model flow of porous media. Equation (1.2) is used for
nerve propagation in neuro-physics and wall propagation in liquid crystals. For α = 1, n = 1,
(1.2) becomes the FitzHugh-Nagumo equation. The FitzHugh-Nagumo equation described
the dynamical behavior near the bifurcation point for the Rayleigh-Bénard convection of
binary fluid mixtures [29]. Wazwaz studied (1.1) and (1.2) analytically by tanh method [26],
the extended tanh method [27], the tanh-coth method [28], respectively. He obtained some
exact traveling wave solutions for some n > 1. By combining a transformation with the
extended hyperbolic function method, with the aid of the computer symbolic computational
software package “PDESolver,

′′
we not only obtain all known exact solitary wave solutions,

periodic wave solutions, and singular traveling wave solutions but also find abundant new
exact solitary wave solutions, singular traveling wave solutions, and periodic traveling wave
solutions of triangle function.

The paper is organized as follows: in Section 2, we briefly describe what is the
extended hyperbolic function method and how to use it to derive the traveling solutions
of nonlinear PDEs. In Section 3 and Section 4, we apply the extended hyperbolic function
method to generalized forms of nonlinear heat conduction and Huxley equations and
establish many rational form solitary wave, rational-form triangular periodic wave solutions.
In the last section, we briefly make a summary to the results that we have obtained.

2. The Extended Hyperbolic Function Method

We now would like to outline the main steps of our method.
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Consider the coupled Riccati equations:

f ′(ξ) = −f(ξ)g(ξ), g ′(ξ) = ε − rεf(ξ) − g2(ξ), (2.1)

where ε = ±1 or 0, r is a constant. We can obtain the first integrals as follows:

g2(ξ) = ε − 2rεf(ξ) + Cf2(ξ). (2.2)

Step 1. For a given nonlinear PDE, say, in two variables:

P(u, ut, ux, uxt, utt, uxx, . . .) = 0, (2.3)

we seek for the following formal traveling wave solutions which are of important physical
significance:

u(x, t) = u(ξ), ξ = kx +ωt + ξ0, (2.4)

where k and ω are constants to be determined later and ξ0 is an arbitrary constant.
Then, the nonlinear PDE (2.3) reduces to a nonlinear ODE:

Q
(
u, u′, u′′, . . .

)
= 0, (2.5)

where ’ denotes d/dξ.

Step 2. To seek for the exact solutions of system (2.5), we assume that the solution of the
system (2.5) is of the following form.

(a) When ε = ±1 in (2.1), (2.2),

u(ξ) =
m∑

i=0

aif
i(ξ) +

m∑

j=1

bjf
j−1(ξ)g(ξ), (2.6)

where the coefficients ai (i = 0, 1, 2, . . . , m) and bj (j = 1, 2, . . . , m) are constants to
be determined.

(b) When ε = 0 in (2.1),

u(ξ) = u(x, t) =
m∑

i=0

ai

(
g(ξ)

)i
, (2.7)

where g ′(ξ) = −g2(ξ) and the coefficients ai, i = 0, 1, 2, . . . , m are constants to be
determined.

Substituting (2.6) (or (2.7)) into the simplified ODE (2.5) and making use of (2.1)-
(2.2) (or g ′(ξ) = −g2(ξ)) repeatedly and eliminating any derivative of (f,g) and any power of
g higher than one yield an equation in powers of fi (i = 0, 1, . . .) and fig (j = 1, 2, . . .).
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Step 3. To determine the balance parameter m, we usually balance the linear terms of the
highest-order derivative term in the resulting equation with the highest-order nonlinear
terms. m is a positive integer, in most cases.

