Research Article
Applications of Soft Union Sets in the Ring Theory

Yongwei Yang, Xiaolong Xin, and Pengfei He

Department of Mathematics, Northwest University, Xi’an 710127, China

Correspondence should be addressed to Xiaolong Xin; xlxin@nwu.edu.cn

Received 3 July 2013; Accepted 28 October 2013

Academic Editor: Zhihong Guan

Copyright © 2013 Yongwei Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of the paper is to lay a foundation for providing a soft algebraic tool in considering many problems that contain uncertainties. In order to provide these soft algebraic structures, the notion of \((\lambda, \mu)\)-soft union rings which is a generalization of that of soft union rings is proposed. By introducing the notion of soft cosets, soft quotient rings based on \((\lambda, \mu)\)-soft union ideals are established. Moreover, through discussing quotient soft subsets, an approach for constructing quotient soft union rings is made. Finally, isomorphism theorems of \((\lambda, \mu)\)-soft union rings related to invariant soft sets are discussed.

1. Introduction

Fuzzy set theory [1], intuitionistic set theory [2], and probability theory are useful approaches to describe uncertainty, but each of these theories has its inherent difficulties. To overcome these problems, Molodtsov [3] initiated the concept of soft sets that is free from the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the applications of soft sets. Maji et al. [4] gave the operations of soft sets and their properties; furthermore, they [5] introduced fuzzy soft sets which combine the strengths of both soft sets and fuzzy sets. As a generalization of the soft set theory, the fuzzy soft set theory makes description of the objective world more realistic, practical, and precise in some cases, making it very promising. Since its introduction, the concept of soft sets has gained considerable attention in many directions and has found applications in a wide variety of fields such as the theory of soft sets [6, 7] and soft decision making [8, 9].

Since the notion of soft groups was proposed by Aktas and Çağman [10], then the soft set theory is used as a new tool to discuss algebraic structures. Acar et al. [11] initiated the concepts of soft rings similar to soft groups. Liu et al. further investigated isomorphism and fuzzy isomorphism theories of soft rings in [12, 13], respectively. Soft sets were also applied to other algebraic structures such as near-rings [14], \(\Gamma\)-hyperrings [15], \(\Gamma\)-modules [16, 17], and BCK/BCI-algebras [18]. The idea of quasicoincidence of a fuzzy point with a fuzzy set, which is mentioned in [19], has played a vital role in generating some different algebraic structures. By using the concepts of belongingness to (denoted by \(\in\)) and quasicoincidence (denoted by \(q\)) of a fuzzy point with a fuzzy subgroup, Bhakat and Das [20] proposed the concept of \((\alpha, \beta)\)-fuzzy subgroups. Inspired by the previous works, Zhan et al. [21] extended these results to BCI-algebras and obtained some important and useful generalizations of related algebraic structures. Moreover, they characterized filteristic soft BL-algebras [22] and filteristic soft MTL-algebras [23] based on \(\epsilon\)-soft sets and \(q\)-soft sets.

 Çağman et al. [24] studied on soft int-groups, which are different from the definition of soft groups [10]. The new approach is based on the inclusion relation and intersection of sets. It brings the soft set theory, the set theory, and the group theory together. On the basis of soft int-groups, Sezgin et al. [25] introduced the concept of soft intersection near-rings (soft int near-rings) by using intersection operation of sets and gave the applications of soft int near-rings to the near-ring theory. By introducing soft intersection-union products and soft characteristic functions, Sezer [26] made a new approach to the classical ring theory via the soft set theory, with the concepts of soft union rings, ideals, and bi-ideals. Jun et al. applied intersectional soft sets to BCK/BCI-algebras [27, 28] and obtained many results.
In the present paper, in order to further investigate the application of soft sets in the ring theory, we introduce the notions of (λ, μ)-soft union rings and (λ, μ)-soft union ideals as generalizations of that of soft union rings and soft union ideals, respectively. Then, we discuss the properties of images and inverse images of (λ, μ)-soft union ideals. Furthermore, we establish soft quotient rings based on (λ, μ)-soft union ideals by introducing the notion of soft cosets. Moreover, through discussing quotient soft subsets, we give an approach for constructing quotient soft union rings. Finally, we discuss isomorphism theorems of (λ, μ)-soft union rings related to invariant soft sets.

2. Preliminaries

In this section, we would like to recall some basic notions related to soft sets and soft union rings. An algebraic system $(R, +, \cdot)$ is called a ring if it satisfies the following conditions:

1. $(R, +)$ forms an abelian group,
2. (R, \cdot) forms a semigroup,
3. $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$, for all $a, b, c \in R$.

A subgroup S of $(R, +)$ with $SR \subseteq S$ and $RS \subseteq S$ is called an ideal of R.

Throughout the paper, R, R_1, R_2 denote rings, and $0, 0_1, 0_2$ are the zero elements of R, R_1, R_2, respectively. U is an initial universe and E is a set of parameters under consideration with respect to U. A and B are subsets of E. The set of all subsets of U is denoted by $\mathcal{P}(U)$. Molodtsov [3] defined the concept of soft sets in the following way.

Definition 1 (see [3]). A soft set f_A over U is defined as $f_A : E \rightarrow \mathcal{P}(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. For all $x \in A$, $f_A(x)$ may be considered as the set of e-approximate elements of the soft set f_A. A soft set f_A over U can be presented by the set of ordered pairs:

$$f_A = \{(x, f_A(x)) \mid x \in E, f_A(x) \in \mathcal{P}(U)\}.$$ \hspace{1cm} (1)

Clearly, a soft set is not a set. For illustration, Molodtsov considered several examples in [3].

If f_A is a soft set over U, then the image of f_A is defined by $\text{Im}(f_A) = \{f_A(a) \mid a \in A\}$. The set of all soft sets over U will be denoted by $S(U)$. Some of the operations of soft sets are listed as follows.

Definition 2 (see [4]). Let $f_A, f_B \in S(U)$. If $f_A(x) \subseteq f_B(x)$ for all $x \in E$, then f_A is called a soft subset of f_B and denoted by $f_A \subseteq f_B$.

f_A and f_B are called soft equal, denoted by $f_A = f_B$, if and only if $f_A \subseteq f_B$ and $f_B \subseteq f_A$.

