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Abstract. 
This paper proposes some diagonal matrices that approximate the (inverse)
Hessian by parts using the variational principle that is analogous to the one
employed in constructing quasi-Newton updates. The way we derive our
approximations is inspired by the least change secant updating approach, in
which we let the diagonal approximation be the sum of two diagonal matrices
where the first diagonal matrix carries information of the local Hessian, while
the second diagonal matrix is chosen so as to induce positive definiteness
of the diagonal approximation at a whole. Some numerical results are also
presented to illustrate the effectiveness of our approximating matrices when
incorporated within the L-BFGS algorithm.


1. Introduction
Our investigation begins by seeking effective ways to diagonally scale an identity matrix, which is often used to initialize the L-BFGS method. For this purpose, it is useful to state the weak quasi-Newton equation:
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The first example of diagonal updating that satisfies the quasi-Cauchy relation is the well-known Oren-Luenberger OREN1974 scaling matrix, given by
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					where 
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 is the identity matrix. Expression (3) would be obtained from the quasi-Cauchy relation with the further restriction where the diagonal matrix is a scalar multiple of the identity matrix. Therefore, scaling matrices that are derived from the quasi-Cauchy relation are a natural generalization of Oren-Luenberger scaling.
In general, a procedure to obtain diagonal updating formulae via quasi-Cauchy relation can be summarized as follow. Suppose that 
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 being minimized under some variational principle, which in return will encourage numerical stability. Very often the Frobenius matrix norm is used to measure this deviation. As noted earlier, a diagonal matrix uses the same computer storage as a vector, resulting in potential use in limited memory algorithms.
This paper is structured as follows. In Section 2, we consider a briefly review on the diagonal updating via quasi-Cauchy relation and the preconditioning strategy. New diagonal initial approximation for L-BFGS method is introduced in this section as well. It follows that in Section 3, the convergence properties of the proposed L-BFGS methods are investigated. Numerical results are presented in Section 4, on a large set of unconstrained minimization problems, mainly from the collections of Moré et al. [2], CUTE [3], and Toint [4]. In Section 5, through the numerical results, we do the discussion regarding the new diagonal initial approximating which matrix is more effective at improving the performance of the L-BFGS update compared to the standard preconditioner in the literature. Finally, Section 6 ends the paper by presenting a summary and conclusion.
2. Diagonal Updating via Quasi-Cauchy Relation
The performance of the L-BFGS method is depending on a good approximations of the actual Hessian. In the basic implementation of the L-BFGS method, the correction pairs are as follows:
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.
Throughout this section, when we mention a direct initial matrix, we mean a matrix that is a rough approximation to the Hessian; otherwise an initial matrix is an approximation to the inverse of Hessian.
Our approach is inspired by [5, 6] which employed a variational technique that is analogue to the one used to derive the Powell Symmetric Broyden (PSB) quasi-Newton update (see, e.g, Dennis and Schnabel [7]). The resulting update for approximating the Hessian matrix diagonally is derived as follows:
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 is not necessarily positive definite. Thus, like their counterpart of PSB update in the quasi-Newton setting, the foregoing update may suffer from the loss of positive definiteness and it is not appropriate for use within a quasi-Newton-based algorithm.
In this study, our approach in finding an efficient diagonal Hessian approximation is done through letting the diagonal approximating matrix be a combination of two diagonal matrices. This gives us a freedom to incorporate curvature information into one of these diagonal matrices, while the property of hereditary positive definiteness is carried over to the second matrix.
To begin, suppose that the Hessian matrix of an objective function has positive diagonal elements. Let us divide the Hessian matrix into two parts:
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Proof. Since the objective function in (8) is convex and the feasible set is also convex, then (8) has a unique solution. Its Lagrangian function is given by
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A direct result of Theorem 1 leads to the following diagonal preconditioning formulation:
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 at step 
	
		
			

				𝑘
			

		
	
 as follows:
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				Δ
			

			

				1
			

			
				+
				
				𝑦
				𝜃
				𝐼
				+
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				−
				𝜃
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑌
				t
				r
			

			
				2
				𝑘
				−
				1
			

			
				
				𝑌
			

			
				𝑘
				−
				1
			

			
				
				,
			

		
	

					where 
	
		
			