Step 4. Withm determined, we collect all coefficients of powers fi (i = 0, 1, 2, . . .) and fjg (j =
1, 2, . . .), (or the coefficients of the different powers g), in the resulting equation where
these coefficients have to vanish. This will give a set of overdetermined algebraic equations
with respect to the unknown variables k,ω, ai (i = 0, 1, 2, . . . , m), bj (j = 1, 2, . . . , m), r, a, b.
With the aid of Mathematica, we apply Wu-eliminating method [30] to solve the above
overdetermined system of nonlinear algebraic equations, yielding the values of k,ω, ai (i =
0, 1, 2 . . . , m), bj (j = 1, 2, . . . , m), r, a, b.

Step 5. We know that the coupled Riccati equations (2.1) admits the following general
solutions.

(a) When ε = 1,

f(ξ) =
1

a cosh ξ + b sinh ξ + r
, g(ξ) =

a sinh ξ + b cosh ξ

a cosh ξ + b sinh ξ + r
, (2.8)

and then g2(ξ) = 1 − 2rf(ξ) + (b2 − a2 + r2)f2(ξ).

(b) When ε = −1,

f(ξ) =
1

a cos ξ + b sin ξ + r
, g(ξ) =

b cos ξ − a sin ξ

a cos ξ + b sin ξ + r
, (2.9)

and then g2(ξ) = −1 + 2rf(ξ) + (b2 + a2 − r2)f2(ξ).

(c) When ε = 0,

f(ξ) = ± 1√
C(ξ + C1)

, g(ξ) =
1

ξ + C1
, (2.10)

where C, C1 are two constant.

Having determined these parameters, and using (2.5) (or (2.6)), we obtain an analytic
solution u(x, t) in closed form.

If m is not an integer, then an appropriate transformation formula should be used to
overcome this difficulty. This will be introduced in the forthcoming two sections.

3. Generalized Forms of the Nonlinear Heat Conduction Equation

In this section, we will use the extended hyperbolic function method to handle the
generalized forms of the nonlinear heat conduction equation (1.1).

Using the wave variable ξ = kx +ωt + ξ0 carries (1.1) to

ωu′ − αk2(un)′′ − u + un = 0, (3.1)
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or, equivalently,

ωu′ − αn(n − 1)k2un−2(u′)2 − αnk2un−1u′′ − u + un = 0. (3.2)

Balancing un−1u′′ (or un−2(u′)2)with u′ gives

(n − 1)m +m + 2 = m + 1, (3.3)

so that

m = − 1
n − 1

. (3.4)

To obtain a closed-form solution, m should be an integer. Therefore, we use the
transformation

u(x, t) = v−1/(n−1)(x, t), (3.5)

and as a result (3.2) becomes

(1 − n)ωv2v′ + k2αn(1 − 2n)
(
v′)2 + k2n(n − 1)αvv′′ + (n − 1)2

(
v2 − v3

)
= 0. (3.6)

Balancing vv′′ with v2v′ gives

m +m + 2 = 2m +m + 1, (3.7)

so that

m = 1, (3.8)

Consequently, the extended hyperbolic function method allows us to set the following.

(1) In the case of ε = ±1,

v(ξ) = c + df(ξ) + eg(ξ). (3.9)

(2) In the case of ε = 0,

v(ξ) = c + dg(ξ), (3.10)

where ξ = kx +ωt + ξ0 and c, d, e, k, ω, ξ0 are constants to be determined.
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Substituting (3.9) (or (3.10), resp.) into (3.6) and collecting the coefficients of fi and
fig (or gi, resp.) give the system of algebraic equations for k,ω, c, d, e. Solving the resulting
system, we find the following nine sets of solutions.