Definition 3 (see [24]). Let $f_A, f_B \in S(U)$ and let Ψ be a function from A to B. Then, the soft anti-image of f_A under Ψ, denoted by $\Psi(f_A)$, is a soft set over U defined by

$$\Psi(f_A)(b) = \bigcap \{f_A(a) \mid a \in A, \Psi(a) = b\}, \text{ if } \Psi^{-1}(b) \neq \emptyset,$$

$$\emptyset, \text{ otherwise},$$

for all $b \in B$. And the soft preimage of f_B under Ψ, denoted by $\Psi^{-1}(f_B)$, is a soft set over U defined by $\Psi^{-1}(f_B)(a) = f_B(\Psi(a))$, for all $a \in A$.

Note that the concept of level sets in the fuzzy set theory, Çağman et al. [24] initiated the concept of lower inclusions of soft sets which serves as a bridge between soft sets and crisp sets.

Definition 4 (see [26]). Let f_A be a soft set over U and $\alpha \subseteq U$. Then, lower α-inclusion of f_A, denoted by $L(f_A; \alpha)$, is defined as $L(f_A; \alpha) = \{x \in A \mid f_A(x) \subseteq \alpha\}$.

Inspired by the concept of soft int-groups [24], Sezer in [26] introduced the concept of soft union rings by the combination of the theories of soft sets and rings.

Definition 5 (see [26]). A soft set f_B over U is called a soft union ring of R if

1. $f_B(x + y) \subseteq f_B(x) \cup f_B(y)$,
2. $f_B(x) \subseteq f_B(-x)$,
3. $f_B(xy) \subseteq f_B(x) \cup f_B(y)$,

for all $x, y \in R$.

Now, we proceed on to recall the notion of soft union ideals of rings.

Definition 6 (see [26]). A soft set f_B over U is called a soft union left (resp., right) ideal of R if

1. $f_B(x - y) \subseteq f_B(x) \cup f_B(y)$,
2. $f_B(xy) \subseteq f_B(x)$ (resp., $f_B(xy) \subseteq f_B(y)$),

for all $x, y \in R$.

A soft set f_B over U is called a soft union ideal of R if it is both a soft union left and a soft union right ideal of R over U.

3. (λ, μ)-Soft Union Rings and (λ, μ)-Soft Ideals of Rings

In this section, we introduce the notion of (λ, μ)-soft union rings (ideals) which is a generation of that of soft union rings (ideals) and investigate their basic properties. From now on, $0 \subseteq \mu \subseteq \lambda \subseteq U$ unless otherwise specified.

Definition 7. Let f_B be a soft set over U. f_b is called a (λ, μ)-soft union ring of R if

1. $f_B(x + y) \cap \lambda \subseteq f_B(x) \cup f_B(y) \cup \mu$,
2. $f_B(x) \cap \lambda \subseteq f_B(-x) \cup \mu$,
(3) \(f_R(xy) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu, \) for all \(x, y \in R \).

Remark 8. Let \(f_R \) be a soft union ring of \(R \) over \(U \); then \(f_R \) is a \((U, \emptyset)\)-soft union ring of \(R \). Therefore, a soft union ring of \(R \) is a \((\lambda, \mu)\)-soft union ring, but the converse is not true in general.

We show this fact by the following example.

Example 9. Given a ring \(R = \{\left[\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right] \mid a, b \in \mathbb{Z}_2\} \) with the operations addition and multiplication of matrices, \(U = \mathbb{Z}_5 \). We define a soft set \(f_R \) over \(U \) by

\[
\begin{align*}
 f_R \left(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right) &= \{0, 2\}, & f_R \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) &= \{0, 1, 2, 4\}, \\
 f_R \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) &= \{0, 1, 2\}, & f_R \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) &= \{0, 1, 4\}.
\end{align*}
\]

Then, one can easily show that \(f_R \) is a \(((0, 1, 2, 4), \{0, 2\})\)-soft union ring of \(R \). But \(f_R \) is not a soft union ring of \(R \) because

\[
\begin{align*}
 f_R \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) &= f_R \left(\begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} \right) \\
 &= \{0, 2\} \not\subseteq f_R \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) \cup f_R \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) \\
 &= \{0, 1, 4, 2\}.
\end{align*}
\]

In order to give some characterizations of \((\lambda, \mu)\)-soft union rings, we need the following lemmas.

Lemma 10. Let \(f_R \) be a soft set over \(U \). If \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \), then

1. \(f_R(-x) \cap \lambda \cup \mu \subseteq (f_R(x) \cap \lambda) \cup \mu, \)
2. \(f_R(-x) \cap \lambda \subseteq f_R(x) \cup \mu, \)

for all \(x \in R \).

Proof. (1) Assume that \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \); then for all \(x \in R \), we get that \((f_R(-x) \cap \lambda) \cup \mu = (f_R(-x) \cap \lambda) \cup \mu \subseteq ((f_R(-x) \cap \lambda) \cup \mu) \cap \lambda \cap \mu = (f_R(x) \cap \lambda) \cup \mu). \) (2) It is straightforward. \(\square \)

Lemma 11. Let \(f_R \) be a soft set over \(U \). If \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \), then

1. \(f_R(0) \cap \lambda \cup \mu \subseteq (f_R(x) \cap \lambda) \cup \mu, \)
2. \(f_R(0) \cap \lambda \subseteq f_R(x) \cup \mu, \)

for all \(x \in R \).

Proof. (1) Assume that \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \); then for all \(x \in R \), we have that \((f_R(0) \cap \lambda) \cup \mu = (f_R(-x) \cap \lambda) \cup \mu \subseteq ((f_R(x) \cap \lambda) \cup \mu) \cup (f_R(-x) \cap \lambda) \cup \mu \subseteq (f_R(x) \cap \lambda) \cup \mu, \) by Lemma 10. (2) It is straightforward. \(\square \)

Combining Lemma 11 and Definition 7, we obtain the following characterization of \((\lambda, \mu)\)-soft union rings.

Theorem 12. Let \(f_R \) be a soft set over \(U \). Then, \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \) if and only if \(f_R \) satisfies the following conditions:

1. \(f_R(x - y) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu, \)
2. \(f_R(xy) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu, \)

for all \(x, y \in R \).

