Research Article

Relaxed Viscosity Approximation Methods with Regularization for Constrained Minimization Problems

Lu-Chuan Ceng, 1 Hong-Kun Xu, 2,3 and Ching-Feng Wen 4

1 Department of Mathematics, Shanghai Normal University, Scientific Computing Key Laboratory of Shanghai Universities, Shanghai 200234, China
2 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
3 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
4 Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Correspondence should be addressed to Ching-Feng Wen; cfwen@kmu.edu.tw

Received 13 January 2013; Accepted 26 March 2013

We introduce a new relaxed viscosity approximation method with regularization and prove the strong convergence of the method to a common fixed point of finitely many nonexpansive mappings and a strict pseudocontraction that also solves a convex minimization problem and a suitable equilibrium problem.

1. Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, C a nonempty closed convex subset of H, and P_C the metric projection of H, onto C. Let $T : C \to C$ be self-mapping on C. We denote by $\text{Fix}(T)$ the set of fixed points of T and by R the set of all real numbers. A mapping $T : C \to C$ is called ζ-strictly pseudocontractive if there exists a constant $\zeta \in [0, 1)$ such that

$$
\|Tx - Ty\|^2 \leq \|x - y\|^2 + \zeta\| (I - T) x - (I - T) y\|^2,
$$

$\forall x, y \in C$. (1)

where we assume the existence of minimizers. We denote by Γ the set of minimizers of (3). The gradient-projection algorithm (GPA) generates a sequence $\{x_n\}$ determined by the gradient ∇f and the metric projection P_C as follows:

$$
x_{n+1} := P_C (x_n - \lambda \nabla f (x_n)), \quad \forall n \geq 0,
$$

or more generally,

$$
x_{n+1} := P_C (x_n - \lambda_n \nabla f (x_n)), \quad \forall n \geq 0,
$$

where, in both (4) and (5), the initial guess x_0 is taken from C arbitrarily, the parameters λ or λ_n are positive real numbers. The convergence of algorithms (4) and (5) depends on the behavior of the gradient ∇f. As a matter of fact, it is known that if ∇f is strongly monotone and Lipschitz continuous, then, for $0 < \lambda < 2\alpha/L^2$, the operator

$$
S := P_C (I - \lambda \nabla f)
$$

is a contraction. Hence, the sequence $\{x_n\}$ defined by the GPA (4) converges in norm to the unique solution of (3). More generally, if the sequence $\{\lambda_n\}$ is chosen to satisfy the property

$$
0 < \liminf_{n \to \infty} \lambda_n \leq \limsup_{n \to \infty} \lambda_n < \frac{2\alpha}{L^2},
$$

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 531859, 19 pages
http://dx.doi.org/10.1155/2013/531859
then the sequence \(\{x_n\} \) defined by the GPA (5) converges in norm to the unique minimizer of (3). If the gradient \(\nabla f \) is only assumed to be a Lipschitz continuous, then \(\{x_n\} \) can only be weakly convergent if \(H \) is infinite dimensional. A counterexample is given by Xu in [1].

Since the Lipschitz continuity of the gradient \(\nabla f \) implies that it is inverse strongly monotone (ism), it can be expressed as a proper convex combination of the identity mapping and a nonexpansive mapping. Consequently, the GPA can be rewritten as the composite of a projection and an averaged mapping which is again an averaged mapping. This shows that averaged mappings play an important role in the GPA. Very recently, Xu [1] used averaged mappings to study the convergence analysis of the GPA which is an operator-oriented approach.

We observe that the regularization, in particular, the traditional Tikhonov regularization, is usually used to solve ill-posed optimization problems. Consider the following regularized minimization problem:

\[
\min_{x \in C} f(x) := f(x) + \frac{\alpha}{2} \|x\|^2, \tag{8}
\]

where \(\alpha > 0 \) is the regularization parameter and again \(f \) is convex with an \(L \)-Lipschitz continuous gradient \(\nabla f \).

The advantage of a regularization method is that it is possible to get strong convergence to the minimum-norm solution of the optimization problem under investigation. The disadvantage is however its simplicity, and hence explicit iterative methods seem more attractive. See, for example, [1].

Given a mapping \(A : C \to H \), the classical variational inequality problem (VIP) is to find \(x^* \in C \) such that

\[
\langle Ax^*, x - x^* \rangle \geq 0, \quad \forall x \in C. \tag{9}
\]

The solution set of VIP (9) is denoted by \(\text{VI}(C, A) \). It is well known that \(x^* \in \text{VI}(C, A) \) if and only if \(x^* = P_C(x^* - \lambda A x^*) \) for some \(\lambda > 0 \). The variational inequality was first discussed by Lions [2] and now is well known. The variational inequality theory has been studied quite extensively and has emerged as an important tool in the study of a wide class of obstacle, unilateral, free, moving, and equilibrium problems arising in several branches of pure and applied sciences in a unified and general framework. See, for example, [3–10] and the references therein.

