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Abstract. 
Time-dependent reliability-based design optimization (RBDO) has been acknowledged as an advance optimization methodology since it accounts for time-varying stochastic nature of systems. This paper proposes a time-dependent RBDO method considering both of the time-dependent kinematic reliability and the time-dependent structural reliability as constrains. Polynomial chaos combined with the moving least squares (PCMLS) is presented as a nonintrusive time-dependent surrogate model to conduct uncertainty quantification. Wear is considered to be a critical failure that deteriorates the kinematic reliability and the structural reliability through the changing kinematics. According to  Archard’s wear law, a multidiscipline reliability model including the kinematics model and the structural finite element (FE) model is constructed to generate the stochastic processes of system responses. These disciplines are closely coupled and uncertainty impacts are cross-propagated to account for the correlationship between the wear process and loads. The new method is applied to an airborne retractable mechanism. The optimization goal is to minimize the mean and the variance of the total weight under both of the time-dependent and the time-independent reliability constraints.


1. Introduction
In recent decades, numerous endeavors have been made to develop the reliability-based design optimization (RBDO) methods, due to the fact that RBDO maximizes the performance under constrains of target reliability level accounting for various sources of uncertainty [1, 2]. These developed RBDO methodologies can be classified into two groups: time-independent RBDO and time-dependent RBDO. 
Time-independent RBDO, which assumes reliability constraints are time independent, has been studied widely [2]. However, in many engineering cases, because of the degradation and stochastic loads, systems deterioration with time is such a severe problem that it must be taken into account. For instance, wear is one of the most critical failures that substantially affect the life span of bearings, hinges, and other mechanisms, and it should be considered in design phase [3]. For these applications, time-dependent RBDO methods should be conducted because the reliability is time varying. Most literatures on this topic concentrate on the time-dependent structural reliability problem. Two basic scenarios are presented, which are out-crossing methods [4–7] and extreme value methods [8, 9]. 
The out-crossing methods require the calculation of the crossing rate of the likelihood that the performance falls into the failure domain. The most fundamental equation of solving the out-crossing problems is the Rice formula. Kuschel and Rackwitz [4, 5] proposed a method based on the out-crossing approach to evaluate the time-dependent reliability in the context of first-order reliability methods (FORM) and asymptotic second-order reliability methods (SORM). The most probable point (MPP) in this method is defined as “point of maximum local crossing rate.” Rectangular wave renewal processes and Gaussian processes are derived for load models, and the optimization goal is to minimize the total cost which contains initial cost and failure cost. Streicher and Rackwitz [6] improved this method by considering the dependencies among different failure modes, and the numerical Laplace transforms are used for the treatment of aging components. Andrieu-Renaud et al. [7] presented an out-crossing-based method which is called PHI2. The limit state function is considered as a random process whose out-crossing of the zero level is to characterize.
The extreme value methods consider the failure event to be equivalent to the event that the extreme value is greater than or less than the threshold in a time interval, and time-dependent reliability can be translated to a time-independent one if the distribution of the extreme value is identified. Li et al. [8] discovered that correlative information among the component random events is inherent in the equivalent extreme-value event. Thus an equivalent extreme value approach is presented to evaluate the structural reliability. In the approach proposed by Chen and Li [9], a virtual stochastic process associated to the extreme value of the studied stochastic process is constructed. The probability density evolution method is used to evaluate the instantaneous probability density function (PDF) of the virtual stochastic process, which would generate the PDF of the extreme value simultaneously.
According to Bhatti [10], kinematic reliability is defined as the probability of output member’s position and orientation falling into a specified range from the desired position and orientation. Fewer researches focus on time-dependent kinematic reliability analysis. Zhang et al. [11, 12] proposed a mean value first-passage method based on the out-crossing methods in structural reliability to evaluate the time-dependent reliability of the function generator mechanisms. This method is under the assumption of normality for random dimension variables with small variances; thus the motion error is a nonstationary Gaussian process, but their work only contains the randomness of parameters. The degradation of mechanisms which is a significant factor to the time-dependent kinematic reliability was not taken into account.
