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Abstract. 
This paper is concerned with a nonlocal Cauchy problem for fractional integrodifferential equations in a separable Banach space X. We establish an existence theorem for mild solutions to the nonlocal Cauchy problem, by virtue of measure of noncompactness and the fixed point theorem for condensing maps. As an application, the existence of the mild solution to a nonlocal Cauchy problem for a concrete integrodifferential equation is obtained.
 

1. Introduction
Nonlocal Cauchy problem for equations is an initial problem for the corresponding equations with nonlocal initial data. Such a Cauchy problem has better effects than the normal Cauchy problem with the classical initial data when we deal with many concrete problem coming from engineering and physics (cf., e.g., [1–10] and references therein). Therefore, the study of this type of Cauchy problem is important and significant. Actually, as we have seen from the just mentioned literature, there have been many significant developments in this field.
On the other hand, fractional differential and integrodifferential equations arise from various real processes and phenomena appeared in physics, chemical technology, materials, earthquake analysis, robots, electric fractal network, statistical mechanics biotechnology, medicine, and economics. They have in recent years been an object of investigations with much increasing interest. For more information on this subject see for instance [9, 11–18] and references therein.
Throughout this paper, 
	
		
			

				𝑋
			

		
	
 is a separable Banach space; 
	
		
			
				𝐿
				(
				𝑋
				)
			

		
	
 is the Banach space of all linear bounded operators on 
	
		
			

				𝑋
			

		
	
; 
	
		
			

				𝐴
			

		
	
 is the generator of an analytic and uniformly bounded semigroup 
	
		
			
				{
				𝑇
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				‖
				𝑇
				(
				𝑡
				)
				‖
			

			
				𝐿
				(
				𝑋
				)
			

			
				≤
				𝑀
			

		
	
 for a constant 
	
		
			
				𝑀
				>
				0
			

		
	
, and 
	
		
			
				𝐶
				(
				[
				𝑎
				,
				𝑏
				]
				,
				𝑋
				)
			

		
	
 is the space of all 
	
		
			

				𝑋
			

		
	
-valued continuous functions on
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
  with the supremum norm as follows:
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
			

			
				[
				𝑎
				,
				𝑏
				]
			

			
				{
				[
				]
				[
				]
				∶
				=
				m
				a
				x
				‖
				𝑥
				(
				𝑡
				)
				‖
				∶
				𝑡
				∈
				𝑎
				,
				𝑏
				}
				,
				f
				o
				r
				a
				n
				y
				𝑥
				∈
				𝐶
				(
				𝑎
				,
				𝑏
				,
				𝑋
				)
				.
			

		
	

Let 
	
		
			
				0
				<
				𝑞
				<
				1
			

		
	
, 
	
		
			
				𝑇
				>
				0
			

		
	
, 
	
		
			
				Δ
				=
				{
				(
				𝑡
				,
				𝑠
				)
				∈
				[
				0
				,
				𝑇
				]
				×
				[
				0
				,
				𝑇
				]
				∶
				𝑡
				≥
				𝑠
				}
			

		
	
, 
	
		
			
				𝑓
				∶
				[
				0
				,
				𝑇
				]
				×
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
				→
				𝑋
			

		
	
, and 
	
		
			
				ℎ
				∶
				Δ
				×
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
				→
				𝑋
			

		
	
. The nonlocal Cauchy problem for abstract fractional integrodifferential equations, with which we are concerned, is in the following form:
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝑐
			

			

				D
			

			

				𝑞
			

			
				
				𝑥
				(
				𝑡
				)
				=
				𝐴
				𝑥
				(
				𝑡
				)
				+
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
			

			
				𝑡
				0
			

			
				[
				]
				,
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
				𝑥
				(
				0
				)
				=
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			

				,
			

		
	

					where 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 are given functions to be specified later and the fractional derivative is understood in the Caputo sense, this means that, the fractional derivative is understood in the following sense:
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			

				𝑞
			

			
				𝑥
				(
				𝑡
				)
				∶
				=
			

			

				𝐿
			

			

				𝐷
			

			

				𝑞
			

			
				(
				𝑥
				(
				𝑡
				)
				−
				𝑥
				(
				0
				)
				)
				,
				𝑡
				>
				0
				,
				0
				<
				𝑞
				<
				1
				,
			

		
	

					and where
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝐷
			

			

				𝑞
			

			
				1
				𝑥
				(
				𝑡
				)
				∶
				=
			

			
				
			
			
				𝑑
				Γ
				(
				1
				−
				𝑞
				)
			

			
				
			
			
				
				𝑑
				𝑡
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				−
				𝑞
			

			
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				>
				0
				,
				0
				<
				𝑞
				<
				1
			

		
	

					is the Riemann-Liouville derivative of order 
	
		
			

				𝑞
			

		
	
 of 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
, where 
	
		
			
				Γ
				(
				⋅
				)
			

		
	
 is the Gamma function.
Our main purpose is to establish an existence theorem for the mild solutions to the nonlocal Cauchy problem based on a special measure of noncompactness under weak assumptions on the nonlinearity 
	
		
			

				𝑓
			

		
	
 and the semigroup 
	
		
			
				{
				𝑇
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 generated by 
	
		
			

				𝐴
			

		
	
.
2. Existence Result and Proof
 As usual, we abbreviate 
	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				[
				0
				,
				𝑇
				]
				,
				𝐑
			

			

				+
			

			

				)
			

		
	
 with 
	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				𝑝
			

		
	
, for any 
	
		
			
				𝑢
				∈
				𝐿
			

			

				𝑝
			

			
				(
				[
				0
				,
				𝑇
				]
				,
				𝐑
			

			

				+
			

			

				)
			

		
	
.
As in [16, 17], we define the fractional integral of order 
	
		
			

				𝑞
			

		
	
 with the lower limit zero for a function 
	
		
			
				𝑓
				∈
				𝐴
				𝐶
				[
				0
				,
				∞
				)
			

		
	
 as
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝑞
			

			
				1
				𝑓
				(
				𝑡
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				>
				0
				,
				0
				<
				𝑞
				<
				1
				,
			

		
	

					provided the right side is point-wise defined on 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
.
Now we recall some very basic concepts in the theory of measures of noncompactness and condensing maps (see, e.g., [19, 20]).
Definition 2.1. Let 
	
		
			

				𝐸
			

		
	
 be a Banach space, 
	
		
			

				2
			

			

				𝐸
			

		
	
 the family of all nonempty subsets of 
	
		
			

				𝐸
			

		
	
, 
	
		
			
				(
				𝒜
				,
				≥
				)
			

		
	
 a partially ordered set, and 
	
		
			
				𝛼
				∶
				2
			

			

				𝐸
			

			
				→
				𝒜
			

		
	
. If for every 
	
		
			
				Ω
				∈
				2
			

			

				𝐸
			

		
	
:
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝛼
				
			

			
				
			
			
				
				c
				o
				(
				Ω
				)
				=
				𝛼
				(
				Ω
				)
				,
			

		
	

						then we say that 
	
		
			

				𝛼
			

		
	
 is a measure of noncompactness in 
	
		
			

				𝐸
			

		
	
.
Definition 2.2. Let 
	
		
			

				𝐸
			

		
	
 be a Banach space, and 
	
		
			
				𝔉
				∶
				𝑌
				⊆
				𝐸
				→
				𝐸
			

		
	
 is continuous. Let 
	
		
			

				𝛼
			

		
	
 be a measure of noncompactness in 
	
		
			

				𝐸
			

		
	
 such that(i)for any 
	
		
			

				Ω
			

			

				0
			

			
				,
				Ω
			

			

				1
			

			
				∈
				2
			

			

				𝐸
			

		
	
 with 
	
		
			

				Ω
			

			

				0
			

			
				⊂
				Ω
			

			

				1
			

		
	
,
										
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝛼
				
				Ω
			

			

				0
			

			
				
				
				Ω
				≤
				𝛼
			

			

				1
			

			
				
				;
			

		
	
(ii) for every 
	
		
			

				𝑎
			

			

				0
			

			
				∈
				𝐸
			

		
	
, 
	
		
			
				Ω
				∈
				2
			

			

				𝐸
			

		
	
,
										
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝛼
				𝑎
				
				
			

			

				0
			

			
				
				
				∪
				Ω
				=
				𝛼
				(
				Ω
				)
				.
			