Proof. Assume that \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \). By Definition 7 and Lemma 11, we have \(f_R(x) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu \) and

\[
\begin{align*}
 f_R(x - y) \cap \lambda &= (f_R(x - y) \cap \lambda) \cap \lambda \\
 &\subseteq (f_R(x) \cup f_R(-y) \cup \mu) \cap \lambda \\
 &= (f_R(x) \cap \lambda) \cup (f_R(-y) \cap \lambda) \cup \mu \\
 &\subseteq f_R(x) \cup f_R(y) \cup \mu, \quad (5)
\end{align*}
\]

for all \(x, y \in R \).

Conversely, since \(f_R(x - y) \cap \lambda \subseteq (f_R(x) \cup f_R(y)) \cup \mu, \) for all \(x, y \in R \), by Lemma 11, we get

\[
\begin{align*}
 f_R(x) \cap \lambda &= (f_R(x) \cap \lambda) \cap \lambda \\
 &\subseteq (f_R(0) \cup f_R(x) \cup \mu) \cap \lambda \\
 &= (f_R(0) \cap \lambda) \cup ((f_R(x) \cap \lambda) \cap \mu) \\
 &\subseteq f_R(x) \cup f_R(y) \cup \mu, \quad (6)
\end{align*}
\]

for all \(x, y \in R \).

Moreover, we have

\[
\begin{align*}
 f_R(x + y) \cap \lambda &= (f_R(x + y) \cap \lambda) \cap \lambda \\
 &\subseteq (f_R(x) \cup f_R(y) \cup \mu) \cap \lambda \\
 &= ((f_R(x) \cap \lambda) \cup (f_R(y) \cap \lambda) \cap \mu) \\
 &\subseteq f_R(x) \cup f_R(y) \cup \mu. \quad (7)
\end{align*}
\]

And it follows from hypothesis that \(f_R(x) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu; \) therefore \(f_R \) is a \((\lambda, \mu)\)-soft union ring of \(R \). \(\square \)

Analogues to the notion of \((\lambda, \mu)\)-soft union rings, we can extend the concept of soft union ideals as follows.

Definition 13. A soft set \(f_R \) over \(U \) is called a \((\lambda, \mu)\)-soft union ideal of \(R \) if

1. \(f_R(x - y) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu, \)
2. \(f_R(xy) \cap \lambda \subseteq (f_R(x) \cap f_R(y)) \cup \mu, \)

for all \(x, y \in R \).

Remark 14. Let \(f_R \) be a soft union ideal of \(R \) over \(U \); then \(f_R \) is a \((U, \emptyset)\)-soft union ideal of \(R \). Therefore, a soft union ideal of \(R \) is a \((\lambda, \mu)\)-soft union ideal; however it is important and interesting to note that the converse is not true in general.
Example 15. Let \(R = \mathbb{Z}_4 \) be a ring and \(U = \mathbb{Z}^+ \) a universal set. We construct a soft set \(f_R \) over \(U \) by \(f_R(0) = \{1\} \), \(f_R(1) = f_R(3) = \{2, 3, 4\} \), and \(f_R(2) = \{3\} \). One can show that \(f_R \) is a \(((1, 2, 4); \{1, 2\})\)-soft union ideal. But \(f_R \) is not a soft union ideal of \(R \), since \(f_R(2 - 2) = f_R(0) = \{1\} \notin \bigcup f_R(2) = \{3\} \).

Proposition 16. If \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R \), then \(f_R^* = \{ x \in R | (f_R(x) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \} \) is an ideal of \(R \).

Proof. We need to show that (i) \(x - y \in f_R^* \), (ii) \(rx \in f_R^* \), and (iii) \(xr \in f_R^* \), for all \(x, y \in f_R^* \) and \(r \in R \). If \(x, y \in f_R^* \), then \((f_R(x) \cap \lambda) \cup \mu = (f_R(y) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \). By Lemma 11, we obtain that \((f_R(0) \cap \lambda) \cup \mu \subseteq (f_R(x - y) \cap \lambda) \cup \mu \). Since \(f_R \) is a \((\lambda, \mu)\)-soft union ideal, then for all \(x, y \in f_R^* \) and \(r \in R \), we have

\[
(f_R(x - y) \cap \lambda) \cup \mu \\
= (f_R(x) \cap \lambda \cap \lambda) \cup \mu \\
= (f_R(x) \cap \lambda) \cup (f_R(y) \cap \lambda) \cup \mu \\
= (f_R(0) \cap \lambda) \cup \mu ,
\]

Similarly, we can prove that \((f_R(xr) \cap \lambda) \cup \mu \subseteq (f_R(0) \cap \lambda) \cup \mu \), for all \(x \in f_R^* \) and \(r \in R \). Hence, \((f_R(x - y) \cap \lambda) \cup \mu = (f_R(xr) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \). Therefore, (i) \(x - y \in f_R^* \), (ii) \(rx \in f_R^* \), and (iii) \(xr \in f_R^* \), for all \(x, y \in f_R^* \) and \(r \in R \). And thus, \(f_R^* \) is an ideal of \(R \). \(\square \)

We will now display the relationship between \((\lambda, \mu)\)-soft union ideals and ideals. For this purpose, we require the following notion.

Definition 17. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal of \(R \); then \(E \text{ Im}(f_R) \) is called the extended image set of \(f_R \), where \(E \text{ Im}(f_R) = \text{ Im}(f_R) \cup \{\lambda, \mu\} \).

Now, we characterize \((\lambda, \mu)\)-soft union ideals by lower inclusions.

Proposition 18. Let \(f_R \) be a soft set over \(U \) and \(E \text{ Im}(f_R) \) a totally ordered set by inclusion. Then, \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R \) if and only if \(L(f_R; \alpha) \) is an ideal of \(R \), whenever it is nonempty, for each \(\alpha \subseteq U \) where \(\mu \subseteq \alpha \subset \lambda \).

Proof. Assume that \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R \) and \(L(f_R; \alpha) \) is nonempty. It is sufficient to show that \(x - y \in L(f_R; \alpha), rx \in L(f_R; \alpha) \) and \(xr \in L(f_R; \alpha), r \in R \). Let \(x, y \in L(f_R; \alpha) \). It follows that \(f_R(x) \subseteq \alpha \) and \(f_R(y) \subseteq \alpha \). Since \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R \) and \(E \text{ Im}(f_R) \) is a totally ordered set, then \(f_R(x - y) \cap \lambda \subseteq f_R(x) \cap f_R(y) \cup \mu \subseteq \alpha \cup \alpha \cup \alpha = \alpha \subset \lambda \). And thus, \(f_R(x - y) \subseteq \alpha \), \(f_R(rx) \subseteq \alpha \), \(f_R(xr) \subseteq \alpha \). Hence, \(x - y, rx, xr \in L(f_R; \alpha) \). Therefore, \(L(f_R; \alpha) \) is an ideal of \(R \).