Wear is one of the most critical degradation failures for mechanisms. Worn joints would lead to motion errors as well as raise the stress. Thus wear would substantially deteriorate the kinematic reliability and structural reliability through the changing kinematics. Meanwhile, loads dominate the wear of joints, and worn joints would result in fluctuation of the motion of mechanisms and thus change the loads on joints conversely. The correlationship between the wear process and loads is required to be considered in the analysis of wear-related time-dependent reliability. Furthermore, each type of mechanisms has its particular wear characteristic which is determined by its function and operation condition. Because of the scarcity of the full-scale wear tests, it is hardly to obtain the accurate time-varying wear data in design phase especially for those newly designed mechanisms. Therefore, stochastic degradation process of system responses is difficult to obtain. All of these factors make the conventional out-crossing methods and extreme value methods inapplicable to the wear-related time-dependent RBDO problem.
In this paper, a new time-dependent RBDO strategy is proposed to account for both of the time-dependent kinematic reliability and the time-dependent structural reliability as constrains. In order to perform the uncertainty quantification, a time-dependent surrogate model, which is called polynomial chaos combined with the moving least squares (PCMLS), is presented to approximate the stochastic process. Nonintrusive polynomial chaos (NIPC) is used to describe the stochastic nature of system responses at selected time points. Then moving least squares (MLS) method is employed to approximate the time variant functions of PCE coefficients. Because of the explicit polynomial formula and simple structure, Monte Carlo simulation (MCS) is able to be conducted on the surrogate model to evaluate the time-dependent kinematic reliability and structure reliability.
To tackle with the scarcity of wear data, a multidiscipline reliability model is constructed according to Archard’s wear law. Disciplines in the model are closely coupled and uncertainty impacts are cross-propagated to simulate the wear process. The model takes an iterative simulation to generate the stochastic processes of system responses. The correlationship between the wear process and loads is considered in the model, and the uncertain inputs include random variables and stochastic loads. Thus the time-dependent degradation tests and data are not necessary.
The proposed time-dependent RBDO method includes three stages: (1) multidiscipline reliability model and simulation for generation of degradation process; (2) PCMLS for time-dependent uncertainty quantification; (3) genetic algorithm (GA) for the global optimum.
The whole approach is demonstrated at an airborne retractable mechanical system under the stochastic wind load. Wear of the hinge is considered to be the most critical failure. The multidiscipline reliability model, which involves kinematics model and structural FE model, is constructed. The optimization goal is to minimize the mean and variance of the total weight under the time-dependent probabilistic constraints related to the kinematic reliability and the structure reliability.
The paper is organized as follows. In Section 2, the theories of NIPC and MLS are presented, respectively, and the PCMLS model is derived. In Section 3, the theoretical basis and the numerical procedure of the multidiscipline reliability model are presented. In Section 4, the proposed time-dependent RBDO is formulated. The case of the airborne retractable mechanical system is studied in Section 5. Conclusions are drawn in Section 6.
2. Polynomial Chaos Combined with the Moving Least Squares
The polynomial chaos expansion is a promising surrogate model that uses a set of orthogonal polynomial bases to approximate the random space of the system response [13]. According to whether it requires the modification of the deterministic code, the polynomial chaos approaches can be divided into two groups: intrusive approach and nonintrusive approach. Intrusive approach calculates the unknown polynomial chaos coefficients by projecting resulting equations onto basis functions for different modes. It requires the modification of the deterministic code. Thus it is difficult, expensive, and time consuming for many complex computational problems [14]. On the contrary, in the nonintrusive PC (NIPC), simulations are used as black boxes and the calculation of chaos expansion coefficients is based on a set of simulation response evaluations. Most nonintrusive approaches are based on sampling or quadrature methods. Hosder et al. [14] applied the point-collocation NIPC to an aerospace problem with multiple uncertain variables. Sudret [15] proposed a nonintrusive regression-based PCE to conduct the global sensitivity analysis. Cheng and Sandu [16] proposed a least squares NIPC approach based on collocation at a low-discrepancy set of points which is demonstrated to have similar accuracy with the Galerkin approach by numerical experiments. 
Most NIPC methods are used to approximate the time-independent responses. However, a few literatures concentrate on the improvement of NIPC methods to propagate the time-dependent uncertainty. Witteveen et al. [17] proposed the probabilistic collocation for limit cycle oscillation (PCLCO) to modeling the long-term stochastic behavior of dynamical systems. PCLCO transforms the time-dependent issue into a time-independent one through the time-independent parametrization of the periodic response. Then the NIPC can be performed due to the independence of time, but PCLCO is only applicable to approximate the periodically time-dependent response. This paper proposes a surrogate model method which involves polynomial chaos combined with the moving least squares (PCMLS) to quantify more general time-dependent uncertainty. The surrogate model is essentially a time-dependent polynomial chaos expansion, and the coefficients of which are approximation functions achieved by the MLS method. The polynomial chaos expansion with time-dependent coefficients is used to approximate the stochastic process.
2.1. Polynomial Chaos Expansion
The polynomial chaos of a system response can be described as follows [18–20]:
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. In practical engineering, PCE contains limited input uncertainties. Thus (1) can be simplified as follows:
								