		
	

									If for every bounded set 
	
		
			
				Ω
				⊆
				𝑌
			

		
	
 which is not relatively compact,
										
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝛼
				(
				𝔉
				(
				Ω
				)
				)
				<
				𝛼
				(
				Ω
				)
				,
			

		
	

									then we say that 
	
		
			

				𝔉
			

		
	
 is condensing with respect to the measure of noncompactness 
	
		
			

				𝛼
			

		
	
 (or 
	
		
			

				𝛼
			

		
	
-condensing).
Definition 2.3. Let
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝜛
			

			

				𝑞
			

			
				1
				(
				𝜎
				)
				=
			

			
				
			
			

				𝜋
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				(
				−
				1
				)
			

			
				𝑛
				−
				1
			

			

				𝜎
			

			
				−
				𝑞
				𝑛
				−
				1
			

			
				Γ
				(
				𝑛
				𝑞
				+
				1
				)
			

			
				
			
			
				𝑛
				!
				s
				i
				n
				(
				𝑛
				𝜋
				𝑞
				)
				,
				𝜎
				∈
				(
				0
				,
				∞
				)
			

		
	

						be a one-sided stable probability density, and
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝜉
			

			

				𝑞
			

			
				1
				(
				𝜎
				)
				=
			

			
				
			
			
				𝑞
				𝜎
			

			
				−
				1
				−
				1
				/
				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				𝜎
			

			
				−
				1
				/
				𝑞
			

			
				
				,
				𝜎
				∈
				(
				0
				,
				∞
				)
				.
			

		
	

						For any 
	
		
			
				𝑧
				∈
				𝑋
			

		
	
, we define operators 
	
		
			
				{
				𝑌
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 and 
	
		
			
				{
				𝑍
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 by
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				
				𝑌
				(
				𝑡
				)
				𝑧
				=
			

			
				∞
				0
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				
				𝜎
				)
				𝑧
				𝑑
				𝜎
				,
				𝑍
				(
				𝑡
				)
				𝑧
				=
				𝑞
			

			
				∞
				0
			

			
				𝜎
				𝑡
			

			
				𝑞
				−
				1
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				𝜎
				)
				𝑧
				𝑑
				𝜎
				.
			

		
	

						If a continuous function 
	
		
			
				𝑥
				∶
				[
				0
				,
				𝑇
				]
				→
				𝑋
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				𝑌
				(
				𝑡
				)
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				
			

			
				𝑡
				0
			

			
				[
				]
				[
				]
				,
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						then the function 
	
		
			

				𝑥
			

		
	
 is called a mild solution of (1.2).Our main result is as follows.
Theorem 2.4.  Assume that  (1)
	
		
			
				𝑓
				(
				⋅
				,
				𝑤
				)
			

		
	
 and 
	
		
			
				ℎ
				(
				⋅
				,
				⋅
				,
				𝑤
				)
			

		
	
 are measurable for each 
	
		
			
				𝑤
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
; 
	
		
			
				𝑘
				(
				𝑡
				,
				⋅
				)
			

		
	
 is measurable for each 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
;(2)
	
		
			
				𝑓
				(
				𝑡
				,
				⋅
				)
			

		
	
 is continuous for a.e. 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
; 
	
		
			

				𝑔
			

		
	
 is completely continuous; 
	
		
			
				ℎ
				(
				𝑡
				,
				𝑠
				,
				⋅
				)
			

		
	
 is continuous for a.e. 
	
		
			
				(
				𝑡
				,
				𝑠
				)
				∈
				Δ
			

		
	
; the map 
	
		
			
				𝑡
				→
				𝑘
			

			

				𝑡
			

			
				∶
				=
				𝑘
				(
				𝑡
				,
				⋅
				)
			

		
	
 is continuous from 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
 to 
	
		
			

				𝐿
			

			

				∞
			

			
				(
				[
				0
				,
				𝑇
				]
				,
				𝐑
				)
			

		
	
;(3)there exist two positive functions 
	
		
			
				𝜇
				(
				⋅
				)
				,
				𝜂
				(
				⋅
				)
				∈
				𝐿
			

			

				𝑝
			

			
				(
				0
				,
				𝑇
				,
				𝐑
			

			

				+
			

			

				)
			

		
	
 
	
		
			
				(
				𝑝
				>
				1
				/
				𝑞
				>
				1
				)
			

		
	
 and two positive functions 
	
		
			
				𝑚
				(
				⋅
				,
				⋅
				)
			

		
	
 and 
	
		
			
				𝜁
				(
				⋅
				,
				⋅
				)
			

		
	
 on 
	
		
			

				Δ
			

		
	
 with
										
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				𝑚
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				∶
				=
				𝑚
			

			

				∗
			

			
				<
				∞
				,
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				𝜁
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				∶
				=
				𝜁
			

			

				∗
			

			
				<
				∞
				,
			

		
	

									such that
										
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				[
				]
				‖
				𝑓
				(
				𝑡
				,
				𝑤
				)
				‖
				≤
				𝜇
				(
				𝑡
				)
				‖
				𝑤
				‖
				(
				a
				.
				e
				.
				𝑡
				∈
				0
				,
				𝑇
				)
				,
				‖
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑤
				)
				‖
				≤
				𝑚
				(
				𝑡
				,
				𝑠
				)
				‖
				𝑤
				‖
				(
				a
				.
				e
				.
				(
				𝑡
				,
				𝑠
				)
				∈
				Δ
				)
				,
			

		
	

									for all 
	
		
			
				𝑤
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
, and
										
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				𝜒
				[
				]
				(
				𝑓
				(
				𝑡
				,
				𝐷
				)
				)
				≤
				𝜂
				(
				𝑡
				)
				𝜒
				(
				𝐷
				)
				,
				(
				a
				.
				e
				.
				𝑡
				∈
				0
				,
				T
				)
				,
				𝜒
				(
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝐷
				)
				)
				≤
				𝜁
				(
				𝑡
				,
				𝑠
				)
				𝜒
				(
				𝐷
				)
				,
				(
				a
				.
				e
				.
				(
				𝑡
				,
				𝑠
				)
				∈
				Δ
				)
				,
			

		
	

									for any bounded set 
	
		
			
				𝐷
				⊂
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
, where 
	
		
			

				𝜒
			

		
	
 is the Hausdorff measure of noncompactness:
										
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝜒
				(
				Ω
				)
				=
				i
				n
				f
				{
				𝜀
				>
				0
				∶
				Ω
				h
				a
				s
				a
				ﬁ
				n
				i
				t
				e
				𝜀
				-
				n
				e
				t
				}
				.
			

		
	
(4)
	
		
			
				𝑔
				(
				⋅
				)
			

		
	
 satisfies 
										
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				(
				[
				]
				‖
				𝑔
				(
				𝑥
				)
				‖
				≤
				𝑏
				,
				∀
				𝑥
				∈
				𝐶
				0
				,
				𝑇
				,
				𝑋
				)
				,
			

		
	
    for a positive constant 
	
		
			

				𝑏
			

		
	
, and 
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				
				|
				|
				|
				|
				
				𝑘
				(
				𝑡
				)
				∶
				=
				e
				s
				s
				s
				u
				p
				𝑘
				(
				𝑡
				,
				𝑠
				)
				,
				0
				≤
				𝑠
				≤
				𝑡
			

		
	

						is bounded on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
. Then the mild solutions set of problem (1.2) is a nonempty compact subset of the space 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
, in the case of
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
				𝑝
				−
				1
			

			
				
			
			
				
				𝑝
				𝑞
				−
				1
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				<
				1
				.
			

		
	

Proof. First of all, let us prove our definition of the mild solution to problem (1.2) is well defined and reasonable. Actually, the proof is basic. We present it here for the completeness of the proof as well as the convenience of reading.Write
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				=
			

			
				𝑡
				0
			

			
				
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
				̂
				𝑥
				(
				𝜆
				)
				=
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				𝑓
				
				𝑥
				(
				𝑡
				)
				𝑑
				𝑡
				,
				(
				𝜆
				)
				=
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				𝑓
				
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				𝑑
				𝑡
				,
				̂
				𝑎
				(
				𝜆
				)
				=
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						Clearly, the nonlocal Cauchy problem (1.2) can be written as the following equivalent integral equation:
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				=
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				[
				]
				[
				]
				,
				𝐴
				𝑥
				(
				𝑠
				)
				+
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						provided that the integral in (2.18) exists. Formally taking the Laplace transform to (2.18), we have
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				1
				̂
				𝑥
				(
				𝜆
				)
				=
			

			
				
			
			
				𝜆
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				1
			

			
				
			
			

				𝜆
			

			

				𝑞
			

			
				1
				𝐴
				̂
				𝑥
				(
				𝜆
				)
				+
			

			
				
			
			

				𝜆
			

			

				𝑞
			

			
				
				
				
				.
				𝑓
				(
				𝜆
				)
				+
				̂
				𝑎
				(
				𝜆
				)
			

		
	

						Therefore, if the related integrals exist, then we obtain
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				̂
				𝑥
				(
				𝜆
				)
				=
				𝜆
			

			
				𝑞
				−
				1
			

			
				(
				𝜆
			

			

				𝑞
			

			
				−
				𝐴
				)
			

			
				−
				1
			

			
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				(
				𝜆
			

			

				𝑞
			

			
				−
				𝐴
				)
			

			
				−
				1
			

			
				
				
				
				𝑓
				(
				𝜆
				)
				+
				̂
				𝑎
				(
				𝜆
				)
				=
				𝜆
			

			
				𝑞
				−
				1
			

			