				Δ
			

			

				1
			

		
	
 is given by (18) and 
	
		
			

				𝑌
			

			
				𝑘
				−
				1
			

			
				=
				d
				i
				a
				g
				(
				𝑦
			

			
				2
				𝑘
				−
				1
				,
				1
			

			
				,
				…
				,
				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑛
			

			

				)
			

		
	
 with 
	
		
			

				𝑦
			

			
				𝑘
				−
				1
				,
				𝑖
			

		
	
 is the 
	
		
			

				𝑖
			

		
	
th component of the vector 
	
		
			

				𝑦
			

			
				𝑘
				−
				1
			

		
	
.
For purposes of numerical illustrations, the latter diagonal formula (19) is used to initialize the L-BFGS method, although the potential use of (15) should not be neglected. Furthermore, one can observe that 
	
		
			

				Δ
			

			

				3
			

		
	
 involved in the solution of the variational problem is isolated from the solution and its value does not affect the quality of the solution. This allows us to choose the value of 
	
		
			

				𝜃
			

		
	
 freely to ensure that 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 are positive definite while satisfying the weak-secant equation.
Note that maintaining positive definiteness for 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is crucial for L-BFGS method to generate descent direction. For this purpose, the following lemma suggests a possible choice on 
	
		
			

				𝜃
			

		
	
.
Lemma 2.  Assume that 
	
		
			

				𝑦
			

			

				𝑘
			

			
				≠
				0
			

		
	
 for all 
	
		
			

				𝑘
			

		
	
. Then 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is a positive definite, if
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝑦
				𝜃
				=
				m
				i
				n
				1
				,
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
				.
			

		
	

Proof. Note that to keep positive definiteness of 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
, we should choose 
	
		
			

				𝜃
			

		
	
 such that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				−
				𝜃
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≥
				0
				,
			

		
	

						which also implies
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑦
				𝜃
				≤
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			

				.
			

		
	
Therefore by our choice on 
	
		
			

				𝜃
			

		
	
 as (20), we have the following.Case 1.  If 
	
		
			
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				)
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≥
				1
			

		
	
, we will let 
	
		
			
				𝜃
				=
				1
			

		
	
, and thus,
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				Δ
			

			

				1
			

			
				𝑦
				+
				𝐼
				+
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑌
				𝑡
				𝑟
			

			
				2
				𝑘
				−
				1
			

			
				
				𝑌
			

			
				𝑘
				−
				1
			

			

				.
			

		
	
Since 
	
		
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≥
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

		
	
, then 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 would be positive definite.Case 2. If 
	
		
			
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				)
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				<
				1
			

		
	
, 
	
		
			

				𝜃
			

			

				1
			

			
				=
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				)
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

		
	
 is set, which leads to
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				Δ
			

			

				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				𝐼
				.
			

		
	

						It is clear that for both cases, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 would maintain positive definiteness.
Hence, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 can be expressed in the following form:
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				Δ
			

			

				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				𝑦
				𝐼
				,
				i
				f
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				Δ
				<
				1
				,
			

			

				1
			

			
				𝑦
				+
				𝐼
				+
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑌
				t
				r
			

			
				2
				𝑘
				−
				1
			

			
				
				𝑌
			

			
				𝑘
				−
				1
			

			
				,
				𝑦
				i
				f
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≥
				1
				.
			

		
	

					Now, we can set up the basic algorithm of our L-BFGS methods using 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 as (25).
2.1. LBFGS-USD Algorithm
Step 1. Choose an initial point 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 and a positive definite matrix 
	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				𝐼
			

		
	
. Let 
	
		
			
				𝑘
				=
				0
			

		
	
.
Step 2. Compute 
	
		
			

				𝑑
			

			

				𝑘
			

			
				=
				−
				𝐻
			

			

				𝑘
			

			

				𝑔
			

			

				𝑘
			

		
	
; then 
	
		
			

				𝑥
			

			
				𝑘
				+
				1
			

			
				=
				𝑥
			

			

				𝑘
			

			
				+
				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

		
	
 where 
	
		
			

				𝛼
			

			

				𝑘
			

		
	
 satisfies the Wolfe conditions given by
									
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				+
				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				
				
				𝑥
				≤
				𝑓
			

			