In this paper, we study the following equilibrium problem (EP) which is to find \(x^* \in C \) such that

\[
F(x^*, y) + h(x^*, y) \geq 0, \quad \forall y \in C. \tag{10}
\]

The solution set of EP (10) is denoted by \(\text{EP}(F, h) \). We will introduce and consider a relaxed viscosity iterative scheme with regularization for finding a common element of the solution set \(\Gamma \) of the minimization problem (3), the solution set \(\text{EP}(F, h) \) of the equilibrium problem (10), and the common fixed point set \(\text{Fix}(T) \cap \bigcap_{i=1}^N \text{Fix}(S_i) \) of finitely many nonexpansive mappings \(S_i : C \to C, \ i = 1, \ldots, N \), and a strictly pseudocontractive mapping \(T \) in the setting of the infinite-dimensional Hilbert space. We will prove that this iterative scheme converges strongly to a common fixed point of the mappings \(T, S_i : C \to C, \ i = 1, \ldots, N \), which is both a minimizer of MP (3) and an equilibrium point of EP (10).

2. Preliminaries

Let \(H \) be a real Hilbert space whose inner product and norm are denoted by \(\langle \cdot, \cdot \rangle \) and \(\| \cdot \| \), respectively. Let \(K \) be a nonempty closed convex subset of \(H \). We write \(x_n \rightharpoonup x \) to indicate that the sequence \(\{x_n\} \) converges weakly to \(x \) and \(x_n \rightarrow x \) to indicate that the sequence \(\{x_n\} \) converges strongly to \(x \). Moreover, we use \(\omega_w(x_n) \) to denote the weak \(\omega \)-limit set of the sequence \(\{x_n\} \) and \(\omega_s(x_n) \) to denote the strong \(\omega \)-limit set of the sequence \(\{x_n\} \); that is,

\[
\omega_w(x_n) := \{ x \in H : x_n \rightharpoonup x \} \quad \text{for some subsequence} \quad \{x_{n_k}\} \quad \text{of} \quad \{x_n\},
\]

\[
\omega_s(x_n) := \{ x \in H : x_n \rightarrow x \} \quad \text{for some subsequence} \quad \{x_{n_k}\} \quad \text{of} \quad \{x_n\}. \tag{11}
\]

The metric (or nearest point) projection from \(H \) onto \(K \) is the mapping \(P_K : H \to K \) which assigns to each point \(x \in H \) the unique point \(P_Kx \in K \) satisfying the property

\[
\|x - P_Kx\| = \inf_{y \in K} \|x - y\| =: d(x, K). \tag{12}
\]

Some important properties of projections are gathered in the following.

Proposition 1. For given \(x \in H \) and \(z \in K \)

(i) \(z = P_Kx \Leftrightarrow \langle x - z, y - z \rangle \leq 0 \), for all \(y \in K \);

(ii) \(z = P_Kx \Leftrightarrow \|x - z\|^2 \leq \|x - y\|^2 - \|y - z\|^2 \), for all \(y \in K \);

(iii) \(P_K(x - y) \geq P_Kx - P_Ky \), for all \(y \in H \), which hence implies that \(P_K \) is nonexpansive and monotone.

Definition 2. A mapping \(T : H \to H \) is said to be

(a) nonexpansive if

\[
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in H; \tag{13}
\]

(b) firmly nonexpansive if \(2T - I \) is nonexpansive, or equivalently,

\[
\langle x - y, (T - Ty) \rangle \geq \|Tx - Ty\|^2, \quad \forall x, y \in H; \tag{14}
\]

alternatively, \(T \) is firmly nonexpansive if and only if \(T \) can be expressed as

\[
T = \frac{1}{2} (I + S), \tag{15}
\]

where \(S : H \to H \) is nonexpansive; projections are firmly nonexpansive.

Definition 3. Let \(T \) be a nonlinear operator with domain \(D(T) \subseteq H \) and range \(R(T) \subseteq H \).
(a) T is said to be monotone if
$$
\langle x - y, Tx - Ty \rangle \geq 0, \quad \forall x, y \in D(T).
$$
(16)

(b) Given a number $\beta > 0$, T is said to be β strongly monotone if
$$
\langle x - y, Tx - Ty \rangle \geq \beta \|x - y\|^2, \quad \forall x, y \in D(T).
$$
(17)

(c) Given a number $\gamma > 0$, T is said to be γ-inverse strongly monotone (γ-ism) if
$$
\langle x - y, Tx - Ty \rangle \geq \gamma \|Tx - Ty\|^2, \quad \forall x, y \in D(T).
$$
(18)

It can be easily seen that if T is nonexpansive, then $I - T$ is monotone. It is also easy to see that a projection P_K is 1-ism. Inverse strongly monotone (also referred to as coercive) operators have been applied widely in solving practical problems in various fields.