				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
			

			

				𝑞
			

			

				𝑠
			

			
				
				𝑇
				(
				𝑠
				)
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				𝑑
				𝑠
				+
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
			

			

				𝑞
			

			

				𝑠
			

			
				
				
				
				
				𝑇
				(
				𝑠
				)
				𝑓
				(
				𝜆
				)
				+
				̂
				𝑎
				(
				𝜆
				)
				𝑑
				𝑠
				=
				𝑞
			

			
				∞
				0
			

			
				(
				𝜆
				𝑡
				)
			

			
				𝑞
				−
				1
			

			

				𝑒
			

			
				−
				(
				𝜆
				𝑡
				)
			

			

				𝑞
			

			
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				)
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				
				𝑑
				𝑡
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				(
				𝜆
				𝜏
				)
			

			

				𝑞
			

			
				𝑞
				𝜏
			

			
				𝑞
				−
				1
			

			
				𝑇
				(
				𝜏
			

			

				𝑞
			

			
				)
				
				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				1
				(
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				)
				𝑑
				𝑡
				𝑑
				𝜏
				=
				−
			

			
				
			
			
				𝜆
				
			

			
				∞
				0
			

			
				
				𝑑
			

			
				
			
			
				𝑒
				𝑑
				𝑡
			

			
				−
				(
				𝜆
				𝑡
				)
			

			

				𝑞
			

			
				
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				)
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				
				𝑑
				𝑡
			

			
				∞
				0
			

			

				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝜏
				𝜎
			

			
				𝑞
				𝜏
			

			
				𝑞
				−
				1
			

			

				𝜛
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				𝜏
			

			

				𝑞
			

			
				)
				
				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				=
				
				(
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				)
				𝑑
				𝑡
				𝑑
				𝜎
				𝑑
				𝜏
			

			
				∞
				0
			

			

				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
				𝜎
			

			
				𝜎
				𝜛
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				)
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				𝑑
				𝜎
				𝑑
				𝑡
				+
				𝑞
			

			
				∞
				0
			

			

				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝜃
			

			

				𝜃
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				𝜃
				(
				𝜎
				)
				𝑇
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				=
				
				(
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				)
				𝑑
				𝑡
				𝑑
				𝜎
				𝑑
				𝜃
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				
			

			
				∞
				0
			

			

				𝜛
			

			

				𝑞
			

			
				(
				
				𝑡
				𝜎
				)
				𝑇
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				
				𝑑
				𝜎
				𝑑
				𝑡
				+
				𝑞
			

			
				∞
				0
			

			
				
				
			

			
				∞
				0
			

			

				
			

			
				∞
				𝑡
			

			

				𝑒
			

			
				−
				𝜆
				𝜏
			

			
				(
				𝜏
				−
				𝑡
				)
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑇
				(
				𝜏
				−
				𝑡
				)
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				=
				
				(
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				)
				𝑑
				𝜏
				𝑑
				𝑡
				𝑑
				𝜎
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				
			

			
				∞
				0
			

			

				𝜛
			

			

				𝑞
			

			
				
				𝑡
				(
				𝜎
				)
				𝑇
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				
				𝑑
				𝜎
				𝑑
				𝑡
				+
				𝑞
			

			
				∞
				0
			

			
				
				
			

			
				∞
				0
			

			

				
			

			
				𝜏
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝜏
			

			
				(
				𝜏
				−
				𝑡
				)
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑇
				(
				𝜏
				−
				𝑡
				)
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				=
				
				(
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑡
				)
				)
				𝑑
				𝑡
				𝑑
				𝜏
				𝑑
				𝜎
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				
			

			
				∞
				0
			

			

				𝜛
			

			

				𝑞
			

			
				
				𝑡
				(
				𝜎
				)
				𝑇
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				+
				
				𝑑
				𝜎
				𝑑
				𝑡
			

			
				∞
				0
			

			

				𝑒
			

			
				−
				𝜆
				𝑡
			

			
				
				𝑞
				
			

			
				𝑡
				0
			

			

				
			

			
				∞
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑇
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				(
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				)
				𝑑
				𝜎
				𝑑
				𝑠
				𝑑
				𝑡
				.
			

		
	

						Now using the uniqueness of the Laplace transform (cf., e.g., [21, Theorem  1.1.6]), we deduce that
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
			

			
				∞
				0
			

			

				𝜛
			

			

				𝑞
			

			
				
				𝑡
				(
				𝜎
				)
				𝑇
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				𝑑
				𝜎
				+
				𝑞
			

			
				𝑡
				0
			

			

				
			

			
				∞
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑇
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝜎
				𝑑
				𝑠
				+
				𝑞
			

			
				𝑡
				0
			

			

				
			

			
				∞
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			

				𝜛
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑇
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑞
			

			
				
			
			

				𝜎
			

			

				𝑞
			

			
				
				=
				
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝜎
				𝑑
				𝑠
			

			
				∞
				0
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				𝑡
			

			

				𝑞
			

			
				
				𝜎
				)
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				
				𝑑
				𝜎
				+
				𝑞
			

			
				𝑡
				0
			

			

				
			

			
				∞
				0
			

			
				𝜎
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑞
			

			
				
				𝜎
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝜎
				𝑑
				𝑠
				+
				𝑞
			

			
				𝑡
				0
			

			

				
			

			
				∞
				0
			

			
				𝜎
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑇
				(
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑞
			

			
				𝜎
				)
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝜎
				𝑑
				𝑠
				.
			

		
	

						Consequently, we see that the mild solution to problem (1.2) given by Definition 2.3 is well defined.Next, we define the operator 
	
		
			
				ℱ
				∶
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
				→
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 as follows:
							
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				
				(
				ℱ
				𝑥
				)
				(
				𝑡
				)
				=
				𝑌
				(
				𝑡
				)
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				+
				
			

			
				𝑡
				0
			

			
				[
				]
				[
				]
				.
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						It is clear that the operator 
	
		
			

				ℱ
			

		
	
 is well defined.The operator 
	
		
			

				ℱ
			

		
	
 can be written in the form 
	
		
			
				ℱ
				=
				ℱ
			

			

				1
			

			
				+
				ℱ
			

			

				2
			

		
	
, where the operators 
	
		
			

				ℱ
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
			

		
	
 are defined as follows:
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				
				ℱ
			

			

				1
			

			
				𝑥
				
				
				(
				𝑡
				)
				=
				𝑌
				(
				𝑡
				)
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				
				[
				]
				,
				
				ℱ
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				2
			

			
				𝑥
				
				
				(
				𝑡
				)
				=
			

			
				𝑡
				0
			

			
				[
				]
				[
				]
				.
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						The following facts will be used in the proof. (1)
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			

				
			

			
				∞
				0
			

			

				𝜉
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑑
				𝜎
				=
				1
				,
			

		
	

									which implies that
										
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			
				‖
				𝑌
				(
				𝑡
				)
				‖
				≤
				C
				o
				n
				s
				t
				;
			

		
	
(2)
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			

				
			

			
				∞
				0
			

			

				𝜎
			

			

				𝜈
			

			

				𝜉
			

			

				𝑞
			

			
				
				(
				𝜎
				)
				𝑑
				𝜎
				=
			

			
				∞
				0
			

			

				1
			

			
				
			
			

				𝜎
			

			
				𝑞
				𝜈
			

			

				𝜛
			

			

				𝑞
			

			
				(
				𝜎
				)
				𝑑
				𝜎
				=
				Γ
				(
				1
				+
				𝜈
				)
			

			
				
			
			
				]
				,
				Γ
				(
				1
				+
				𝑞
				𝜈
				)
				,
				𝜈
				∈
				(
				0
				,
				1
			

		
	

									which implies that
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			
				‖
				𝑍
				(
				𝑡
				)
				‖
				≤
				𝑞
				𝑀
			

			
				
			
			
				𝑡
				Γ
				(
				1
				+
				𝑞
				)
			

			

				q
			

			
				−
				1
			

			
				,
				𝑡
				>
				0
				.
			

		
	

						Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

			
				𝑛
				∈
				𝐍
			

			
				⊂
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑥
			

			
				[
				0
				,
				𝑇
				]
			

			
				=
				0
				,
			

		
	

						for an 
	
		
			
				𝑥
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
. Then by the assumptions, we know that for almost every 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
 and 
	
		
			
				(
				𝑡
				,
				𝑠
				)
				∈
				Δ
			

		
	
:
							
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑓
				
				𝑡
				,
				𝑥
			

			

				𝑛
			

			
				
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				ℎ
				
				𝑡
				,
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				=
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				.
			