				𝑘
			

			
				
				+
				𝛿
			

			

				1
			

			

				𝛼
			

			

				𝑘
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				,
				𝑔
				
				𝑥
			

			

				𝑘
			

			
				+
				𝛼
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			

				
			

			

				𝑇
			

			

				𝑑
			

			

				𝑘
			

			
				≥
				𝛿
			

			

				2
			

			

				𝑔
			

			
				𝑇
				𝑘
			

			

				𝑑
			

			

				𝑘
			

		
	

								(we always try the step length 
	
		
			

				𝛼
			

			

				𝑘
			

			
				=
				1
			

		
	
).
Step 3. Let 
	
		
			
				
				𝑚
				=
				m
				i
				n
				{
				𝑘
				,
				𝑚
				−
				1
				}
			

		
	
. Update 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 
	
		
			
				
				𝑚
				+
				1
			

		
	
 times using the pairs 
	
		
			
				{
				𝑦
			

			

				𝑗
			

			
				,
				𝑠
			

			

				𝑗
			

			

				}
			

			
				𝑘
				𝑗
				=
				𝑘
				−
			

			
				
				𝑚
			

		
	
; that is, let
									
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝐻
			

			
				𝑘
				+
				1
			

			
				=
				
				𝑉
			

			
				𝑇
				𝑘
			

			
				⋯
				𝑉
			

			
				𝑇
				𝑘
				−
			

			
				
				𝐻
				
				𝑚
			

			
				0
				𝑘
			

			
				
				𝑉
			

			
				𝑘
				−
			

			
				
				𝑚
				⋯
				𝑉
			

			

				𝑘
			

			
				
				+
				𝜌
			

			
				𝑘
				−
			

			
				
				𝑉
				
				𝑚
			

			
				𝑇
				𝑘
			

			
				⋯
				𝑉
			

			
				𝑇
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				1
			

			
				
				𝑠
			

			
				𝑘
				−
			

			
				𝑠
				
				𝑚
			

			
				𝑇
				𝑘
				−
			

			
				
				𝑉
				
				𝑚
			

			
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				1
			

			
				⋯
				𝑉
			

			

				𝑘
			

			
				
				+
				𝜌
			

			
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				1
			

			
				
				𝑉
			

			
				𝑇
				𝑘
			

			
				⋯
				𝑉
			

			
				𝑇
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				2
			

			
				
				×
				𝑠
			

			
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				1
			

			

				𝑠
			

			
				𝑇
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				1
			

			
				
				𝑉
			

			
				𝑘
				−
			

			
				
				𝑚
			

			
				+
				2
			

			
				⋯
				𝑉
			

			

				𝑘
			

			
				
				⋮
				+
				𝜌
			

			

				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				𝑠
			

			
				𝑇
				𝑘
			

			

				.
			

		
	

Step 4. Set 
	
		
			
				𝑘
				∶
				=
				𝑘
				+
				1
			

		
	
 and return to Step 2.
Remark 3. The LBFGS-USD algorithm is exactly the L-BFGS algorithm of Liu and Nocedal [9], except that 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is computed by (25).




3. Convergence Analysis
We shall also establish the convergence of the LBFGS-USD algorithm. The following standard assumptions are made on the objective function.(a) The objective function 
	
		
			

				𝑓
			

		
	
 is twice continuously differentiable.(b) The level set 
	
		
			
				£
				=
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∣
				𝑓
				(
				𝑥
				)
				<
				𝑓
				(
				𝑥
			

			

				0
			

			

				)
			

		
	
 is convex, and there exist positive constants 
	
		
			

				𝑚
			

			

				1
			

		
	
 and 
	
		
			

				𝑚
			

			

				2
			

		
	
 such that,
									
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑚
			

			

				1
			

			
				‖
				𝑧
				‖
			

			

				2
			

			
				≤
				𝑧
			

			

				𝑇
			

			
				𝐺
				(
				𝑥
				)
				𝑧
				≤
				𝑚
			

			

				2
			

			
				‖
				𝑧
				‖
			

			

				2
			

			

				,
			

		
	
 for all 
	
		
			
				𝑧
				∈
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝑥
				∈
				£
			

		
	
.
Theorem 4.  Let 
	
		
			