Conversely, assume that \(L(f_R; \alpha) \) is an ideal of \(R \) whenever it is nonempty, for each \(\alpha \subseteq U \) where \(\mu \subseteq \alpha \subset \lambda \). Suppose that \(f_R(x - y) \cap \lambda \subseteq f_R(x) \cap f_R(y) \cup \mu \cup \mu \), then \(x, y \in \mathbb{Z}_4 \) such that \(f_R(x - y) \cap \lambda \subseteq \alpha = f_R(x_0) \cup f_R(y_0) \cup \mu \). Therefore, \(f_R(x_0) \cup f_R(y_0) \subseteq \alpha \) and \(\mu \subseteq \alpha \subset \lambda \). It follows that \(x_0, y_0 \in \mathbb{Z}_4 \) such that \(f_R(x_0 - y_0) \subseteq \alpha \); that is, \(x_0 - y_0 \notin L(f_R; \alpha) \), which is a contradiction. Hence, \(f_R(x - y) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu \), for all \(x, y \in \mathbb{Z}_4 \). Similarly, we can prove that \(f_R(xy) \cap \lambda \subseteq f_R(x) \cup f_R(y) \cup \mu \), for all \(x, y \in \mathbb{Z}_4 \). Thus, \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R \).

In the rest of this section, we will show that the soft anti-image and soft preimage of a \((\lambda, \mu)\)-soft union ideal under a ring homomorphism are also \((\lambda, \mu)\)-soft union ideals.

Theorem 19. Let \(f_R \) be a soft set over \(U \) and \(\Psi \) a ring epimorphism from \(R_1 \) to \(R_2 \). If \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R_1 \), then \(\Psi(f_R) \) is a \((\lambda, \mu)\)-soft union ideal of \(R_2 \) and \(\Psi((f_R(0) \cap \lambda)) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \).

Proof. Let \(y_1, y_2 \in R_2 \) and \(f_R \), a \((\lambda, \mu)\)-soft union ideal of \(R_1 \). Since \(\Psi \) is a ring homomorphism from \(R_1 \) to \(R_2 \), then \(\Psi^{-1}(y_1) \neq \emptyset \) and \(\Psi^{-1}(y_2) \neq \emptyset \). And thus, there exist \(x_1, x_2 \in R_1 \) such that \(\Psi(x_1) = y_1, \Psi(x_2) = y_2 \). Therefore, we have

\[
\Psi(f_R)(y_1 - y_2) \cap \lambda \\
= \cap \{f_R(x_1 - x_2) | \Psi(x_1 - x_2) = y_1 - y_2 \} \cap \lambda \\
= \cap \{f_R(x_1 - x_2) \cap \lambda | \Psi(x_1 - x_2) = y_1 - y_2 \} \\
\subseteq \cap \{f_R(x_1) \cup f_R(x_2) \cup \mu | \Psi(x_1) = y_1, \Psi(x_2) = y_2 \} \\
= \cap \{f_R(x_1) | \Psi(x_1) = y_1 \} \\
= \cap \{f_R(x_2) \cap \Psi(f_R)(y_2) \cup \mu | \Psi(x_1) = y_1, \Psi(x_2) = y_2 \} \\
= \cap \{f_R(x_1) | \Psi(x_1) = y_1 \}.
\]
\begin{align*}
&\cap \cap \{f_{R_1}(x_2) | \Psi(x_2) = y_2\} \cup \mu \\
&= (\Psi(f_{R_1}(y_1) \cap \Psi(f_{R_1}(y_1))) \cup \mu.
\end{align*}

(9)

Therefore, \(\Psi(f_{R_1}) \) is a \((\lambda, \mu)\)-soft union ideal of \(R_2 \).

By Lemma 11, we have \((\Psi(f_{R_1})(0_2) \cap \lambda) \cup \mu = (\cap \{f_{R_1}(x) | x \in R_1, \Psi(x) = 0_3\} \cap \lambda) \cup \mu = \cap \{f_{R_1}(x) \cap \lambda \cup \mu | x \in R_1, \Psi(x) = 0_3\} = (f_{R_1}(0_1) \cap \lambda) \cup \mu \).

Theorem 20. Let \(f_{R_2} \) be a soft set over \(U \) and \(\Psi \) a ring homomorphism from \(R_1 \) to \(R_2 \). If \(f_{R_2} \) is a \((\lambda, \mu)\)-soft union ideal of \(R_2 \), then \(\Psi^{-1}(f_{R_2}) \) is a \((\lambda, \mu)\)-soft union ideal of \(R_1 \).

Proof. Let \(x_1, x_2 \in R_1 \). Then,

\[
\Psi^{-1}(f_{R_2})(x_1 - x_2) \cap \lambda
= f_{R_1}(\Psi(x_1 - x_2)) \cap \lambda
= f_{R_1}(\Psi(x_1) - \Psi(x_2)) \cap \lambda \\
\subseteq f_{R_1}(\Psi(x_1)) \cup f_{R_1}(\Psi(x_2)) \cup \mu
= \Psi^{-1}(f_{R_2})(x_1) \cup \Psi^{-1}(f_{R_2})(x_2) \cup \mu.
\]

Moreover, we have

\[
\Psi^{-1}(f_{R_2})(x_1 x_2) \cap \lambda
= f_{R_1}(\Psi(x_1 x_2)) \cap \lambda = f_{R_1}(\Psi(x_1) \cdot \Psi(x_2)) \cap \lambda \\
\subseteq (f_{R_1}(\Psi(x_1)) \cap f_{R_1}(\Psi(x_2))) \cup \mu
= (\Psi^{-1}(f_{R_2})(x_1) \cap \Psi^{-1}(f_{R_2})(x_2)) \cup \mu.
\]

Hence, \(\Psi^{-1}(f_{R_2}) \) is a \((\lambda, \mu)\)-soft union ideal of \(R_1 \). \qed

4. Soft Quotient Rings

The main purpose of this section is to give an approach for constructing soft quotient rings based on \((\lambda, \mu)\)-soft union ideals. Such approach involves the concept of soft cosets. In addition, some simple characterizations of soft cosets are presented.