		
	

						Therefore, for sufficiently large 
	
		
			

				𝑛
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				
				𝑡
				,
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				
				(
				𝑡
				)
				−
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				≤
				𝜇
				(
				𝑡
				)
				1
				+
				2
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				,
				‖
				‖
				ℎ
				
				𝑡
				,
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				
				(
				𝑠
				)
				−
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				≤
				𝑚
				(
				𝑡
				,
				𝑠
				)
				1
				+
				2
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				,
				‖
				‖
				‖
				
			

			
				𝑡
				0
			

			
				
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				𝑡
				,
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				𝑡
				0
			

			
				‖
				‖
				‖
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				≤
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				1
				+
				2
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				,
			

		
	

						where
							
	
 		
 			
				(
				2
				.
				3
				1
				)
			
 		
	

	
		
			

				𝑘
			

			

				∗
			

			
				∶
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			
				𝑘
				(
				𝑡
				)
				.
			

		
	

						Hence,
							
	
 		
 			
				(
				2
				.
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				‖
				
			

			
				𝑡
				0
			

			
				
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				𝑡
				,
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				𝑡
				0
			

			
				‖
				‖
				‖
				𝑘
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				=
				0
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				2
				.
				3
				3
				)
			
 		
	

	
		
			
				‖
				‖
				ℱ
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				ℱ
			

			

				2
			

			
				𝑥
				‖
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				⟶
				0
				,
				a
				s
				𝑛
				⟶
				∞
				,
			

		
	

						since (2.27) implies that
							
	
 		
 			
				(
				2
				.
				3
				4
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
			

			
				𝑡
				0
			

			
				
				𝑓
				
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				+
				
				(
				𝑠
				)
			

			
				𝑠
				0
			

			
				
				𝑘
				(
				𝑠
				,
				𝜏
				)
				ℎ
				𝑠
				,
				𝜏
				,
				𝑥
			

			

				𝑛
			

			
				
				−
				
				
				(
				𝜏
				)
				𝑑
				𝜏
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
			

			
				𝑠
				0
			

			
				‖
				‖
				‖
				≤
				𝑘
				(
				𝑠
				,
				𝜏
				)
				ℎ
				(
				𝑠
				,
				𝜏
				,
				𝑥
				(
				𝜏
				)
				)
				𝑑
				𝜏
				
				
				𝑑
				𝑠
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				‖
				‖
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				+
				‖
				‖
				‖
				
				(
				𝑠
				)
				−
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
			

			
				𝑠
				0
			

			
				
				ℎ
				
				𝑘
				(
				𝑠
				,
				𝜏
				)
				𝑠
				,
				𝜏
				,
				𝑥
			

			

				𝑛
			

			
				
				
				‖
				‖
				‖
				
				(
				𝜏
				)
				−
				ℎ
				(
				𝑠
				,
				𝜏
				,
				𝑥
				(
				𝜏
				)
				)
				𝑑
				𝜏
				𝑑
				𝑠
				.
			

		
	

						By (2.33) and our assumptions, we see that 
	
		
			

				ℱ
			

		
	
 is continuous.Since 
	
		
			

				𝜒
			

		
	
 is the Hausdorff measure of noncompactness in 
	
		
			

				𝑋
			

		
	
, we know that 
	
		
			

				𝜒
			

		
	
 is monotone, nonsingular, invariant with respect to union with compact sets, algebraically semiadditive, and regular. This means that(i)for any 
	
		
			

				Ω
			

			

				0
			

			
				,
				Ω
			

			

				1
			

			
				∈
				2
			

			

				𝐸
			

		
	
 with 
	
		
			

				Ω
			

			

				0
			

			
				⊂
				Ω
			

			

				1
			

		
	
,
										
	
 		
 			
				(
				2
				.
				3
				5
				)
			
 		
	

	
		
			
				𝜒
				
				Ω
			

			

				0
			

			
				
				
				Ω
				≤
				𝜒
			

			

				1
			

			
				
				;
			

		
	
(ii)for every 
	
		
			

				𝑎
			

			

				0
			

			
				∈
				𝐸
			

		
	
, 
	
		
			
				Ω
				∈
				2
			

			

				𝐸
			

		
	
,
										
	
 		
 			
				(
				2
				.
				3
				6
				)
			
 		
	

	
		
			
				𝜒
				𝑎
				
				
			

			

				0
			

			
				
				
				∪
				Ω
				=
				𝜒
				(
				Ω
				)
				;
			

		
	
(iii)for every relatively compact set 
	
		
			
				𝐷
				⊂
				𝐸
			

		
	
, 
	
		
			
				Ω
				∈
				2
			

			

				𝐸
			

		
	
,
										
	
 		
 			
				(
				2
				.
				3
				7
				)
			
 		
	

	
		
			
				𝜒
				(
				{
				𝐷
				}
				∪
				Ω
				)
				=
				𝜒
				(
				Ω
				)
				;
			

		
	
(iv)for each 
	
		
			

				Ω
			

			

				0
			

		
	
, 
	
		
			

				Ω
			

			

				1
			

			
				∈
				2
			

			

				𝐸
			

		
	
,
										
	
 		
 			
				(
				2
				.
				3
				8
				)
			
 		
	

	
		
			
				𝜒
				
				Ω
			

			

				0
			

			
				+
				Ω
			

			

				1
			

			
				
				
				Ω
				≤
				𝜒
			

			

				0
			

			
				
				
				Ω
				+
				𝜒
			

			

				1
			

			
				
				;
			

		
	
(v)
	
		
			
				𝜒
				(
				Ω
				)
				=
				0
			

		
	
 is equivalent to the relative compactness of 
	
		
			

				Ω
			

		
	
.Noting that for any 
	
		
			
				𝜓
				∈
				𝐿
			

			

				1
			

			
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				3
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝐿
				→
				+
				∞
			

			
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			

				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝜓
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				.
			

		
	

						So, there exists a positive constant 
	
		
			

				𝐿
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				4
				0
				)
			
 		
	

	
		
			
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜂
				(
				𝑠
				)
				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				=
				𝐿
			

			

				1
			

			
				<
				1
			

			
				
			
			
				3
				,
				𝑞
				𝑀
				𝑘
			

			

				∗
			

			

				𝜁
			

			

				∗
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				=
				𝐿
			

			

				2
			

			
				<
				1
			

			
				
			
			
				3
				,
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				=
				𝐿
			

			

				3
			

			
				<
				1
			

			
				
			
			
				3
				.
			

		
	

						For every bounded subset 
	
		
			
				Ω
				⊂
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
, we define
							
	
 		
 			
				(
				2
				.
				4
				1
				)
			
 		
	

	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				(
				Ω
				)
				∶
				=
				l
				i
				m
			

			
				𝛿
				→
				0
			

			
				s
				u
				p
			

			
				𝑣
				∈
				Ω
			

			
				m
				a
				x
			

			
				|
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				2
			

			
				|
				≤
				𝛿
			

			
				‖
				‖
				𝑣
				
				𝑡
			

			

				1
			

			
				
				
				𝑡
				−
				𝑣
			

			

				2
			

			
				
				‖
				‖
				,
				Ψ
				(
				Ω
				)
				∶
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			
				
				𝑒
			

			
				−
				𝐿
				𝑡
			

			
				
				,
				
				𝜒
				(
				Ω
				(
				𝑡
				)
				)
				𝛼
				(
				Ω
				)
				∶
				=
				Ψ
				(
				Ω
				)
				,
				m
				o
				d
			

			

				𝑐
			

			
				
				.
				(
				Ω
				)
			

		
	

						Then 
	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				(
				Ω
				)
			

		
	
 is the module of equicontinuity of 
	
		
			

				Ω
			

		
	
, and 
	
		
			

				𝛼
			

		
	
 is a measure of noncompactness in the space 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 with values in the cone 
	
		
			

				𝐑
			

			
				2
				+
			

		
	
.Let 
	
		
			
				Ω
				⊂
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 be a nonempty, bounded set such that
							
	
 		
 			
				(
				2
				.
				4
				2
				)
			
 		
	

	
		
			
				𝛼
				(
				ℱ
				(
				Ω
				)
				)
				≥
				𝛼
				(
				Ω
				)
				.
			

		
	

						By the assumptions and the continuity of 
	
		
			
				𝑇
				(
				𝑡
				)
			

		
	
 in the uniform operator topology for 
	
		
			
				𝑡
				>
				0
			

		
	
, we get
							
	
 		
 			
				(
				2
				.
				4
				3
				)
			
 		
	

	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				
				ℱ
			

			

				1
			

			
				Ω
				
				=
				0
				.
			

		
	

						Clearly,
							
	
 		
 			
				(
				2
				.
				4
				4
				)
			
 		
	

	
		
			
				
				‖
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				‖
				+
				‖
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				‖
				≤
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			

				.
			