(a) In the case of ε = 1, there are six sets of solutions:

(1)

k =
n − 1√
αn

, r = r, ω =
n − 1
n

, c =
1
2
, d =

1
2
, e =

1
2
, (3.11)

(2)

k =
n − 1√
αn

, r = r, ω =
n − 1
n

, c =
1
2
, d =

−1
2
, e =

1
2
, (3.12)

(3)

k =
n − 1√
αn

, r = r, ω =
−n + 1

n
, c =

1
2
, d =

1
2
, e =

−1
2
, (3.13)

(4)

k =
n − 1√
αn

, r = r, ω =
−n + 1

n
, c =

1
2
, d =

−1
2
, e =

−1
2
, (3.14)

(5)

k =
n − 1
2
√
αn

, r = 0, ω =
n − 1
2n

, c =
1
2
, d = 0, e =

1
2
, (3.15)

(6)

k =
n − 1
2
√
αn

, r = 0, ω = −n − 1
2n

, c =
1
2
, d = 0, e =

−1
2
. (3.16)

(b) In the case of ε = −1, there are three sets of solutions:
(7)

k =
√−α(n − 1)

αn
, r = r, ω =

(n − 1)i
n

, c =
1
2
, d =

1
2
i, e =

1
2
i, (3.17)

(8)

k =
√−α(n − 1)

αn
, r = r, ω =

(n − 1)i
n

, c =
1
2
, d =

−1
2
i, e =

1
2
i, (3.18)
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(9)

k =
√−α(n − 1)

2αn
, r = 0, ω =

(n − 1)
2n

i, c =
1
2
, d = 0, e =

1
2
i. (3.19)

(c) In the case of ε = 0, there is no solution.

Recall that u = v−1/(n−1) and using (2.8), (3.9), (3.11)–(3.16), we obtain six sets of
traveling wave solutions:

u1(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ) + r

(a + b)(cosh(ξ) + sinh(ξ)) + r + 1
, (3.20)

where ξ := ((n − 1)/
√
αn)x + ((n − 1)/n)t + ξ0;

u2(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ) + r

(a + b)(cosh(ξ) + sinh(ξ)) + r − 1
, (3.21)

where ξ := ((n − 1)/
√
αn)x + ((n − 1)/n)t + ξ0;

u3(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ) + r

(a − b)(cosh(ξ) − sinh(ξ)) + r + 1
, (3.22)

where ξ := ((n − 1)/
√
αn)x + ((−n + 1)/n)t + ξ0;

u4(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ) + r

(a − b)(cosh(ξ) − sinh(ξ)) + r − 1
, (3.23)

where ξ := ((n − 1)/
√
αn)x + ((−n + 1)/n)t + ξ0;

u5(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ)

(a + b)(cosh(ξ) + sinh(ξ))
, (3.24)

where ξ := ((n − 1)/
√
αn)x + ((n − 1)/2n)t + ξ0;

u6(x, t) =
n−1

√

2
a cosh(ξ) + b sinh(ξ)

(a − b)(cosh(ξ) − sinh(ξ))
, (3.25)

where ξ := ((n − 1)/2
√
αn)x − ((n − 1)/2n)t + ξ0.

Noting that u = v−1/(n−1) and using (2.9), (3.9), (3.17)–(3.19), we find three sets of
complex solutions:

u7(x, t) =
n−1

√

2
a cosh(ξ) + bi sinh(ξ) + r

(a + bi)(cosh(ξ) + sinh(ξ)) + r + i
, (3.26)
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where ξ := (
√
α(n − 1)/αn)x + ((n − 1)/n)t + ξ0;

u8(x, t) =
n−1

√

2
a cosh(ξ) + bi sinh(ξ) + r

(a + bi)(cosh(ξ) + sinh(ξ)) + r − i
, (3.27)

where ξ := (
√
α(n − 1)/αn)x + ((n − 1)/n)t + ξ0;

u9(x, t) =
n−1

√

2
a cosh(ξ) + bi sinh(ξ)

(a + bi)(cosh(ξ) + sinh(ξ))
, (3.28)

where ξ := (
√
α(n − 1)/2αn)x + ((n − 1)/2n)t + ξ0.