Definition 21. Let \(f_{R} \) be a \((\lambda, \mu)\)-soft union ring of \(R \) over \(U \) and \(r \in R \). Then, a soft coset \(r \oplus f_{R} \) of \(f_{R} \) is defined by

\[
(r \oplus f_{R})(x) = (f_{R}(x - r) \cap \lambda) \cup \mu,
\]

for all \(x \in R \).

For the sake of simplicity and better understanding, we illustrate the above concept by the following example.

Example 22. Consider the \([0, 1, 2, 4], \{0, 2\}\)-soft union ring \(f_{R} \) in Example 9. If \(r = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \), then we define a soft set \(r \oplus f_{R} \) as

\[
(r \oplus f_{R})\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) = [0, 1, 2, 4],
\]

\[
(r \oplus f_{R})\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) = [0, 2],
\]

\[
(r \oplus f_{R})\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) = [0, 1, 2, 4],
\]

\[
(r \oplus f_{R})\left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right) = [0, 1, 2].
\]

Then, it is easy to show that \(r \oplus f_{R} \) is a soft coset of \(f_{R} \).

Proposition 23. Let \(f_{R} \) be a \((\lambda, \mu)\)-soft union ring over \(U \) and \(a, b \in R \). Then, \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \) if and only if \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \).

Proof. Suppose that \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \).

Since \(f_{R} \) is a \((\lambda, \mu)\)-soft union ring, then \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(a) \cap \lambda \cup \mu \cap \mu = f_{R}(0) \cap \lambda \cup \mu \cup \mu \). By Lemma II, we have \(f_{R}(0) \cap \lambda \cup \mu \subseteq f_{R}(a - b) \cap \lambda \cup \mu \). Thus, \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \).

Conversely, assume that \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \).

We can prove that \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \) in a similar way. \qed

Proposition 24. Let \(f_{R} \) be a \((\lambda, \mu)\)-soft union ring over \(U \) and \(a, b \in R \). Then, \(a \oplus f_{R} = b \oplus f_{R} \) if and only if \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \).

Proof. Suppose that \(f_{R}(a - b) \cap \lambda \cup \mu = f_{R}(0) \cap \lambda \cup \mu \); then

\[
(b \oplus f_{R})(x) = (f_{R}(x - b) \cap \lambda) \cup \mu
= (f_{R}(x - a + a - b) \cap \lambda) \cup \mu
= (f_{R}(x - a + a - b) \cap \lambda \cap \lambda) \cup \mu
\subseteq (f_{R}(x - a) \cap f_{R}(a - b) \cap \lambda) \cup \mu
= (f_{R}(x - a) \cap \lambda) \cup (f_{R}(a - b) \cap \lambda) \cup \mu
= (f_{R}(x - a) \cap \lambda) \cup (f_{R}(0) \cap \lambda) \cup \mu
\subseteq (f_{R}(x - a) \cap \lambda) \cup \mu = (a \oplus f_{R})(x).
\]

for all \(x \in R \). Therefore, \(b \oplus f_{R} = a \oplus f_{R} \). Similarly, we can show that \(a \oplus f_{R} = b \oplus f_{R} \). Hence, \(a \oplus f_{R} = b \oplus f_{R} \).

Conversely, assume that \(a \oplus f_{R} = b \oplus f_{R} \). It follows that \(f_{R}(a - b) \cap \lambda \cup \mu = (b \oplus f_{R})(a) = (a \oplus f_{R})(a) = (f_{R}(0) \cap \lambda) \cup \mu \).

Based on the above proposition, we give a property related to soft cosets as follows.
Proposition 25. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal over \(U \) and \(a, b, x, y \in R \). If
\[
\begin{align*}
x \oplus f_R &= a \oplus f_R, \\
y \oplus f_R &= b \oplus f_R,
\end{align*}
\]
then \((x + y) \oplus f_R = (a + b) \oplus f_R\), \((xy) \oplus f_R = ab \oplus f_R\).

Proof. Suppose that \(x \oplus f_R = a \oplus f_R, y \oplus f_R = b \oplus f_R \). Then, \((f_R(x - a) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \) and \((f_R(y - b) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \), by Proposition 24. Since \(f_R \) is a \((\lambda, \mu)\)-soft union ideal, then
\[
(f_R ((x + y) - (a + b)) \cap \lambda) \cup \mu = (f_R ((x - a) + (y - b)) \cap \lambda) \cup \mu = (f_R ((x - a) + (y - b)) \cap \lambda \cap \lambda) \cup \mu = (f_R (x - a) \cap \lambda) \cup (f_R (y - b) \cap \lambda) \cup \mu = (f_R (0) \cap \lambda) \cup \mu.
\]
On the other hand, it follows from Lemma 11 that \((f_R(0)) \cap \lambda) \cup \mu \subseteq (f_R((x + y) - (a + b)) \cap \lambda) \cup \mu \). Hence, \((f_R(x) - (a + b)) \cap \lambda \cap \lambda) \cup \mu \) and so \((x + y) \oplus f_R = (a + b) \oplus f_R\).

Moreover,
\[
(f_R (xy - ab) \cap \lambda) \cup \mu = (f_R ((x - a) y + a (y - b)) \cap \lambda) \cup \mu = (f_R ((x - a) y + (a - b)) \cap \lambda \lambda) \cup \mu \subseteq ((f_R (x - a) y) \cup (f_R (a (y - b)) \cap \lambda) \cup \mu = (f_R ((x - a) y) \cap \lambda) \lambda) \cup \mu = (f_R (0) \cap \lambda) \cup \mu.
\]
According to Lemma 11, we get that \((f_R(0)) \cap \lambda) \cup \mu \subseteq (f_R(xy - ab)) \cap \lambda \cup \mu \). Therefore, \((f_R(xy - ab)) \cap \lambda \cap \lambda) \cup \mu = (f_R(0)) \cap \lambda \cup \mu ;\) that is, \((xy) \oplus f_R = (ab) \oplus f_R\).

In view of Proposition 25, we have the following result.

Proposition 26. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal over \(U \). Then, \((R/f_R, +, \cdot, \cdot)\) is a ring, where \(R/f_R \equiv \{ a + f_R \mid a \in R \} \), \((x + f_R) + (y + f_R) \equiv (x + y) + f_R\), and \((x + f_R) \cdot (y + f_R) \equiv (xy) + f_R\), for all \(x, y \in R \).