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑟
				(
				𝝃
				)
				=
			

			

				𝑁
			

			

				𝑐
			

			
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝑎
			

			

				𝑗
			

			

				Ψ
			

			

				𝑗
			

			
				(
				𝝃
				)
				,
			

		
	

							where  
	
		
			

				Ψ
			

			

				𝑗
			

			
				∏
				(
				𝝃
				)
				=
			

			
				𝑝
				𝑖
				=
				1
			

			

				𝜓
			

			
				𝑗
				𝑚
			

			

				𝑖
			

			
				(
				𝜉
			

			

				𝑖
			

			
				)
				=
				Γ
			

			

				𝑝
			

			
				(
				𝜉
			

			

				𝑖
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑖
			

			

				𝑝
			

			

				)
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑐
			

		
	
 is the total number of PCE coefficients, which can be calculated as
								
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑐
			

			
				=
				1
				+
				𝑛
				!
			

			
				
			
			
				+
				(
				𝑛
				−
				1
				)
				!
				(
				𝑛
				+
				1
				)
				!
			

			
				
			
			
				(
				𝑛
				−
				1
				)
				!
				2
				!
				+
				⋯
				+
				(
				𝑛
				−
				1
				+
				𝑝
				)
				!
			

			
				
			
			
				=
				(
				𝑛
				−
				1
				)
				!
				𝑝
				!
				(
				𝑛
				+
				𝑝
				)
				!
			

			
				
			
			
				,
				𝑛
				!
				𝑝
				!
			

		
	

							where 
	
		
			

				𝑛
			

		
	