				𝑥
			

			

				0
			

		
	
 be a starting point for which 
	
		
			

				𝑓
			

		
	
 satisfies assumptions above, and assume that the matrices 
	
		
			

				𝐵
			

			
				0
				𝑘
			

		
	
 are chosen so that 
	
		
			
				{
				‖
				𝐵
			

			
				0
				𝑘
			

			
				‖
				}
			

		
	
 
	
		
			
				(
				{
				‖
				(
				𝐻
			

			
				0
				𝑘
			

			

				)
			

			
				−
				1
			

			
				‖
				}
				)
			

		
	
 are bounded. Subsequently, for any positive definite 
	
		
			

				𝐵
			

			

				0
			

		
	
 (most often, 
	
		
			

				𝐵
			

			

				0
			

			
				=
				𝐼
			

		
	
 is chosen), LBFGS-USD algorithm generates a sequence 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 which converges to 
	
		
			

				𝑥
			

			

				∗
			

		
	
. Moreover, there is a constant 
	
		
			
				0
				≤
				𝑟
				≤
				1
			

		
	
 such that
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				
				
				𝑥
				−
				𝑓
			

			

				∗
			

			
				
				≤
				𝑟
			

			

				𝑘
			

			
				
				𝑓
				
				𝑥
			

			

				0
			

			
				
				
				𝑥
				−
				𝑓
			

			

				∗
			

			
				,
				
				
			

		
	

						which implies that 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 converges 
	
		
			

				ℝ
			

		
	
-linearly.
Proof. See [9].
Theorem 4 suggests that as long as 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is chosen such that 
	
		
			
				‖
				𝐻
			

			
				0
				𝑘
			

			

				‖
			

		
	
 is bounded for all 
	
		
			

				𝑘
			

		
	
, then the corresponding L-BFGS algorithm restarts by 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 would generate 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 that converges globally and 
	
		
			

				ℝ
			

		
	
-linearly. For this purpose, we give the following result which ensures that 
	
		
			
				‖
				𝐻
			

			
				0
				𝑘
			

			

				‖
			

		
	
 where 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is given by (25) is upper and lower bounded by some constants.
Lemma 5.  Let 
	
		
			

				𝑥
			

			

				0
			

		
	
 be a starting point for which 
	
		
			

				𝑓
			

		
	
 satisfies assumptions (a)-(b). Consider the sequence 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

		
	
 generated by L-BFGS algorithms subject to the diagonal initial approximation, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 given by (25). If 
	
		
			

				𝑦
			

			

				𝑘
			

			
				≠
				0
			

		
	
 for all 
	
		
			

				𝑘
			

		
	
, then 
	
		
			
				‖
				𝐻
			

			
				0
				𝑘
			

			

				‖
			

		
	
 is upper and lower bounded for all 
	
		
			

				𝑘
			

		
	
.
Proof. Let 
	
		
			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			
				=
				∫
			

			
				1
				0
			

			
				𝐺
				(
				𝑥
			

			
				𝑘
				−
				1
			

			
				+
				𝑡
				𝑠
			

			
				𝑘
				−
				1
			

			
				)
				𝑑
				𝑡
			

		
	
, then 
	
		
			

				𝑦
			

			
				𝑘
				−
				1
			

			

				=
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

		
	
, and assumption (a) implies that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑚
			

			

				1
			

			
				≤
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				
			
			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				𝑚
			

			

				2
			

			

				.
			

		
	

						Subsequently, (28) also gives
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				=
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			
				
			
			

				𝐺
			

			
				2
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				≤
				𝑚
			

			

				2
			

			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						and therefore,
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≤
				𝑚
			

			

				2
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	
First, we begin by showing that every component of 
	
		
			

				Δ
			

			

				1
			

		
	
 in (18) is bounded, so that 
	
		
			
				‖
				Δ
			

			

				1
			

			

				‖
			

		
	
 is bounded. It is more convenient to show that each part of 
	
		
			

				Δ
			

			

				1
			

		
	
, namely,  (i)
	
		
			

				𝜎
			

			
				𝑘
				−
				1
			

			
				=
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

		
	
,(ii)
	
		
			
				(
				1
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				/
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			

				)
			

			

				2
			

			
				)
				(
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				)
			

			

				2
			

		
	
, and(iii)
	
		
			
				−
				(
				2
				𝜎
			

			
				𝑘
				−
				1
			

			
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				)
				(
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				)
				)
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

		
	
, is bounded, such that 
	
		
			

				Δ
			

			

				1
			

		
	
 is bounded at whole. (i)Since
										
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			
				≤
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				
			

			
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			

				,
			

		
	

									then, we obtain
										
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			
				≤
				𝜎
			

			
				𝑘
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			

				.
			