		
	

						Let 
	
		
			
				𝛿
				>
				0
			

		
	
, 
	
		
			

				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				(
				0
				,
				𝑇
				]
			

		
	
 such that 
	
		
			
				0
				<
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				2
			

			
				≤
				𝛿
			

		
	
 and 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. Then
							
	
 		
 			
				(
				2
				.
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				𝑍
				
				𝑡
			

			

				1
			

			
				
				[
				]
				
				−
				𝑠
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				𝑍
				
				𝑡
			

			

				2
			

			
				
				[
				]
				‖
				‖
				‖
				−
				𝑠
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				≤
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				‖
				‖
				𝑍
				
				𝑡
			

			

				1
			

			
				
				
				𝑡
				−
				𝑠
				−
				𝑍
			

			

				2
			

			
				
				‖
				‖
				
				−
				𝑠
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				
				𝑑
				𝑠
				+
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				2
			

			
				‖
				‖
				𝑍
				
				𝑡
			

			

				1
			

			
				
				‖
				‖
				
				−
				𝑠
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				
				𝑑
				𝑠
				≤
				𝑞
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			

				
			

			
				∞
				0
			

			
				|
				|
				|
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				|
				|
				|
				𝜎
				𝜉
			

			

				𝑞
			

			
				‖
				‖
				𝑇
				𝑡
				(
				𝜎
				)
				
				
			

			

				1
			

			
				
				−
				𝑠
			

			

				𝑞
			

			
				𝜎
				
				‖
				‖
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				+
				
				𝑑
				𝜎
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				0
			

			

				
			

			
				∞
				0
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				𝜎
				𝜉
			

			

				𝑞
			

			
				(
				‖
				‖
				𝑇
				𝑡
				𝜎
				)
				
				
			

			

				1
			

			
				
				−
				𝑠
			

			

				𝑞
			

			
				𝜎
				
				𝑡
				−
				𝑇
				
				
			

			

				2
			

			
				
				−
				𝑠
			

			

				𝑞
			

			
				𝜎
				
				‖
				‖
				×
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				
				+
				𝑑
				𝜎
				𝑑
				𝑠
				𝑞
				𝑀
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				2
			

			
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				≤
				𝑑
				𝑠
				𝑞
				𝑀
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
			
			
				
				
				Γ
				(
				1
				+
				𝑞
				)
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				|
				|
				|
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				|
				|
				|
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				+
				
				𝑑
				𝜎
				𝑑
				𝑠
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				2
			

			
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				
				+
				
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				0
			

			

				
			

			
				∞
				0
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝑞
				−
				1
			

			
				𝜎
				𝜉
			

			

				𝑞
			

			
				‖
				‖
				𝑇
				𝑡
				(
				𝜎
				)
				
				
			

			

				1
			

			
				
				−
				𝑠
			

			

				𝑞
			

			
				𝜎
				
				𝑡
				−
				𝑇
				
				
			

			

				2
			

			
				
				−
				𝑠
			

			

				𝑞
			

			
				𝜎
				
				‖
				‖
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑑
				𝜎
				𝑑
				𝑠
				.
			

		
	

						It is not hard to see that the right-hand side of (2.45) tend to 0 as 
	
		
			

				𝑡
			

			

				2
			

			
				→
				𝑡
			

			

				1
			

		
	
. Thus, the set 
	
		
			
				{
				(
				ℱ
			

			

				2
			

			
				𝑥
				)
				(
				⋅
				)
				∶
				𝑥
				∈
				Ω
				}
			

		
	
 is equicontinuous, then 
	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				(
				ℱ
			

			

				2
			

			
				Ω
				)
				=
				0
			

		
	
. Combining with (2.43), we have 
	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				(
				ℱ
				Ω
				)
				=
				0
			

		
	
, which implies 
	
		
			
				m
				o
				d
			

			

				𝑐
			

			
				(
				Ω
				)
				=
				0
			

		
	
 from (2.42). Next, we show that 
	
		
			
				Ψ
				(
				Ω
				)
				=
				0
			

		
	
.It is easy to see that
							
	
 		
 			
				(
				2
				.
				4
				6
				)
			
 		
	

	
		
			
				Ψ
				
				ℱ
			

			

				1
			

			
				Ω
				
				=
				0
				.
			

		
	

						For any 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
, we define
							
	
 		
 			
				(
				2
				.
				4
				7
				)
			
 		
	

	
		
			
				
				ℱ
			

			

				2
			

			
				
				
				(
				Ω
				)
				(
				𝑡
				)
				∶
				=
			

			
				𝑡
				0
			

			
				
				.
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				∶
				𝑥
				∈
				Ω
			

		
	

						We consider the multifunction 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
				⊸
				𝐺
				(
				𝑠
				)
			

		
	
:
							
	
 		
 			
				(
				2
				.
				4
				8
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑠
				)
				=
				{
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				∶
				𝑥
				∈
				Ω
				}
				.
			

		
	

						Obviously, 
	
		
			

				𝐺
			

		
	
 is integrable, that is, 
	
		
			

				𝐺
			

		
	
 admits a Bochner integrable selection 
	
		
			
				𝔤
				∶
				[
				0
				,
				ℎ
				]
				→
				𝐸
			

		
	
, and
							
	
 		
 			
				(
				2
				.
				4
				9
				)
			
 		
	

	
		
			
				𝔤
				[
				]
				.
				(
				𝑡
				)
				∈
				𝐺
				(
				𝑡
				)
				,
				f
				o
				r
				a
				.
				e
				.
				𝑡
				∈
				0
				,
				ℎ
			

		
	

						From (2.27) and our assumptions, it follows that 
	
		
			

				𝐺
			

		
	
 is integrably bounded, that is, there exists a function 
	
		
			
				𝜚
				∈
				𝐿
			

			

				1
			

			
				(
				[
				0
				,
				ℎ
				]
				,
				𝐸
				)
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				5
				0
				)
			
 		
	

	
		
			
				{
				[
				]
				.
				‖
				𝐺
				(
				𝑡
				)
				‖
				∶
				=
				s
				u
				p
				‖
				𝔤
				‖
				∶
				𝔤
				∈
				𝐺
				(
				𝑡
				)
				}
				≤
				𝜚
				(
				𝑡
				)
				,
				a
				.
				e
				.
				𝑡
				∈
				0
				,
				ℎ
			

		
	

						Moreover, we have the following estimate for a.e. 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
:
							
	
 		
 			
				(
				2
				.
				5
				1
				)
			
 		
	

	
		
			
				𝜒
				(
				𝐺
				(
				𝑠
				)
				)
				≤
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				≤
				𝜒
				(
				𝑓
				(
				𝑠
				,
				Ω
				(
				𝑠
				)
				)
				)
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				=
				𝜂
				(
				𝑠
				)
				𝜒
				(
				Ω
				(
				𝑠
				)
				)
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜂
				(
				𝑠
				)
				𝑒
			

			
				𝐿
				𝑠
			

			

				𝑒
			

			
				−
				𝐿
				𝑠
			

			
				≤
				𝜒
				(
				Ω
				(
				𝑠
				)
				)
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜂
				(
				𝑠
				)
				𝑒
			

			
				𝐿
				𝑠
			

			
				Ψ
				(
				Ω
				)
				.
			

		
	

						Therefore, since 
	
		
			

				𝑋
			

		
	
 is a separable Banach space, we know by [20, Theorem  4.2.3] that
							
	
 		
 			
				(
				2
				.
				5
				2
				)
			
 		
	

	
		
			
				𝜒
				
				
				ℱ
			

			

				2
			

			
				
				
				
				(
				Ω
				)
				(
				𝑡
				)
				=
				𝜒
			

			
				𝑡
				0
			

			
				
				≤
				𝐺
				(
				𝑠
				)
				𝑑
				𝑠
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜂
				(
				𝑠
				)
				𝑒
			

			
				𝐿
				𝑠
			

			
				𝑑
				𝑠
				⋅
				Ψ
				(
				Ω
				)
				.
			

		
	

						So
							
	
 		
 			
				(
				2
				.
				5
				3
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			
				
				𝑒
			

			
				−
				𝐿
				𝑡
			

			
				𝜒
				
				
				ℱ
			

			

				2
			

			
				≤
				(
				Ω
				)
				(
				𝑡
				)
				
				
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				t
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜂
				(
				𝑠
				)
				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				⋅
				Ψ
				(
				Ω
				)
				=
				𝐿
			

			

				1
			

			
				Ψ
				(
				Ω
				)
				.
			

		
	

						Similarly, if we set
							
	
 		
 			
				(
				2
				.
				5
				4
				)
			
 		
	

	
		
			
				
				ℱ
			

			

				2
			

			
				
				
				(
				Ω
				)
				(
				𝑡
				)
				=
			

			
				𝑡
				0
			

			
				
				,
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				𝑑
				𝑠
				∶
				𝑥
				∈
				Ω
			

		
	

						then we see that the multifunction 
	
		
			
				
				𝑠
				∈
				[
				0
				,
				𝑡
				]
				⊸
				𝐺
				(
				𝑠
				)
			

		
	
,
							
	
 		
 			
				(
				2
				.
				5
				5
				)
			
 		
	

	
		
			
				
				𝐺
				(
				𝑠
				)
				=
				{
				𝑍
				(
				𝑡
				−
				𝑠
				)
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				∶
				𝑥
				∈
				Ω
				}
			

		
	

						is integrable and integrably bounded. Thus, we obtain the following estimate for a.e. 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
:
							
	
 		
 			
				(
				2
				.
				5
				6
				)
			
 		
	

	
		
			
				𝜒
				
				
				
				≤
				𝐺
				(
				𝑠
				)
				𝑞
				𝑀
				𝑘
			

			

				∗
			

			

				𝜁
			

			

				∗
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝑒
			

			
				𝐿
				𝑠
			

			
				Ψ
				(
				Ω
				)
				,
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			
				
				𝑒
			

			
				−
				𝐿
				𝑡
			

			
				𝜒
				
				
				ℱ
			

			

				2
			

			
				≤
				(
				Ω
				)
				(
				𝑡
				)
				
				
				𝑞
				𝑀
				𝑘
			

			

				∗
			

			

				𝜁
			

			

				∗
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				⋅
				Ψ
				(
				Ω
				)
				=
				𝐿
			

			

				2
			

			
				Ψ
				(
				Ω
				)
				.
			