 is the number of random variables in the system.
The multidimensional Hermite polynomials form an orthogonal basis for the space of square-integrable PDFs, and the PCE is convergent in the mean-square sense [21]. In general, the approximation accuracy rises with the order of the PCE.
Probabilistic collocation method is one of the most efficient NIPC methods. The coefficients of the PCE are obtained according to evaluations of the system response at selected collocation points, and these collocation points correspond to the roots of the polynomial of one degree higher than the order of the PCE [14]. Furthermore, the probabilistic collocation method just requires calls of the simulation the same as the number of PCE coefficients thus it is very efficient. The matrix form of probabilistic collocation method is describe as follows:
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2.2. Moving Least Squares
In order to reduce the cost of constructing numeral PCEs along the time period of degradation, the PCE is only built at some selected time points, and the moving least squares (MLS) method is employed to approximate the time-dependent functions of PCE coefficients. MLS is a generalization of the least squares technique, and it has become a widespread and powerful tool in interpolating and approximating implicit surfaces [22–25]. MLS starts with a weighted least squares formulation for an arbitrary fixed point in 
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(3)The weighting function should be normalized,
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(4)The weighting function should be monotone decreasing,   and the weight values should decrease with the increase of the distance from 
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.The most common weighting functions are spline function, compactly supported radial basis function (CSRBF), Gaussian function, and so forth. Among these weighting functions, the spline functions are used widely because its order can be chosen to obtain high approximation accuracy. Note that the higher the order of the spline functions would not necessarily perform a better approximation, and the order of the spline function is decided by the highest order of the approximated function derivative.
The approximation function can be written as
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2.3. The Proposed PCMLS Method
The multidiscipline reliability model is simulated step by step, and one step is defined as a task execution in which the mechanism would perform a required function. The PCE is constructed on system responses at some selected steps along the service life. After this, MLS method is employed to approximate the time-dependent functions of PCE coefficients. Total 
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 is the total number of selected steps that PCEs are required to be built on. According to (7), the coefficients for all of the PCEs are solved by the following equation:
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. Equation (20) can be simplified as
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After the calculation of 
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, a new matrix 
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 of PCEs coefficients is created. Each row represents coefficients of the PCE at a selected step, and each column represents a specific coefficient varying with steps. 
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 can be then expressed in a column form
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 is the vector of selected steps. Then the conventional PCE can be translated into a time-dependent PCE, which is written as follows
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							The proposed PCMLS method is able to consider the statistical correlation between a pair of responses at two different time points. The multidiscipline reliability model is simulated step by step to describe the degradation behavior of the mechanical system. Uncertainties of the parameters and design variables are brought into the model at the beginning of the simulation. The system degradation at the current step is computed according to the system degradation at the step before. Thus these uncertainties would propagate through different disciplines as well as evolve over time, and the system responses at different time points have statistical correlationship. The statistical correlation information is contained in the samples of system responses at different time points.
The proposed PCMLS method is a nonintrusive method to construct the time-dependent PCE. The PCMLS model uses samples of system responses to perform the NIPC at different time steps. Then the MLS is conducted to approximate the time-dependent PCE coefficients. In this manner, the statistical correlation information is extracted into the time-dependent coefficients of the PCE, which are actually functions of time, and these time-dependent PCE coefficients would make the polynomials of PCE vary with time and thus would make the statistical properties of the approximated responses vary with time as well. Therefore, the statistical correlation is considered in the PCMLS model.
3. Multidiscipline Reliability Model Considering Wear
Wear is one of the most critical failures that substantially deteriorate the kinematic reliability and structural reliability of mechanisms in their service life. For a linkage mechanism, wear of the hinges would affect the sport stability, raise the stress in hinges, and lead to motion errors. 
Numerical wear prediction develops fast recently. It helps to study the effect of the wear evolution on the stress distribution and deformation of the motion pairs, which can hardly be measured with the experimental techniques. Söderberg and Andersson [27] presented a wear simulation method based on Archard’s wear law and adaptive FE method to simulate the wear of the brake pad under steady-state drag conditions. Rezaei et al. [3] proposed an adaptive wear modeling method to study the wear progress in radial sliding bearings. In this method, remeshing is performed both on the contact elements and their proximity elements. All of these proposed methods are demonstrated by experiments.
However, these methods are based on the assumption that the sliding velocity and loads on the motion pairs hardly vary during the wear process. These two parameters are then considered to be boundary conditions, which are regarded as constants. In practice, the wear process would modify the kinematics continuously and lead to variation of the loads and the sliding velocity of motion pairs all the time. Traditional methods that neglect the variation of loads and the sliding velocity will cause inaccuracy at the wear simulating results. Meanwhile, in the above-mentioned methods, wear process is simulated at nominal state. Uncertainties of geometry and material are not taken into account.
In this section, a multidiscipline reliability model that includes kinematics model, structural FE model, and wear model is constructed to simulate the wear process of the hinges in the linkage mechanism.
3.1. Wear Mechanism
To the plastically dominated wear, Archard’s law would serve as the appropriate model as discussed by Lim and Ashby [28]. In this model, the worn out volume is considered to be proportional to the normal load. The model is expressed mathematically as follows:
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 denotes the relative sliding velocity. Since the wear depth is of interest, (25) is often written in the following form
								