		
	
 (ii)Note that
										
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				=
				𝑠
			

			
				2
				𝑘
				−
				1
				,
				𝑖
			

			

				,
			

		
	

									where 
	
		
			
				𝑠
				𝑘
			

			
				𝑘
				,
				𝑖
			

		
	
 is the 
	
		
			

				𝑖
			

		
	
th component of 
	
		
			

				𝑠
			

			
				𝑘
				−
				1
			

		
	
. Then,
										
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			

				
			

			

				2
			

			
				
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≥
				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			

				
			

			

				2
			

			
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≥
				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≥
				𝜎
			

			
				𝑘
				−
				1
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				≥
				𝜎
			

			
				𝑘
				−
				1
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			
				≥
				1
			

			
				
			
			

				𝑚
			

			

				2
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			

				.
			

		
	

									On the other hand,
										
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			

				
			

			

				2
			

			
				
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≤
				∑
			

			
				𝑛
				𝑖
				=
				1
			

			
				
				𝑠
			

			
				𝑘
				−
				1
				,
				𝑖
			

			

				
			

			

				2
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			

				𝑚
			

			

				1
			

			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				
			

			
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			

				
			

			

				2
			

			
				≤
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			

				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			
				
			
			

				𝐺
			

			
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			

				𝑚
			

			
				2
				2
			

			
				‖
				‖
				𝑠
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			
				
			
			

				𝐺
			

			
				−
				2
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			

				1
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			
				=
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			

				.
			

		
	

									Therefore, it gives, in overall,
										
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			
				≤
				
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝜎
			

			
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			

				
			

			

				2
			

			
				
				
				𝑠
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≤
				1
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			

				.
			

		
	
 (iii)In a similar way, we can establish
										
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				−
				2
				𝜎
			

			
				𝑘
				−
				1
			

			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				𝑠
				
				
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				2
				≥
				−
			

			
				
			
			

				𝑚
			

			

				1
			

			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				2
				≥
				−
			

			
				
			
			

				𝑚
			

			

				1
			

			

				.
			

		
	

									and subsequently,
										
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				−
				2
				𝜎
			

			
				𝑘
				−
				1
			

			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				𝑠
				
				
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				≤
				2
				𝜎
			

			
				𝑘
				−
				1
			

			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				𝑠
				
				
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				≤
				2
				
				1
				/
				𝑚
			

			

				1
			

			
				
				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
				,
				𝑖
			

			

				𝑠
			

			
				𝑘
				−
				1
				,
				𝑖
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				=
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			

				.
			

		
	

									Then, we have
										
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				−
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			
				≤
				−
				2
				𝜎
			

			
				𝑘
				−
				1
			

			
				
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			
				𝑠
				
				
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑒
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				≤
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			

				.
			

		
	

					Following that, the component of 
	
		
			

				Δ
			

			

				1
			

		
	
, namely 
	
		
			

				Δ
			

			
				1
				,
				𝑖
			

		
	
, is bounded as follow:
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			
				+
				1
			

			
				
			
			

				𝑚
			

			

				2
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			
				−
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			
				≤
				Δ
			

			
				1
				,
				𝑖
			

			
				≤
				4
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			

				,
			

		
	

						Note that, by the definition of 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
, we have
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝐻
			

			
				0
				𝑘
				,
				𝑖
			

			
				=
				Δ
			

			
				1
				,
				𝑖
			

			
				+
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				𝑦
				i
				f
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				
			
			

				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				<
				1
				.
			