Remark 3.1. Setting a = 1, b = 0, ξ0 = 0 (or a = 0, b = 1, ξ0 = 0, resp.) in solution (3.24), we
obtain solutions (73), (or (74), resp.) of [26]. Setting a = 1, b = 0, ξ0 = 0 (or a = 0, b = 1, ξ0 =
0, resp.) in solution (3.25), we obtain solutions (71), (or (72), resp.) of [26]. Furthermore, in the
case of n = 2, α = 1, we obtain solutions (100) and (101) of [27]. In the case of n = 3, we obtain
solutions (54)–(57) of [26] and solutions (111)-(112) of [27] again. So the known solutions of
(1.1) obtained in previous works are some special cases of solutions (3.24), (3.25) presented
in the paper. All other solutions obtained here are entirely new solutions first reported.

4. The Huxley Equation

In this section, we employ the extended hyperbolic functionmethod to investigate theHuxley
equation (1.2).

The Huxley equation (1.2) can be converted to

ωu′ − αk2u′′ − (
β + 1

)
un+1 + u2n+1 + βu = 0, (4.1)

obtained upon using the wave variable ξ = kx +ωt + ξ0.
Balancing the term u′′ with u2n+1, we find

m =
1
n
. (4.2)

To obtain a closed-form solution, we use the transformation:

u(x, t) = v1/n(x, t), (4.3)

which will carry out (4.1) into the ODE

nωvv′ + αk2(n − 1)
(
v′)2 − αk2nvv′′ + n2v2(v − 1)

(
v − β

)
= 0. (4.4)

Balancing vv′′ with v4 gives m = 1. Using the extended hyperbolic function method, we set

v(ξ) = c + df(ξ) + eg(ξ) (4.5)
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in the case of ε = ±1, and

v(ξ) = c + dg(ξ), (4.6)

in the case of ε = 0, where ξ = kx +ωt + ξ0, and c, d, e, k, ω, ξ0 are constants to be determined.
Substituting (4.5) (or (4.6), resp.) into (4.4), and proceeding as before, we obtain the

twenty sets of solutions.

(a) In the case of ε = 1, there are thirteen sets of solutions:

(1)

k =

√
α(1 + n)n
α(1 + n)

, r = r, ω =

(
nβ + β − 1

)
n

1 + n
, c =

1
2
, d =

1
2
, e =

−1
2
, (4.7)

(2)

k =

√
α(1 + n)n
α(1 + n)

, r = r, ω =

(
nβ + β − 1

)
n

1 + n
, c =

1
2
, d =

−1
2
, e =

−1
2
,

(4.8)

(3)

k =

√
α(1 + n)n
α(1 + n)

, r = r, ω =

(−nβ − β + 1
)
n

1 + n
, c =

1
2
, d =

1
2
, e =

1
2
, (4.9)

(4)

k =

√
α(1 + n)n
α(1 + n)

, r = r, ω =

(−nβ − β + 1
)
n

1 + n
, c =

1
2
, d =

−1
2
, e =

1
2
,

(4.10)

(5)

k =

√
α(1 + n)βn
α(1 + n)

, r = r, ω =
nβ

(
n + 1 − β

)

1 + n
, c =

β

2
, d =

β

2
, e = −β

2
,

(4.11)

(6)

k =

√
α(1 + n)βn
α(1 + n)

, r = r, ω =
nβ

(
n + 1 − β

)

1 + n
, c =

β

2
, d = −β

2
, e = −β

2
,

(4.12)
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(7)

k =

√
α(1 + n)βn
α(1 + n)

, r = r, ω =

(−n − 1 + β
)
nβ

1 + n
, c =

β

2
, d =

β

2
, e =

β

2
,

(4.13)

(8)

k =

√
α(1 + n)βn
α(1 + n)

, r = r, ω =

(−n − 1 + β
)
nβ

1 + n
, c =

β

2
, d = −β

2
, e =

β

2
,

(4.14)

(9)

k =

√
βαn

α
, r =

nβ + n + β + 1
√
β(1 + n)(n + 2)

, ω = 0, c = 0, d =
√
β(1 + n), e = 0,

(4.15)