		
	

						Now, from (2.53) and (2.56), it follows that
							
	
 		
 			
				(
				2
				.
				5
				7
				)
			
 		
	

	
		
			
				
				ℱ
				Ψ
				(
				ℱ
				(
				Ω
				)
				)
				≤
				Ψ
			

			

				1
			

			
				
				
				ℱ
				(
				Ω
				)
				+
				Ψ
			

			

				2
			

			
				
				≤
				
				𝐿
				(
				Ω
				)
			

			

				1
			

			
				+
				𝐿
			

			

				2
			

			
				
				
				Ψ
				(
				Ω
				)
				=
				𝐿
				Ψ
				(
				Ω
				)
				,
			

		
	

						where 
	
		
			
				
				0
				<
				𝐿
				<
				1
			

		
	
. Then by (2.42), we get 
	
		
			
				Ψ
				(
				Ω
				)
				=
				0
			

		
	
. Hence 
	
		
			
				𝛼
				(
				Ω
				)
				=
				(
				0
				,
				0
				)
			

		
	
. Thus, 
	
		
			

				Ω
			

		
	
 is relatively compact due to the regularity property of 
	
		
			

				𝛼
			

		
	
. This means that 
	
		
			

				ℱ
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-condensing.Let us introduce in the space 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 the equivalent norm defined as
							
	
 		
 			
				(
				2
				.
				5
				8
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
			

			

				∗
			

			
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			
				
				𝑒
			

			
				−
				𝐿
				𝑡
			

			
				‖
				
				.
				‖
				𝑥
				(
				𝑡
				)
			

		
	

						Consider the set
							
	
 		
 			
				(
				2
				.
				5
				9
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑟
			

			
				=
				
				[
				]
				𝑥
				∈
				𝐶
				(
				0
				,
				𝑇
				,
				𝑋
				)
				∶
				‖
				𝑥
				‖
			

			

				∗
			

			
				
				.
				≤
				𝑟
			

		
	

						Next, we show that there exists some 
	
		
			
				𝑟
				>
				0
			

		
	
 such that 
	
		
			
				ℱ
				𝐵
			

			

				𝑟
			

			
				⊂
				𝐵
			

			

				𝑟
			

		
	
. Suppose on the contrary that for each 
	
		
			
				𝑟
				>
				0
			

		
	
 there exist 
	
		
			

				𝑥
			

			

				𝑟
			

			
				(
				⋅
				)
				∈
				𝐵
			

			

				𝑟
			

		
	
, and some 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
 such that 
	
		
			
				‖
				(
				ℱ
				𝑥
			

			

				𝑟
			

			
				)
				(
				𝑡
				)
				‖
			

			

				∗
			

			
				>
				𝑟
			

		
	
.From the assumptions, we have
							
	
 		
 			
				(
				2
				.
				6
				0
				)
			
 		
	

	
		
			
				‖
				‖
				
				ℱ
			

			

				1
			

			

				𝑥
			

			

				𝑟
			

			
				
				‖
				‖
				(
				𝑡
				)
			

			

				∗
			

			
				
				‖
				‖
				𝑥
				≤
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				.
			

		
	

						Moreover,
							
	
 		
 			
				(
				2
				.
				6
				1
				)
			
 		
	

	
		
			
				‖
				‖
				
				ℱ
			

			

				2
			

			

				𝑥
			

			

				𝑟
			

			
				
				‖
				‖
				≤
				
				(
				𝑡
				)
			

			
				𝑡
				0
			

			
				‖
				‖
				
				𝑓
				
				𝑍
				(
				t
				−
				𝑠
				)
				𝑠
				,
				𝑥
			

			

				𝑟
			

			
				
				
				𝑥
				(
				𝑠
				)
				+
				𝑎
			

			

				𝑟
			

			
				
				
				‖
				‖
				≤
				(
				𝑠
				)
				𝑑
				𝑠
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				‖
				‖
				𝑥
				𝜇
				(
				𝑠
				)
			

			

				𝑟
			

			
				‖
				‖
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			

				𝑒
			

			
				𝐿
				𝑠
			

			
				‖
				‖
				𝑥
			

			

				𝑟
			

			
				‖
				‖
			

			

				∗
			

			
				
				=
				𝑑
				𝑠
				𝑞
				𝑀
			

			
				
			
			
				
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜇
				(
				𝑠
				)
				𝑒
			

			
				𝐿
				𝑠
			

			

				𝑒
			

			
				−
				𝐿
				𝑠
			

			
				‖
				‖
				𝑥
			

			

				𝑟
			

			
				‖
				‖
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			

				𝑒
			

			
				𝐿
				𝑠
			

			
				‖
				‖
				𝑥
				𝑑
				𝑠
				⋅
			

			

				𝑟
			

			
				‖
				‖
			

			

				∗
			

			
				
				≤
				𝑞
				𝑀
				𝑟
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑒
			

			
				𝐿
				𝑠
			

			
				𝑑
				𝑠
				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				2
				.
				6
				2
				)
			
 		
	

	
		
			
				𝑟
				<
				s
				u
				p
			

			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

			
				
				𝑒
			

			
				−
				𝐿
				𝑡
			

			
				‖
				‖
				
				ℱ
				𝑥
			

			

				𝑟
			

			
				
				‖
				‖
				
				
				‖
				‖
				𝑥
				(
				𝑡
				)
				≤
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				+
				𝑞
				𝑀
				𝑟
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				.
			

		
	

						Dividing both sides of (2.62) by 
	
		
			

				𝑟
			

		
	
, and taking 
	
		
			
				𝑟
				→
				∞
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				6
				3
				)
			
 		
	

	
		
			
				𝑞
				𝑀
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑒
			

			
				−
				𝐿
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑑
				𝑠
				≥
				1
				.
			

		
	

						This is a contradiction. Hence for some positive number 
	
		
			

				𝑟
			

		
	
, 
	
		
			
				ℱ
				𝐵
			

			

				𝑟
			

			
				⊂
				𝐵
			

			

				𝑟
			

		
	
. According to the following known fact.Let  
	
		
			

				𝔐
			

		
	
 be a bounded convex closed subset of  
	
		
			

				𝐸
			

		
	
 and  
	
		
			
				𝔉
				∶
				𝔐
				→
				𝔐
			

		
	
 a  
	
		
			

				𝛼
			

		
	
-condensing map. Then  
	
		
			
				F
				i
				x
				𝔉
				=
				{
				𝑥
				∶
				𝑥
				=
				𝔉
				(
				𝑥
				)
				}
			

		
	
 is nonempty. 
					 we see that problem (1.2) has at least one mild solution.Next, for 
	
		
			
				𝑐
				∈
				(
				0
				,
				1
				]
			

		
	
, we consider the following one-parameter family of maps:
							
	
 		
 			
				(
				2
				.
				6
				4
				)
			
 		
	

	
		
			
				[
				]
				(
				[
				]
				[
				]
				)
				ℋ
				∶
				0
				,
				1
				×
				𝐶
				0
				,
				𝑇
				,
				𝑋
				)
				⟶
				𝐶
				(
				0
				,
				𝑇
				,
				𝑋
				(
				𝑐
				,
				𝑥
				)
				⟶
				ℋ
				(
				𝑐
				,
				𝑥
				)
				=
				𝑐
				ℱ
				(
				𝑥
				)
				.
			