Proof. It is straightforward.

Definition 27. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal over \(U \). Then, \((R/f_R, +, \cdot)\) is called a soft quotient ring.

Theorem 28. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal over \(U \). Then, \(R/f_R^* \equiv R/f_R \).

Proof. Assume that \(g : R \rightarrow R/f_R \) such that \(g(x) = x \oplus f_R \) for all \(x \in R \) is easy to see that \(g \) is a surjective homomorphism from \(R \) to \(R/f_R \). Since \(\text{Ker}(g) = \{ x \in R \mid g(x) = 0 \oplus f_R \} = \{ x \in R \mid x \oplus f_R = 0 \oplus f_R \} = \{ x \in R \mid f_R(x) \cap \lambda \} \cup \mu = (f_R(0) \cap \lambda) \cup \mu \) = \(f_R \), therefore \(R/f_R^* \equiv R/f_R \).

5. Quotient Soft Union Rings

In this section, quotient soft union rings are constructed by introducing the notion of quotient soft subobjects and some isomorphism theorems of \((\lambda, \mu)\)-soft union rings related to invariant soft sets are discussed.

Definition 29. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal over \(U \) and \(g_R \) a soft set. Then, a quotient soft subset \(g_R/f_R \) of \(R/f_R \) is defined by
\[
g_R/f_R (r \oplus f_R) = \cap \{ g_R (x) \mid x \in R, x \oplus f_R = r \oplus f_R \}, \tag{18}
\]
for all \(r \in R \).

We will illustrate the above concept by the following example.

Example 30. Consider the \([1, 2, 4], [1, 2] \)-soft union ideal \(f_R \) over \(Z^* \) in Example 15. We construct a soft set \(g_R \) over \(U \) by \(g_R(0) = \{ 1, 2, 3, 5, 6 \} \), \(g_R(1) = \{ 1, 3, 5, 6 \} \), \(g_R(2) = \{ 1, 2, 4, 5 \} \), and \(g_R(3) = \{ 3, 6 \} \). We define a soft set \(g_R \) over \(R \) such that \(g_R/f_R (0 \oplus f_R) = g_R/f_R (2 \oplus f_R) = \{ 1, 2, 5 \} \), \(g_R/f_R (1 \oplus f_R) = g_R/f_R (3 \oplus f_R) = \{ 3, 6 \} \). Then, one can show that \(g_R/f_R \) is a quotient soft subset of \(R/f_R \).

Proposition 31. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal of \(R \) over \(U \). Then, \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R/f_R \), where \(f_R(x \oplus f_R) = f_R(x) \), for all \(x \in R \).

Proof. It is easy to see that \(f_R \) is a soft set. For all \(x, y \in R \), we have
\[
\begin{align*}
\tilde{f}_R ((x \oplus f_R) - (y \oplus f_R)) \cap \lambda \\
= \tilde{f}_R ((x - y) \oplus f_R) \cap \lambda \\
= f_R (x - y) \cap \lambda \subseteq f_R (x) \cap \lambda \cup f_R (y) \cap \mu \\
= \tilde{f}_R (x \oplus f_R) \cup \tilde{f}_R (y \oplus f_R) \cup \mu.
\end{align*}
\]
Moreover, since \(f_R(x \oplus f_R) \cdot (y \oplus f_R) \cap \lambda = \tilde{f}_R ((xy) \oplus f_R) \cap \lambda = f_R(x) \cap \lambda \subseteq f_R (x) \cap \lambda \cup f_R (y) \cap \mu = f_R (x \oplus f_R) \cap f_R (y \oplus f_R) \cup \mu \), for all \(x, y \in R \), then \(f_R \) is a \((\lambda, \mu)\)-soft union ideal of \(R/f_R \).

Proposition 32. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal and \(g_R \) a soft union ring. Then, \(g_R/f_R \) is a soft union ring of \(R/f_R \).
Proof. For all \(x, y \in R \), we have
\[
g_R/f_R((x \oplus f_R) - (y \oplus f_R)) = g_R/f_R((x - y) \oplus f_R) \\
\leq \cap \{g_R(u) \cup g_R(v) | u, v \in R, (u - v) \in R, \}
\]
\[
= \cup \{g_R(v) | v \in R, u \oplus f_R = y \oplus f_R \}
\]
\[
= g_R/f_R(x \oplus f_R) \cup g_R/f_R(y \oplus f_R).
\]

Similarly, we can show that \(g_R/f_R((x \oplus f_R) \cdot (y \oplus f_R)) \subseteq g_R/f_R(x \oplus f_R) \cup g_R/f_R(y \oplus f_R) \), for all \(x, y \in R \). Thus, \(g_R/f_R \) is a soft union ring of \(R/f_R \).

Definition 33. Let \(f_R \) be a \((\lambda, \mu)\)-soft union ideal and \(g_R \) a soft union ring. Then, \((g_R/f_R, +, \cdot) \) is called a quotient soft union ring of \(R/f_R \).

In order to investigate isomorphism theorems of \((\lambda, \mu)\)-soft union rings, we need a concept of invariant soft sets which will play an important role in the sequel.

Definition 34. Let \(\Psi : R_1 \rightarrow R_2 \) be a ring homomorphism. A soft set \(f_R \) over \(U \) is called an invariant soft set with respect to \(\Psi \) if \(\Psi(x_1) = \Psi(x_2) \) implies \(f_R(x_1) = f_R(x_2) \), for all \(x_1, x_2 \in R_1 \).

Proposition 35. Let \(\Psi : R_1 \rightarrow R_2 \) be a ring homomorphism and \(f_R \) a soft set of \(R_2 \) over \(U \). Then, \(\Psi^{-1}(f_R) \) is an invariant soft set with respect to \(\Psi \).

Proof. Let \(x_1, x_2 \in R_1 \) such that \(\Psi(x_1) = \Psi(x_2) \). Then, \(\Psi^{-1}(f_R(x_1)) = f_R(\Psi(x_1)) = f_R(\Psi(x_2)) = \Psi^{-1}(f_R(x_2)) \). Hence, \(\Psi^{-1}(f_R) \) is an invariant soft set with respect to \(\Psi \).

Next, we establish isomorphism theorems of \((\lambda, \mu)\)-soft union rings.