(10)

k =

√
α(1 + n)n
2α(1 + n)

, r = 0, ω =

(
nβ + β − 1

)
n

2(1 + n)
, c =

1
2
, d = 0, e =

−1
2
, (4.16)

(11)

k =

√
α(1 + n)n
2α(1 + n)

, r = 0, ω = −
(
nβ + β − 1

)
n

2(1 + n)
, c =

1
2
, d = 0, e =

1
2
, (4.17)

(12)

k =

√
α(1 + n)βn
2α(1 + n)

, r = 0, ω =
nβ

(
n + 1 − β

)

2(1 + n)
, c =

β

2
, d = 0, e = −β

2
,

(4.18)

(13)

k =

√
α(1 + n)βn
2α(1 + n)

, r = 0, ω = −nβ
(
n + 1 − β

)

2(1 + n)
, c =

β

2
, d = 0, e =

β

2
.

(4.19)
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(b) In the case of ε = −1, there are seven sets of solutions:

(14)

k =

√−α(n + 1)n
α(n + 1)

, r = r, ω =
−(nβ − 1 + β

)
n

n + 1
i, c =

1
2
, d =

1
2
i, e =

1
2
i,

(4.20)

(15)

k =

√−α(n + 1)n
α(n + 1)

, r = r, ω =
−(nβ − 1 + β

)
n

n + 1
i, c =

1
2
, d =

−1
2
i, e =

1
2
i,

(4.21)

(16)

k =

√−α(n + 1)βn
α(n + 1)

, r = r, ω =
−nβ(n + 1 − β

)

n + 1
i, c =

β

2
, d =

1
2
βi, e =

1
2
βi,

(4.22)

(17)

k =

√−α(n+1)βn
α(n+1)

, r = r, ω =
−nβ(n + 1−β)

n+1
i, c =

β

2
, d =

−1
2
βi, e =

1
2
βi,

(4.23)

(18)

k =

√−βαn
α

, r =
−1 − β − n − nβ
√−β(n+1)(2+n)

, ω = 0, c = 0, d =
√
−β(n+1), e = 0,

(4.24)

(19)

k =

√−α(n+1)n
2α(n+1)

, r = 0, ω =
−(nβ − 1 + β

)
n

2(n+1)
i, c =

1
2
, d = 0, e =

1
2
i,

(4.25)

(20)

k =

√−α(n + 1)βn
2α(n + 1)

, r = 0, ω =
−nβ(n + 1 − β

)

2(n + 1)
i, c =

β

2
, d = 0, e =

1
2
βi.

(4.26)
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(c) In the case of ε = 0, there is no solution.

Owing to u(x, t) = v1/n(x, t), we obtain the following thirteen sets of solutions from
(4.5), (4.7)–(4.19):

u1(x, t) =
n

√
1
2
(a − b)(cosh(ξ) − sinh(ξ)) + r + 1

a cosh(ξ) + b sinh(ξ) + r
, (4.27)

where ξ := (
√
α(1 + n)n/α(1 + n))x + ((nβ + β − 1)n/(1 + n))t + ξ0;

u2(x, t) =
n

√
1
2
(a − b)(cosh(ξ) − sinh(ξ)) + r − 1

a cosh(ξ) + b sinh(ξ) + r
, (4.28)

where ξ := (
√
α(1 + n)n/α(1 + n))x + ((nβ + β − 1)n/(1 + n))t + ξ0;

u3(x, t) =
n

√
1
2
(a + b)(cosh(ξ) + sinh(ξ)) + r + 1

a cosh(ξ) + b sinh(ξ) + r
, (4.29)

where ξ := (
√
α(1 + n)n/α(1 + n))x + ((−nβ − β + 1)n/(1 + n))t + ξ0;

u4(x, t) =
n

√
1
2
(a + b)(cosh(ξ) + sinh(ξ)) + r − 1

a cosh(ξ) + b sinh(ξ) + r
, (4.30)