		
	

						Hence, 
	
		
			

				𝐻
			

			
				0
				𝑘
				,
				𝑖
			

		
	
 satisfies 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			
				+
				1
			

			
				
			
			

				𝑚
			

			

				2
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			
				−
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			
				≤
				Δ
			

			
				1
				,
				𝑖
			

			
				≤
				𝐻
			

			
				0
				𝑘
				,
				𝑖
			

			
				≤
				Δ
			

			
				1
				,
				𝑖
			

			
				4
				+
				1
				≤
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			
				+
				1
				.
			

		
	

						Whereas, when 
	
		
			
				(
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				−
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				Δ
			

			

				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				)
				/
				𝑦
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑦
			

			
				𝑘
				−
				1
			

			
				≥
				1
			

		
	
, we have
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑚
			

			

				2
			

			
				+
				1
			

			
				
			
			

				𝑚
			

			

				2
			

			

				𝜀
			

			
				2
				2
			

			
				
			
			

				𝜀
			

			
				2
				1
			

			
				−
				2
			

			
				
			
			

				𝑚
			

			

				1
			

			
				≤
				Δ
			

			
				1
				,
				𝑖
			

			
				≤
				𝐻
			

			
				0
				𝑘
				,
				𝑖
			

			
				≤
				Δ
			

			
				1
				,
				𝑖
			

			
				𝑦
				+
				1
				+
			

			
				𝑇
				𝑘
				−
				1
			

			

				𝑠
			

			
				𝑘
				−
				1
			

			
				
			
			
				t
				r
				𝑌
			

			
				2
				𝑘
				−
				1
			

			

				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑀
			

			
				≤
				4
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			
				𝑚
				+
				1
				+
			

			

				2
			

			
				‖
				‖
				𝑦
			

			
				𝑘
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			
				
				𝑦
			

			
				4
				𝑘
				−
				1
				,
				𝑖
			

			
				
				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑀
			

			

				𝑦
			

			
				4
				𝑘
				−
				1
				,
				𝑀
			

			
				≤
				4
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			
				+
				1
				+
				𝑛
				𝑚
			

			

				2
			

			

				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑀
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			

				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑀
			

			
				4
				=
				1
				+
			

			
				
			
			

				𝑚
			

			

				1
			

			
				+
				𝑚
			

			
				2
				2
			

			
				
			
			

				𝑚
			

			
				3
				1
			

			
				+
				𝑛
				𝑚
			

			

				2
			

			
				
			
			

				𝑚
			

			
				2
				1
			

			
				,
				∀
				𝑖
				,
			

		
	

						where 
	
		
			

				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑀
			

		
	
 is the largest component among all 
	
		
			

				𝑦
			

			
				2
				𝑘
				−
				1
				,
				𝑖
			

		
	
. Therefore, we can conclude that 
	
		
			
				‖
				(
				𝐻
			

			
				0
				𝑘
				,
				𝑖
			

			
				)
				‖
			

		
	
 is upper and lower bounded for all 
	
		
			

				𝑘
			

		
	
.
4. Numerical Experiences
Our test used a large set of unconstrained minimization problem consisting of 50 test problems where the list of problems is given in Table 1. These test problems are selected from Moré et al. [2], CUTE [3], Toint [4], and various other test function collections such as in [10]. The subroutine of test problems is available at http://camo.ici.ro/forum/SCALCG/evalfg.for (accessed on Jan 2012). The method tested is as follows:(1)LBFGS-I: L-BFGS method with the initial matrix, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				𝐼
			

		
	
,(2)LBFGS-
	
		
			

				𝑚
			

		
	
I: L-BFGS method with the initial matrix, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

			
				=
				𝜃
				𝐼
			

		
	
 where 
	
		
			

				𝜃
			

			

				𝑘
			

		
	
 is the Oren-Luenberger scaling at 
	
		
			

				𝑘
			

		
	
,(3)LBFGS-USD: L-BFGS method with the initial matrix, 
	
		
			

				𝐻
			

			
				0
				𝑘
			

		
	
 is given by (19).
Table 1: Selected test problems.
	