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑑
				ℎ
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑘
			

			

				𝐻
			

			
				𝑃
				𝑣
				,
			

		
	

							where 
	
		
			

				ℎ
			

		
	
 is the wear depth, 
	
		
			
				𝑑
				ℎ
				/
				𝑑
				𝑡
			

		
	
  is the wear depth rate, and 
	
		
			

				𝑃
			

		
	
 is the contact pressure. We have 
	
		
			

				𝑘
			

			

				𝐻
			

			
				=
				𝐾
				/
				𝐻
			

		
	
,  and it is defined as the wear coefficient with the dimension of (Pa−1). The wear process is considered to be a time-dependent process.
In practical engineering, the contact pressure varies with time because the real contact area changes during the wear process. Meanwhile, the contact pressure and relative sliding velocity vary with stochastic loadings. Thus both of these two parameters are time dependent. The numerical solution for the wear depth is obtained by estimating the differential form in (26) with a finite difference to yield the following updated formula:
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3.2. Multidiscipline Reliability Model
In Archard’s wear law, the wear rate is a function of both the pressure and the relative sliding velocity of two contact surfaces, and the pressure is obtained through nonlinear FEA, while the relative sliding velocity requires kinematics analysis. Meanwhile, the pressure and relative sliding velocity are varying with the wear process due to the fact that worn joints would change the kinematics. Therefore, the calculation of wear depth needs an iterative process.
For a linkage mechanism, the multidiscipline reliability model includes kinematics model and structural FE model. The kinematics model is constructed on the entire mechanism to obtain the relative sliding velocity of hinges, and loads on hinges can also be given by the kinematics model. Then these loads are transmitted into the structural FE model, which is built with commercial finite element software ANSYS. FE model of hinges is solved by the nonlinear contact analysis to compute the stress distribution and contact pressure. After that, the conduct pressure and sliding velocity are delivered to the wear model to calculate the wear depth, according to which, the kinematics model and structural FE model would be updated in the next step, and the schematic of the multidiscipline reliability model is shown in Figure 1.


	
		
			
				
			
			
			
			
			
				
			
				
		
		
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
		
		
			
			
			
				
					
						
					
						
					
				
			
		
		
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
		
		
			
				
			
				
			
				
			
				
		
	


	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
		
			
				
			
			
				
			
		
		
			
				
			
			
				
			
		
		
			
				
			
			
				
			
			
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
			
		
		
			
				
			
			
				
			
			
				
			
		
		
			
				
			
			
				
			
			
				
			
		
		
			
				
			
			
				
			
		
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	


	
	

Figure 1: Schematic of the multidiscipline reliability model considering wear.


In Figure 1, 
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, and 
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 are the variation ranges of the wear depth, loads on hinges, relative sliding velocity, and contact pressure, respectively. Variation ranges of these parameters come from the dimension tolerances, parameter distributions, and stochastic environmental disturbance. Therefore, uncertainties exist in every discipline. As these disciplines are naturally closely coupled and uncertainty impacts are cross-propagated, the correlationship between the wear process and loads is considered in the multidiscipline reliability model. 
The simulation would generate the stochastic processes of stress and wear depths in hinges. The increase of wear depth would deteriorate the kinematic reliability, and the raise of stress in hinges would decrease the structural reliability. Thus the multidiscipline reliability model can be used to evaluate wear-related time-dependent kinematic reliability and structure reliability. The effect of wear process on the whole mechanism is taken into account by the coupling among wear model and other disciplines. The proposed method permits that values of parameters in wear model are obtained from relevant disciplines instead of determined by empirical assumptions; hence the multidiscipline reliability model is of higher accuracy. The simulation routine is described in Figure 2.