where ξ := (
√
α(1 + n)n/α(1 + n))x + ((−nβ − β + 1)n/(1 + n))t + ξ0;

u5(x, t) =
n

√
β

2
(a − b)(cosh(ξ) − sinh(ξ)) + r + 1

a cosh(ξ) + b sinh(ξ) + r
, (4.31)

where ξ := (
√
α(1 + n)βn/α(1 + n))x + (nβ(n + 1 − β)/(1 + n))t + ξ0;

u6(x, t) =
n

√
β

2
(a − b)(cosh(ξ) − sinh(ξ)) + r − 1

a cosh(ξ) + b sinh(ξ) + r
, (4.32)

where ξ := (
√
α(1 + n)βn/α(1 + n))x + (nβ(n + 1 − β)/(1 + n))t + ξ0;

u7(x, t) =
n

√
β

2
(a + b)(cosh(ξ) + sinh(ξ)) + r + 1

a cosh(ξ) + b sinh(ξ) + r
, (4.33)

where ξ := (
√
α(1 + n)βn/α(1 + n))x + ((−n − 1 + β)nβ/(1 + n))t + ξ0;

u8(x, t) =
n

√
β

2
(a + b)(cosh(ξ) + sinh(ξ)) + r − 1

a cosh(ξ) + b sinh(ξ) + r
, (4.34)
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where ξ := (
√
α(1 + n)βn/α(1 + n))x + ((−n − 1 + β)nβ/(1 + n))t + ξ0;

u9(x, t) = n

√√
√
√
√

√
β(n + 1)

(a cosh(ξ) + b sinh(ξ)) + (1 + n)
(
1 + β

)
/
(√

β(n + 1)(n + 2)
) , (4.35)

where ξ := (
√
βαn/α)x + ξ0;

u10(x, t) =
n

√
1
2
(a − b)(cosh(ξ) − sinh(ξ))

a cosh(ξ) + b sinh(ξ)
, (4.36)

where ξ := (
√
α(1 + n)n/2α(1 + n))x + ((nβ + β − 1)n/2(1 + n))t + ξ0;

u11(x, t) =
n

√
1
2
(a + b)(cosh(ξ) + sinh(ξ))

a cosh(ξ) + b sinh(ξ)
, (4.37)

where ξ := (
√
α(1 + n)n/2α(1 + n))x − ((nβ + β − 1)n/2(1 + n))t + ξ0;

u12(x, t) =
n

√
β

2
(a − b)(cosh(ξ) − sinh(ξ))

acosh(ξ) + bsinh(ξ)
, (4.38)

where ξ := (
√
α(1 + n)βn/2α(1 + n))x + (nβ(n + 1 − β)/2(1 + n))t + ξ0;

u13(x, t) =
n

√
β

2
(a + b)(cosh(ξ) + sinh(ξ))

a cosh(ξ) + bsinh(ξ)
, (4.39)

where ξ := (
√
α(1 + n)βn/2α(1 + n))x − (nβ(n + 1 − β)/2(1 + n))t + ξ0.

Combining (4.3), (4.5)with (4.20)–(4.26), we find the seven sets of complex solutions

u14(x, t) =
n

√
1
2
(a + bi)(cosh(ξ) + sinh(ξ)) + r + i

a cosh(ξ) + bi sinh(ξ) + r
, (4.40)

where ξ := (
√
α(n + 1)n/α(n + 1))x − ((nβ − 1 + β)n/(n + 1))t + ξ0;

u15(x, t) =
n

√
1
2
(a + bi)(cosh(ξ) + sinh(ξ)) + r − i

a cosh(ξ) + bi sinh(ξ) + r
, (4.41)

where ξ := (
√
α(n + 1)n/α(n + 1))x − ((nβ − 1 + β)n/(n + 1))t + ξ0;