		
	

						We will demonstrate that the fixed point set of the family 
	
		
			

				ℋ
			

		
	
,
							
	
 		
 			
				(
				2
				.
				6
				5
				)
			
 		
	

	
		
			
				]
				}
				F
				i
				x
				ℋ
				=
				{
				𝑥
				∈
				ℋ
				(
				𝑐
				,
				𝑥
				)
				f
				o
				r
				s
				o
				m
				e
				𝑐
				∈
				(
				0
				,
				1
			

		
	

						is a priori bounded. Indeed, let 
	
		
			
				𝑥
				∈
				F
				i
				x
				ℋ
			

		
	
, for 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				6
				6
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑥
				(
				𝑡
				)
				‖
				≤
				𝑀
				𝑔
				(
				𝑥
				)
				+
				𝑥
			

			

				0
			

			
				‖
				‖
				+
				
			

			
				𝑡
				0
			

			
				
				‖
				‖
				𝑥
				‖
				𝑍
				(
				𝑡
				−
				𝑠
				)
				‖
				‖
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				+
				𝑎
				(
				𝑥
				)
				(
				𝑠
				)
				‖
				𝑑
				𝑠
				≤
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				+
				𝑞
				𝑀
			

			
				
			
			
				
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝜇
				(
				𝑠
				)
				‖
				𝑥
				(
				𝑠
				)
				‖
				𝑑
				𝑠
				+
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				s
				u
				p
			

			
				[
				]
				𝜏
				∈
				0
				,
				𝑠
			

			
				
				.
				‖
				𝑥
				(
				𝜏
				)
				‖
				𝑑
				𝑠
			

		
	
Noting that the Hölder inequality, we have
							
	
 		
 			
				(
				2
				.
				6
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				
				𝜇
				(
				𝑠
				)
				𝑑
				𝑠
				≤
				𝑝
				−
				1
			

			
				
			
			
				
				𝑝
				𝑞
				−
				1
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			
				⋅
				𝑡
			

			
				(
				𝑝
				𝑞
				−
				1
				)
				/
				𝑝
			

			
				⋅
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				≤
				
				𝑝
				−
				1
			

			
				
			
			
				
				𝑝
				𝑞
				−
				1
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			
				⋅
				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				⋅
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			

				.
			

		
	

						Therefore, from (2.66), we obtain
							
	
 		
 			
				(
				2
				.
				6
				8
				)
			
 		
	

	
		
			
				
				‖
				‖
				𝑥
				‖
				𝑥
				(
				𝑡
				)
				‖
				≤
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				+
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
				𝑝
				−
				1
			

			
				
			
			
				
				𝑝
				𝑞
				−
				1
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				s
				u
				p
			

			
				[
				]
				𝑠
				∈
				0
				,
				𝑡
			

			
				+
				‖
				𝑥
				(
				𝑠
				)
				‖
				𝑞
				𝑀
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				s
				u
				p
			

			
				[
				]
				𝜏
				∈
				0
				,
				𝑠
			

			
				‖
				𝑥
				(
				𝜏
				)
				‖
				𝑑
				𝑠
				.
			

		
	

						We denote
							
	
 		
 			
				(
				2
				.
				6
				9
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				∶
				=
				s
				u
				p
			

			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

			
				‖
				𝑥
				(
				𝑠
				)
				‖
				.
			

		
	

						Let 
	
		
			
				̃
				𝑡
				∈
				[
				0
				,
				𝑡
				]
			

		
	
 such that 
	
		
			
				̃
				𝑦
				(
				𝑡
				)
				=
				‖
				𝑥
				(
				𝑡
				)
				‖
			

		
	
. Then, by (2.68), we can see
							
	
 		
 			
				(
				2
				.
				7
				0
				)
			
 		
	

	
		
			
				
				‖
				‖
				𝑥
				𝑦
				(
				𝑡
				)
				≤
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				+
				𝑞
				𝑀
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
				𝑝
				−
				1
			

			
				
			
			
				
				𝑝
				𝑞
				−
				1
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				+
				𝑦
				(
				𝑡
				)
				𝑞
				𝑀
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
			
			
				
				Γ
				(
				1
				+
				𝑞
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						By a generalization of Gronwall’s lemma for singular kernels ([22, Lemma  7.1.1]), we deduce that there exists a constant 
	
		
			
				𝜅
				=
				𝜅
				(
				𝑞
				)
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				7
				1
				)
			
 		
	

	
		
			
				𝑀
				
				‖
				‖
				𝑥
				𝑦
				(
				𝑡
				)
				≤
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
			

			
				
			
			
				1
				−
				(
				𝑞
				𝑀
				/
				Γ
				(
				1
				+
				𝑞
				)
				)
				(
				(
				𝑝
				−
				1
				)
				/
				(
				𝑝
				𝑞
				−
				1
				)
				)
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				+
				
				‖
				‖
				𝑥
				𝜅
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				
				𝑞
				𝑀
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				/
				Γ
				(
				1
				+
				𝑞
				)
			

			
				
			
			
				
				1
				−
				(
				𝑞
				𝑀
				/
				Γ
				(
				1
				+
				𝑞
				)
				)
				(
				(
				𝑝
				−
				1
				)
				/
				(
				𝑝
				𝑞
				−
				1
				)
				)
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			

				
			

			

				2
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑞
				−
				1
			

			
				≤
				𝑀
				
				‖
				‖
				𝑥
				𝑑
				𝑠
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
			

			
				
			
			
				1
				−
				(
				𝑞
				𝑀
				/
				Γ
				(
				1
				+
				𝑞
				)
				)
				(
				(
				𝑝
				−
				1
				)
				/
				(
				𝑝
				𝑞
				−
				1
				)
				)
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				+
				
				‖
				‖
				𝑥
				𝜅
				𝑀
				𝑏
				+
			

			

				0
			

			
				‖
				‖
				
				
				𝑞
				𝑀
				𝑚
			

			

				∗
			

			

				𝑘
			

			

				∗
			

			
				
				𝑇
				/
				Γ
				(
				1
				+
				𝑞
				)
			

			

				𝑞
			

			
				
			
			
				𝑞
				
				1
				−
				(
				𝑞
				𝑀
				/
				Γ
				(
				1
				+
				𝑞
				)
				)
				(
				(
				𝑝
				−
				1
				)
				/
				(
				𝑝
				𝑞
				−
				1
				)
				)
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				𝑇
			

			
				𝑞
				−
				1
				/
				𝑝
			

			
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			

				
			

			

				2
			

			
				∶
				=
				𝑤
				.
			

		
	

						Hence, 
	
		
			
				s
				u
				p
			

			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

			
				‖
				𝑥
				(
				𝑡
				)
				‖
				≤
				𝑤
			

		
	
.Now we consider a closed ball:
							
	
 		
 			
				(
				2
				.
				7
				2
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑅
			

			
				=
				
				[
				]
				𝑥
				∈
				𝐶
				(
				0
				,
				𝑇
				,
				𝑋
				)
				∶
				‖
				𝑥
				‖
			

			
				[
				0
				,
				𝑇
				]
			

			
				
				[
				]
				≤
				𝑅
				⊂
				𝐶
				(
				0
				,
				𝑇
				,
				𝑋
				)
				.
			

		
	

						We take the radius 
	
		
			
				𝑅
				>
				0
			

		
	
 large enough to contain the set 
	
		
			
				F
				i
				x
				ℋ
			

		
	
 inside itself. Moreover, from the proof above, 
	
		
			
				ℱ
				∶
				𝐵
			

			

				𝑅
			

			
				→
				𝐶
				(
				[
				0
				,
				𝑇
				]
				,
				𝑋
				)
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-condensing. Consequently, the following known fact implies our conclusion: Let 
	
		
			
				𝑉
				⊂
				𝐸
			

		
	
 be a bounded open neighborhood of zero and  
	
		
			
				𝔉
				∶
			

			
				
			
			
				𝑉
				→
				𝐸
			

		
	
 a  
	
		
			

				𝛼
			

		
	
-condensing map satisfying the boundary condition: 
	
 		
 			
				(
				2
				.
				7
				3
				)
			
 		
	

	
		
			
				𝑥
				≠
			

			
				
			
			
				,
				𝜆
				𝔉
				(
				𝑥
				)
			

		
	
for all 
	
		
			
				𝑥
				∈
				𝜕
				𝑉
			

		
	
 and 
	
		
			
				0
				<
			

			
				
			
			
				𝜆
				≤
				1
			

		
	
. Then, 
	
		
			
				F
				i
				x
				𝔉
			

		
	
is nonempty compact.
3. Example
 In this section, let 
	
		
			
				𝑋
				=
				𝐿
			

			

				2
			

			
				(
				[
				0
				,
				𝜋
				]
				)
			

		
	
, we consider the following nonlocal Cauchy problem for an integrodifferential problem:
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝜕
			

			
				𝑞
				𝑡
			

			
				𝜕
				𝑢
				(
				𝑡
				,
				𝜉
				)
				=
			

			

				2
			

			
				
			
			
				𝜕
				𝜉
			

			

				2
			

			
				1
				𝑢
				(
				𝑡
				,
				𝜉
				)
				+
			

			
				
			
			

				𝑘
			

			

				𝑘
			

			

				√
			

			
				
			
			
				𝑡
				⋅
				𝑢
				(
				𝑡
				,
				𝜉
				)
			

			
				
			
			
				+
				
				1
				+
				𝑢
				(
				𝑡
				,
				𝜉
				)
			

			
				𝑡
				0
			

			
				
				√
				(
				𝑡
				−
				𝑠
				)
				s
				i
				n
			

			
				