	 	TRIGONOMETRIC, SROSENBR, Extended White and Holst,
	 	Perturbed Quadratic, Raydan 1, Raydan 2, Diagonal 1, Diagonal 2, Diagonal 3, Hager,
	 	Generalized Tridiagonal 1, Extended Tridiagonal 1,
	 	Extended Three Expo Terms, Generalized Tridiagonal 2,
	 	Diagonal 5, HIMMELBC, Generalized PSC1, Extended PSC1,
	 	Extended Block-Diagonal BD1, Extended Maratos, Extended Hiebert,
	 	Quadratic QF1, Extended Quadratic Penalty QP1, Quadratic QF2,
	 	Extended EP1, Extended Tridiagonal 2, NONDIA, DIXMAANA,
	 	DIXMAANB, DIXMAANC, DIXMAANE, Broyden Tridiagonal,
	 	Almost Perturbed Quadratic, EDENSCH, STAIRCASE S1,
	 	Diagonal 6, DIXON3DQ, DIXMAANF, DIXMAANG, DIXMAANI,
	 	DIXMAANJ, DIXMAANK, DIXMAANL, ENGVAL1, COSINE, DENSCHNB,
	 	DENSCHNF, BIGGSB1, Scaled Quadratic SQ1, Scaled Quadratic SQ2.
	



5.  Discussion
In general, Figure 1 indicates that the new diagonal initial approximating matrix are substantially better, followed by both standard initializations of the L-BFGS method in terms of number of iterations, function/gradient calls, and CPU time, respectively. To better study the effect of our initial approximation, we include Tables 2, 3, and 4 that give ratio of function/gradient calls over iteration counts for the L-BFGS method with standard initial matrices and our diagonal initial approximating matrix. As conclusion, our diagonal initial approximation, LBFGS-USD, performs better in which the ratio is close to one and hence would likely to accept unit step length compared to the LBFGS-I (without any preconditioning) method.
Table 2: Ratio of function/gradient calls over iteration counts for 
	
		
			
				𝑚
				=
				3
			

		
	
.
	

	LBFGS-I 	 LBFGS-
	
		
			

				𝑚
			

		
	
I 	 LBFGS-USD 
	

	1.822477996 	1.078519988 	1.183809586 
	



Table 3: Ratio of function/gradient calls over iteration counts for 
	
		
			
				𝑚
				=
				5
			

		
	
.
	

	LBFGS-I 	 LBFGS-
	
		
			

				𝑚
			

		
	
I 	 LBFGS-USD 
	

	1.764504202 	1.057316205 	1.181762512 
	



Table 4: Ratio of function/gradient calls over iteration counts for 
	
		
			
				𝑚
				=
				7
			

		
	
.
	

	LBFGS-I 	 LBFGS-
	
		
			

				𝑚
			

		
	
I 	 LBFGS-USD 
	

	2.000371968 	1.051121217 	1.194642288 
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(b)





















	






	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	


	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	


	


	


	


	


	


	


	


	


	


	
		
			
		
	


	
		
			
		
		
			
		
		
			
			
		
		
			
		
	



	
		


	
		


	
		
		
		
		
		
		
	
	
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	

(c)
Figure 1: Performance profile of LBFGS-USD based on iterations, function/gradient call, and CPU time for all choices of 
	
		
			

				𝑚
			

		
	
 and 
	
		
			

				𝑛
			

		
	
.


Moreover for LBFGS-USD method, it requires, in general less iteration counts as much as 38% and 19% than LBFGS-I and LBFGS-
	
		
			

				𝑚
			

		
	
I, respectively. Meanwhile, in terms of number of function/gradient, LBFGS-MTD needs 46% and 16% less function/gradient counts, respectively. Finally, LBFGS-MTD requires 33% and 6% less CPU time in second, respectively. In conclusion, the numerical results for a broad class of the test problems show that the LBFGS-USD algorithm is efficient and vast superior in solving small to large size problems.
6. Concluding Remarks
We proposed technique that exploits the presence of the Hessian in the diagonal matrix form. Under some standard assumption on the objective function, we observe that the convergence of the diagonal initial approximation of the L-BFGS scheme is 
	
		
			

				ℝ
			

		
	
-linear. Based on our numerical results, we believe that the following conclusions can be made on the diagonal approximation that is derived in this study. (i)Our diagonal approximating matrix is able to maintain positive definiteness in a very simple way and give 
	
		
			
				𝑂
				(
				𝑛
				)
			

		
	
 storage requirement. (ii)The numerical experiments show that our diagonal initial approximating matrix is generally effective for the L-BFGS method compared to the standard initial matrices in the literature.
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