Theorem 36 (first isomorphism theorem). Let \(\Psi : R_1 \rightarrow R_2 \) be an epimorphism and let \((\lambda, \mu)\)-soft union ideal \(f_R \) be an invariant soft set with respect to \(\Psi \). Then, \(R_1/f_R \cong R_2/\Psi(f_R) \).

Proof. Let \(\psi : R_1 \rightarrow R_2/\Psi(f_R) \) be a mapping such that \(\psi(x) = \Psi(x) \oplus \Psi(f_R) \), for all \(x \in R_1 \). Obviously, \(\psi \) is an epimorphism. Since \(f_R \) is an invariant soft set with respect to \(\Psi \), then \(\text{Ker}(\psi) = \{ x \in R_1 | \psi(x) = 0 \oplus \Psi(f_R) \} = \{ x \in R_1 | \Psi(x) \oplus \Psi(f_R) = 0 \oplus \Psi(f_R) \} = \{ x \in R_1 | (\Psi(f_R), \Psi(x) \in \lambda) \cup \mu = (\Psi(f_R), 0_1) \in \lambda \cup \mu \} = \{ x \in R_1 | x \oplus f_R = 0 \oplus f_R \} = f_R^* \). Therefore, \(R_1/f_R^* \cong R_2/\Psi(f_R) \). By Theorem 28, we have \(R_1/f_R \cong R_2/\Psi(f_R) \). Hence, \(R_1/f_R \cong R_2/\Psi(f_R) \).

Proposition 37. Let \(\Psi : R_1 \rightarrow R_2 \) be an epimorphism and \((\lambda, \mu)\)-soft union ideal and \(f_R \) a invariant soft set with respect to \(\Psi \). Then, \(R_1/\Psi^{-1}(f_R) \cong R_2/f_R \).

Proof. It follows from Theorem 28 and Proposition 35 that \(\Psi^{-1}(f_R) \) is a \((\lambda, \mu)\)-soft union ideal of \(R_1 \) and \(\Psi^{-1}(f_R) \) is an invariant soft set with respect to \(\Psi \). Since \(\Psi \) is an epimorphism, then \(\Psi(\Psi^{-1}(f_R)) = f_R \). By Theorem 36, we get that \(R_1/\Psi^{-1}(f_R) \cong R_2/f_R \).

Theorem 38. Let \(\Psi : R_1 \rightarrow R_2 \) be an epimorphism, \(g_R \) a soft union ring of \(R_1 \), and \(f_R \) a \((\lambda, \mu)\)-soft union ideal of \(R_1 \). If \(f_R \) is an invariant soft set with respect to \(\Psi \), then \(g_R/f_R \cong \Psi(g_R)/\Psi(f_R) \).

Proof. Let \(\varphi : R_1/f_R \rightarrow R_2/\Psi(f_R) \) be a mapping such that \(\varphi(x \oplus f_R) = \Psi(x) \oplus \Psi(f_R) \), for all \(x \in R_1 \). By Theorem 36, we have that \(\varphi \) is a ring isomorphism. Let \(y \in R_2 \). Since \(\Psi \) is a subjective homomorphism, then there exists \(x \in R_1 \) such that \(\Psi(x) = y \). Considering that \(f_R \) is an invariant soft set with respect to \(\Psi \), we obtain
\[
\Psi(g_R/f_R) / \Psi(f_R) (y \oplus \Psi(f_R)) \\
= \Psi(g_R/f_R) / \Psi(f_R) (\Psi(x) \oplus \Psi(f_R)) \\
= \cap \{\Psi(g_R/u) | u \in R_2, u \oplus \Psi(f_R) \} \\
= \Psi(x) \oplus \Psi(f_R) \\
= \cap \{g_R(x) | x \in R_1, \Psi(x) = y \} \\
= g_R(f_R) / g_R(f_R) (x \oplus f_R).
\]
Hence, \(\varphi(g_R/f_R) \equiv \Psi(g_R) \Psi(f_R) \), and so \(g_R/f_R \equiv \Psi(g_R) \Psi(f_R) \).

Proposition 39. Let \(\Psi : R_1 \rightarrow R_2 \) be an epimorphism. If \(g_{R_2} \) is a soft union ring of \(R_2 \) and \(f_{R_2} \) is a \((\lambda, \mu)\)-soft union ideal of \(R_2 \), then \(\Psi^{-1}(g_{R_2}) \Psi^{-1}(f_{R_2}) \equiv g_{R_1}/f_{R_1} \).

Proof. Since \(\Psi \) is a subjective homomorphism, then \(\Psi^{-1}(f_{R_2}) = f_{R_1} \) and \(\Psi^{-1}(g_{R_2}) = g_{R_1} \). By Proposition 35, we get that \(\Psi^{-1}(f_{R_2}) \) is an invariant soft set with respect to \(\Psi \). It follows from Theorem 38 that \(\Psi^{-1}(g_{R_2}) \Psi^{-1}(f_{R_2}) \equiv g_{R_1}/f_{R_1} \).

Lemma 40. Let \(f_R \) and \(g_R \) be \((\lambda, \mu)\)-soft union ideals of \(R \) such that \(g_R \subseteq f_R \) and \((f_R(0) \cap \lambda) \cup \mu = (g_R(0) \cap \lambda) \cup \mu \). Then, \(x \oplus f_R \oplus g_R = y \oplus f_R \oplus g_R / f_R \) if and only if \(x \oplus g_R = y \oplus g_R \), for all \(x, y \in R \).