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
		
			
			
			
			
		
		
			
			
			
			
			
				
					
						
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
					
						
					
				
			
			
			
			
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
		
		
	
	
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
			
			
				
			
		
		
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	
	
	

Figure 2: Simulation routine of the multidiscipline reliability model considering wear.


In this procedure, there are two different types of discretizations which include (1) the continuous geometry discretized by finite elements; (2) the continuous material removal is approximated at a discrete set of steps. These discretizations are important factors to the accuracy of the simulation results. Thus the size of the discretizations is required to be determined carefully.
Since the multidiscipline reliability model is built, wear process can be simulated and studied. Uncertainties exist in the model and propagate through different disciplines. MCS should be employed to quantify the time-dependent uncertainty. However, the non-linear contact FEA and kinematics analysis, which contain numerous nonlinear algebraic equations and differential equations required to solve numerically, are very computationally expensive. Furthermore, the iterative process in a single simulation leads to repeated calls of these expensive models. Therefore, traditional MCS are computational infeasible. The PCMLS model proposed in this paper can be employed to approximate the stochastic processes generated by the multidiscipline reliability model. Then the computational expensive implicit model is replaced by an explicit surrogate model with simple structure, and MCS is able to be conducted on the surrogate model which would substantially reduce the computational cost.
4. Time-Dependent RBDO Procedure
Time-dependent RBDO procedure is the organization of all the elements such as system optimization, system analysis, discipline analysis, and time-dependent uncertainty analysis. How to efficiently arrange these elements into an execution sequence is the key to realize time-dependent RBDO. This paper proposes a three-stage strategy, and the procedure is shown in Figure 3.


	
		
			
			
				
			
			
				
			
			
				
			
			
				
			
				
			
			
				
			
			
				
			
			
				
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
			
				
					
						
					
						
					
				
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	

Figure 3: Procedure of time-dependent RBDO considering wear.


In the first stage, multidiscipline reliability model considering wear is constructed. In the second stage, the PCMLS model is applied to approximate the stochastic processes. In the third stage, a double-loop optimization is employed. In the outer loop, optimization algorithm executes optimum search. At each iteration, the inter loop calls uncertainty analysis, which applies MCS to PCMLS model, to evaluate the design and its time-dependent uncertainty characteristics. Because the PCMLS model is an explicit formula both with high accuracy and simple structure, it would significantly improve the computational efficiency of the whole time-dependent RBDO procedure. The general time-dependent RBDO based on the PCMLS model is reformulated as follows:
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5. Case Study
The engineering case is an airborne retractable mechanical system. It is a four-link mechanism which consists of the hydraulic actuator, rods, and pin-and-lug hinges. It is designed to carry the functional device to move in accordance with the predetermined trajectory for switching between working and stopping positions.
The system performs a retractable action when a task arrives, and it is required to work reliably during the service life. When the retractable system is performing, it is under the loads of wind and the weight of the functional device. The hinges are working in a nonlubricated environment. Therefore, wear of the hinges is considered to be a critical failure. Worn hinges give rise to fluctuation of the rod loads, decrease the kinematic accuracy, and lead to the mechanism lock during the movement. Furthermore, worn hinges would increase the stress in hinges which may cause them to fracture during the operation. The top hinge in Figure 4 is the most dangerous one for it bears the largest load. Thus wear in this hinge is considered in the multidiscipline reliability model.


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	


	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
			
			
				
			
		
	
	
		
	
		
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
			
			
				
			
		
	
	
		
	
		
	
		
			
			
				
			
		
	
	
	
		
	
	
	
		
			
				
			
				
			
		