u16(x, t) =
n

√
β

2
(a + bi)(cosh(ξ) + sinh(ξ)) + r + i

a cosh(ξ) + bi sinh(ξ) + r
, (4.42)
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where ξ := (
√
α(n + 1)βn/α(n + 1))x − (nβ(n + 1 − β)/(n + 1))t + ξ0;

u17(x, t) =
n

√
β

2
(a + bi)(cosh(ξ) + sinh(ξ)) + r − i

a cosh(ξ) + bi sinh(ξ) + r
, (4.43)

where ξ = (
√
α(n + 1)βn/α(n + 1))x − (nβ(n + 1 − β)/(n + 1))t + ξ0;

u18(x, t) = n

√√
√
√
√

√
β(n + 1)i

(a cosh(ξ) + bi sinh(ξ)) + (1 + n)
(
1 + β

)
i/
(√−β(n + 1)(n + 2)

) , (4.44)

where ξ = (
√
βαn/α)x + ξ0;

u19(x, t) =
n

√
1
2
(a + bi)(cosh(ξ) + sinh(ξ))

a cosh(ξ) + bi sinh(ξ)
, (4.45)

where ξ = (
√
α(n + 1)n/2α(n + 1))x − ((nβ − 1 + β)n/2(n + 1))t + ξ0;

u20(x, t) =
n

√
1
2
(a + bi)(cosh(ξ) + sin(ξ))
a cosh(ξ) + bi sinh(ξ)

, (4.46)

where ξ = (
√
α(n + 1)n/2α(n + 1))x − ((nβ − 1 + β)n/2(n + 1))t + ξ0;

Remark 4.1. Wazwaz obtained six sets of solutions of (1.2) in [27]. It is worth pointing out that
the solutions (85) and (88) of [27] are not new solutions. We can reduce the solution (85) (and
(88)) of [27] to the solutions (84) (and (87)) of [27] by using the formulae tanh x + coth x =
2 coth 2x. There is a mistake in the solution (87) of [27], that is, the first constant factor 1/2
should be k/2. For α = 1, n = 1, Wazwaz finds nine sets of solutions of (1.2) in [28]. The
solutions (61)–(63) of [28] are also not new solutions. The solution (61) (and (62), (63), resp.)
of [28] can be reduced to the solution (58) (and (59), (60), resp.) of [28] by using the formulae
tanh x + coth x = 2 coth 2x. Therefore, Wazwaz actually finds six sets of solutions of (1.2).

Remark 4.2. Letting a = 1, b = 0, ξ0 = 0 (or a = 0, b = 1, ξ0 = 0, resp.) in (4.36), (4.37),
we obtain the solutions (83) (or (84), resp.) of [27]. Setting a = 1, b = 0, ξ0 = 0 (or a =
0, b = 1, ξ0 = 0, resp.) in (4.38), (4.39), we obtain the solutions (86) (or (87), resp.) of [27].
Furthermore, as α = 1, n = 1, we obtain the solutions (55), (58) of [28] from the solution (4.37)
and the solutions (56), (59) of [28] from the solution (4.39). Therefore, the known solutions
of (1.2) in previous works are some special cases of the solutions obtained in this paper. All
other solutions are entirely new solutions reported in the present paper.

Remark 4.3. The solutions (4.35) and (4.44) are two static solutions of (1.2). All other solutions
are traveling wave solutions.
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5. Conclusions

In this paper, the extended hyperbolic function method is used to establish abundant
traveling wave solutions, mostly kinks solutions. The balance parameter m plays a major
role in the extended hyperbolic function method in that it should be a positive integer to
derive a closed-form analytic solution. If m is not a positive integer, then an appropriate
transformation should be used to overcome this difficulty. The extended hyperbolic function
method is employed to develop many entirely solutions for generalized forms of nonlinear
heat conduction and Huxley equations in addition to the solutions that exist in the previous
works. Our method can also be regarded as an extension of the recent works by Wazwaz
[24–28]. The results of [26–28] are supplemented and extended greatly.
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