			
			
				𝑠
				⋅
				𝑢
				(
				𝑠
				,
				𝜉
				)
			

			
				
			
			
				𝑡
				
				]
				[
				]
				𝑑
				𝑠
				,
				𝑡
				∈
				(
				0
				,
				1
				𝑢
				(
				𝑡
				,
				0
				)
				=
				𝑢
				(
				𝑡
				,
				𝜋
				)
				=
				0
				,
				𝑡
				∈
				0
				,
				1
				𝑢
				(
				0
				,
				𝜉
				)
				=
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				0
			

			

				
			

			
				𝜋
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑢
				
				𝑡
				(
				𝜉
				,
				𝑦
				)
			

			

				𝑖
			

			
				
				,
				𝑦
			

			
				
			
			
				
				𝑡
				1
				+
				𝑢
			

			

				𝑖
			

			
				
				,
				𝑦
				𝑑
				𝑦
				+
				𝑢
			

			

				0
			

			
				(
				𝜉
				)
				,
			

		
	

					where 
	
		
			

				𝜕
			

			
				𝑞
				𝑡
			

		
	
 is the Caputo fractional partial derivative of order 
	
		
			
				0
				<
				𝑞
				<
				1
			

		
	
; 
	
		
			
				𝜉
				∈
				[
				0
				,
				𝜋
				]
			

		
	
; 
	
		
			
				𝑘
				>
				0
			

		
	
 is a constant to be specified later;
						
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				0
			

			
				(
				𝜉
				)
				∈
				𝑋
				;
				𝑗
				∈
				𝐍
			

			

				+
			

			
				;
				0
				<
				𝑡
			

			

				0
			

			
				<
				𝑡
			

			

				1
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑗
			

			
				<
				1
				;
			

		
	

	
		
			

				𝑐
			

			

				𝑖
			

			
				(
				⋅
				,
				⋅
				)
				(
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑗
				)
			

		
	
 are continuous functions and there exists a positive constant 
	
		
			

				𝑏
			

		
	
 such that
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝑗
			

			

				
			

			
				𝑖
				=
				0
			

			

				
			

			
				𝜋
				0
			

			
				‖
				‖
				𝑐
			

			

				𝑖
			

			
				‖
				‖
				(
				𝜉
				,
				𝑦
				)
				𝑑
				𝑦
				≤
				𝑏
				.
			

		
	

					For 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
, 
	
		
			
				𝜉
				∈
				[
				0
				,
				𝜋
				]
			

		
	
, we set
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				(
				𝜉
				)
				=
				𝑢
				(
				𝑡
				,
				𝜉
				)
				,
				𝑔
				(
				𝑥
				)
				(
				𝜉
				)
				=
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				0
			

			

				
			

			
				𝜋
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑥
				
				𝑡
				(
				𝜉
				,
				𝑦
				)
			

			

				𝑖
			

			
				
				(
				𝑦
				)
			

			
				
			
			
				
				𝑡
				1
				+
				𝑥
			

			

				𝑖
			

			
				
				
				√
				(
				𝑦
				)
				𝑑
				𝑦
				,
				𝑘
				(
				𝑡
				,
				𝑠
				)
				=
				𝑡
				−
				𝑠
				,
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				(
				𝜉
				)
				=
				s
				i
				n
			

			
				
			
			
				𝑠
				⋅
				𝑥
				(
				𝑠
				)
				(
				𝜉
				)
			

			
				
			
			
				𝑡
				
				,
				1
				𝑓
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				(
				𝜉
				)
				=
			

			
				
			
			

				𝑘
			

			

				𝑘
			

			

				√
			

			
				
			
			
				𝑡
				⋅
				𝑥
				(
				𝑡
				)
				(
				𝜉
				)
			

			
				
			
			
				.
				1
				+
				𝑥
				(
				𝑡
				)
				(
				𝜉
				)
			

		
	

					On the other hand, it is known that the operator 
	
		
			

				𝐴
			

		
	
 (
	
		
			
				𝐴
				𝑢
				=
				𝑢
			

			
				
				
			

		
	
 with 
	
		
			
				𝐷
				(
				𝐴
				)
				=
				𝐻
			

			

				2
			

			
				(
				[
				0
				,
				𝜋
				]
				)
				∩
				𝐻
			

			
				1
				0
			

			
				(
				[
				0
				,
				𝜋
				]
				)
			

		
	
) generates an analytic semigroup and uniformly bounded semigroup 
	
		
			
				{
				𝑇
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				‖
				𝑇
				(
				𝑡
				)
				‖
			

			
				𝐿
				(
				𝑋
				)
			

			
				≤
				1
			

		
	
. Therefore, (3.1) is a special case of (1.2).
Moreover, we have
	
		
			
				(
				1
				)
			

		
	
for all 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
,
								
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				1
				‖
				𝑓
				(
				𝑡
				,
				𝑥
				)
				‖
				≤
			

			
				
			
			

				𝑘
			

			

				𝑘
			

			

				√
			

			
				
			
			
				𝑡
				‖
				𝑥
				‖
				∶
				=
				𝜇
				(
				𝑡
				)
				‖
				𝑥
				‖
				;
			

		
	

	
		
			
				(
				2
				)
			

		
	
for any 
	
		
			
				
				𝑤
				,
				𝑤
				∈
				𝑋
			

		
	
,
								
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				‖
				
				
				𝑤
				
				‖
				‖
				≤
				1
				𝑓
				(
				𝑡
				,
				𝑤
				)
				−
				𝑓
				𝑡
				,
			

			
				
			
			

				𝑘
			

			

				𝑘
			

			

				√
			

			
				
			
			
				𝑡
				‖
				‖
				
				𝑤
				‖
				‖
				,
				𝑤
				−
			

		
	

							that is, for any bounded set 
	
		
			
				𝐷
				⊂
				𝑋
			

		
	
,
								
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				1
				𝜒
				(
				𝑓
				(
				𝑡
				,
				𝐷
				)
				)
				≤
			

			
				
			
			

				𝑘
			

			

				𝑘
			

			

				√
			

			
				
			
			
				𝑡
				𝜒
				(
				𝐷
				)
				,
			

		
	

							for a.e. 
	
		
			
				𝑡
				∈
				[
				0
				,
				1
				]
			

		
	
;
	
		
			
				(
				3
				)
			

		
	
for almost all 
	
		
			
				(
				𝑡
				,
				𝑠
				)
				∈
				Δ
			

		
	
,
								
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				‖
				
				√
				‖
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑥
				)
				‖
				=
				s
				i
				n
			

			
				
			
			
				𝑠
				⋅
				𝑥
				(
				𝑠
				)
				(
				𝜉
				)
			

			
				
			
			
				𝑡
				
				‖
				‖
				‖
				‖
				≤
				𝑚
				(
				𝑡
				,
				𝑠
				)
				‖
				𝑥
				‖
				,
			

		
	

							where 
	
		
			
				√
				𝑚
				(
				𝑡
				,
				𝑠
				)
				∶
				=
			

			
				
			
			
				𝑠
				/
				𝑡
			

		
	
, and
								
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				𝑚
			

			

				∗
			

			
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				1
			

			

				
			

			
				𝑡
				0
			

			
				𝑚
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				1
			

			

				
			

			
				𝑡
				0
			

			

				√
			

			
				
			
			

				𝑠
			

			
				
			
			
				𝑡
				2
				𝑑
				𝑠
				=
			

			
				
			
			
				3
				;
			

		
	

	
		
			
				(
				4
				)
			

		
	

	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				
				
				𝑤
				
				‖
				‖
				≤
				√
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝑤
				)
				−
				ℎ
				𝑡
				,
				𝑠
				,
			

			
				
			
			

				𝑠
			

			
				
			
			
				𝑡
				‖
				‖
				
				𝑤
				‖
				‖
				,
				𝑤
				−
			

		
	

							that is, for any bounded set 
	
		
			
				𝐷
				⊂
				𝑋
			

		
	
,
								
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				𝜒
				(
				ℎ
				(
				𝑡
				,
				𝑠
				,
				𝐷
				)
				)
				≤
				𝜁
				(
				𝑡
				,
				𝑠
				)
				𝜒
				(
				𝐷
				)
				,
			

		
	

							where 
	
		
			
				√
				𝜁
				(
				𝑡
				,
				𝑠
				)
				∶
				=
			

			
				
			
			
				𝑠
				/
				𝑡
			

		
	
, and
								
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				1
			

			

				
			

			
				𝑡
				0
			

			
				2
				𝜁
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				=
			

			
				
			
			
				3
				.
			

		
	

							Therefore, Theorem 2.4 implies that the problem (3.1) has at least a mild solution when
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑞
				⋅
				(
				(
				𝑝
				−
				1
				)
				/
				(
				𝑝
				𝑞
				−
				1
				)
				)
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			
				
			
			
				Γ
				(
				1
				+
				𝑞
				)
				‖
				𝜇
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				<
				1
				.
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