Proof. Assume that \(x \oplus f_R \oplus g_R = y \oplus f_R \oplus g_R / f_R \), for all \(x, y \in R \). Then, we have that \((g_R / f_R ((x - y) \oplus f_R)) \cap \lambda) \cup \mu = ((g_R / f_R (0 \oplus f_R)) \cap \lambda) \cup \mu \), and so

\[
\cap \{(g_R(t) \cap \lambda) \cup \mu \mid t \in R, t \oplus f_R = (x - y) \oplus f_R \}
\]

\[
= \cap \{(g_R(t) \cap \lambda) \cup \mu \mid t \in R, t \oplus f_R = (x - y) \oplus f_R \}
= (g_R(0) \cap \lambda) \cup \mu \tag{22}
\]

If \(t \oplus f_R = (x - y) \oplus f_R \), then \((f_R(x - y - t) \cap \lambda) \cup \mu = (f_R(0) \cap \lambda) \cup \mu \). Therefore,

\[
(g_R(x - y) \cap \lambda) \cup \mu
= (g_R(x - y - t + t) \cap \lambda) \cup \mu
= (g_R(x - y - t) \cap \lambda) \cup \mu
\subseteq ((g_R(x - y) \cup g_R(t) \mu) \cap \lambda) \cup \mu
= ((f_R(x - y - t) \cap \lambda) \cup \mu) \cup ((g_R(t) \cap \lambda) \cup \mu)
\subseteq (f_R(0) \cap \lambda) \cup \mu \cup (g_R(t) \cap \lambda) \cup \mu
\subseteq (g_R(t) \cap \lambda) \cup \mu \tag{23}
\]

It follows that \((g_R(x - y) \cap \lambda) \cup \mu \subseteq (g_R(t) \cap \lambda) \cup \mu \mid t \in R, t \oplus f_R = (x - y) \oplus f_R \) = \(g_R(0) \cap \lambda) \cup \mu \). On the other hand, we have \((g_R(0) \cap \lambda) \cup \mu \subseteq (g_R(x - y) \cap \lambda) \cup \mu \), by Lemma 11. Hence, \((g_R(x - y) \cap \lambda) \cup \mu = (g_R(0) \cap \lambda) \cup \mu \). And thus, \(x \oplus g_R = y \oplus g_R \).

Conversely, suppose that \(x \oplus g_R = y \oplus g_R \), for all \(x, y \in R \). It follows that \((g_R(x - y) \cap \lambda) \cup \mu = (g_R(0) \cap \lambda) \cup \mu = (g_R(f_R(0) \cap \lambda) \cup \mu) \). Therefore,

\[
(g_R ((x - y) \oplus f_R) \cap \lambda) \cup \mu
= (\cap \{g_R(t) \mid t \in R, t \oplus f_R = (x - y) \oplus f_R \}) \cup \mu
= (\cap \{g_R(t) \cap \lambda \mid t \in R, t \oplus f_R = (x - y) \oplus f_R \}) \cup \mu
= (g_R(t) \cap \lambda) \cup \mu \tag{24}
\]

Thus, \(\Psi \) is a ring isomorphism.

Moreover, since

\[
((h_R/f_R) / (g_R/f_R)) (x \oplus f_R \oplus g_R / f_R)
= \cap \{h_R / f_R(u \oplus f_R) \mid u \in R, u \oplus f_R \oplus g_R / f_R
= x \oplus f_R \oplus g_R / f_R
= \cap \{h_R(v) \mid v \in R, v \oplus f_R \oplus g_R / f_R
= u \oplus f_R / f_R \mid u \in R, u \oplus f_R \oplus g_R / f_R
= x \oplus g_R / f_R \tag{25}
\]

that is, \((g_R / f_R ((x \oplus f_R) - (y \oplus f_R)) \cap \lambda) \cup \mu = (g_R / f_R (0 \oplus f_R) \cap \lambda) \cup \mu \). It follows from Proposition 24 that \(x \oplus f_R \oplus g_R / f_R = y \oplus f_R \oplus g_R / f_R \).

Theorem 41 (third isomorphism theorem). Let \(f_R \) and \(g_R \) be \((\lambda, \mu)\)-soft union ideals of \(R \) such that \(g_R \subseteq f_R \) and \((f_R(0) \cap \lambda) \cup \mu = (g_R(0) \cap \lambda) \cup \mu \). If \(h_R \) is a soft union ring, then \((h_R/f_R / (g_R/f_R) \equiv h_R / g_R \).

Proof. Let \(\Psi : (R/f_R) / (R/g_R) \rightarrow R / g_R \) be a mapping such that \(\Psi((r \oplus f_R) / (f_R)) = r \oplus g_R \), for all \(r \in R \). According to Lemma 40, we obtain that \(\Psi \) is an injective mapping. Obviously, \(\Psi \) is subjective. For all \(x, y \in R \), we have

\[
\Psi((x \oplus f_R \oplus g_R / f_R) + (y \oplus f_R \oplus g_R / f_R))
= \Psi((x + y) \oplus f_R \oplus g_R / f_R)
= (x + y) \oplus g_R = (x \oplus g_R) + (y \oplus g_R)
= (xy) \oplus f_R \oplus g_R / f_R
= (x y) \oplus f_R \oplus g_R / f_R
= (x y) \oplus g_R = (x \oplus g_R) \cdot (y \oplus g_R)
\]

Thus, \(\Psi \) is a ring isomorphism,

Moreover, since

\[
((h_R/f_R) / (g_R/f_R)) (x \oplus f_R \oplus g_R / f_R)
= \cap \{h_R / f_R(u \oplus f_R) \mid u \in R, u \oplus f_R \oplus g_R / f_R
= x \oplus f_R \oplus g_R / f_R
= \cap \{h_R(v) \mid v \in R, v \oplus f_R \oplus g_R / f_R
= u \oplus f_R / f_R \mid u \in R, u \oplus f_R \oplus g_R / f_R
= x \oplus f_R \oplus g_R / f_R \tag{26}
\]

that is, \((h_R/f_R) / (g_R/f_R) = \Psi^{-1}(h_R/g_R) \) therefore \(\Psi((h_R/f_R) / (g_R/f_R)) = h_R / g_R \), and so \(h_R / f_R / (g_R/f_R) \equiv h_R / g_R \).
6. Conclusions

We introduced the notions of \((\lambda, \mu)\)-soft union rings and \((\lambda, \mu)\)-soft union ideals which are generations of that of soft union rings and soft union ideals in the paper. Then, we established soft quotient rings based on \((\lambda, \mu)\)-soft union ideals by using soft cosets and gave an approach for constructing quotient soft union rings. Finally, we considered isomorphism theorems of \((\lambda, \mu)\)-soft union rings related to invariant soft sets. Motivated by the notion of soft intersection near-rings in [25], we will investigate the properties of \((\lambda, \mu)\)-soft near-rings. In addition, it is interesting to apply the theory of soft union (intersection) sets to other algebraic structures such as modules.

Acknowledgments

The authors would like to thank the editors and referees for their constructive comments in improving this paper significantly. The works described in this paper are partially supported by grants from Graduate Independent Innovation Foundation of Northwest University (YZZ12061) and Graduate Higher Achievement Foundation of Northwest University (YC13055).

References