Definition 4. A mapping $T : H \to H$ is said to be an averaged mapping if it can be written as the average of the identity I and a nonexpansive mapping; that is,
$$
T = (1 - \alpha)I + \alpha S,
$$
(19)
where $\alpha \in (0, 1)$ and $S : H \to H$ is nonexpansive. More precisely, when the last equality holds, we say that T is α-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are (1,2)-averaged maps.

Proposition 5 (see [11]). Let $T : H \to H$ be a given mapping.

(i) T is nonexpansive if and only if the complement $I - T$ is $(1/2)$-ism.

(ii) If T is γ-ism, then for $\gamma > 0$, γT is (γ/γ)-ism.

(iii) T is averaged if and only if the complement $I - T$ is γ-ism for some $\gamma > 1/2$. Indeed, for $\alpha \in (0, 1)$, T is α-averaged if and only if $I - T$ is $(1/\alpha)$-ism.

Proposition 6 (see [11]). Let $S,T,V : H \to H$ be given operators.

(i) If $T = (1 - \alpha)S + \alpha V$ for some $\alpha \in (0, 1)$ and if S is averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement $I - T$ is firmly nonexpansive.

(iii) If $T = (1 - \alpha)S + \alpha V$ for some $\alpha \in (0, 1)$ and if S is firmly nonexpansive and V is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings $[T_i]_{i=1}^N$ is averaged, then so is the composite $T_1 \cdots T_N$. In particular, if T_1 is α_1-averaged and T_2 is α_2-averaged, where $\alpha_1, \alpha_2 \in (0, 1)$, then the composite T_1T_2 is α-averaged, where $\alpha = \alpha_1 + \alpha_2 - \alpha_1\alpha_2$.

(v) If the mappings $[T_i]_{i=1}^N$ are averaged and have a common fixed point, then
$$
\bigcap_{i=1}^N \text{Fix}(T_i) = \text{Fix}(T_1 \cdots T_N).
$$
(20)

The notation $\text{Fix}(T)$ denotes the set of all fixed points of the mapping T, that is, $\text{Fix}(T) = \{x \in H : Tx = x\}$.

It is clear that, in a real Hilbert space $H, T : C \to C$ is ζ-strictly pseudocontractive if and only if there holds the following inequality:
$$
\langle Tx - Ty, x - y \rangle \leq \frac{1 - \zeta}{2} \|x - y\|^2 - \frac{\zeta}{2} \| (I - T)x - (I - T)y \|^2, \quad \forall x, y \in C.
$$
(21)

This immediately implies that if T is a ζ-strictly pseudocontractive mapping, then $I - T$ is $((1 - \zeta)/2)$-inverse strongly monotone; for further detail, we refer to [12] and the references therein. It is well known that the class of strict pseudocontractions strictly includes the class of nonexpansive mappings.

Lemma 7 (see [12, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert space H and $T : C \to C$ be a mapping.

(i) If T is a ζ-strictly pseudocontractive mapping, then T satisfies the Lipschitz condition where
$$
\|Tx - Ty\| \leq \frac{1 + \zeta}{1 - \zeta} \|x - y\|, \quad \forall x, y \in C.
$$
(22)

(ii) If T is a ζ-strictly pseudocontractive mapping, then the mapping $I - T$ is semiclosed at 0; that is, if $\{x_n\}$ is a sequence in C such that $x_n \to x$ weakly and $(I - T)x_n \to 0$ strongly, then $(I - T)x = 0$.

(iii) If T is a ζ-strictly pseudocontractive mapping, then the fixed point set $\text{Fix}(T)$ of T is closed and convex so that the projection $P_{\text{Fix}(T)}$ is well defined.

The following lemma is an immediate consequence of an inner product.

Lemma 8. In a real Hilbert space H, there holds the following inequality:
$$
\|x + y\|^2 \leq \|x\|^2 + 2 \langle x, y \rangle, \quad \forall x, y \in H.
$$
(23)

The following elementary result on real sequences is quite well known.

Lemma 9 (see [13]). Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the property
$$
a_{n+1} \leq (1 - s_n)a_n + s_n t_n + e_n, \quad \forall n \geq 0,
$$
(24)
where $\{s_n\} \subset (0, 1]$ and $\{t_n\}$ are the real sequences such that

(i) $\sum_{n=0}^\infty s_n = \infty$;

(ii) either $\limsup_{n \to \infty} t_n \leq 0$ or $\sum_{n=0}^\infty s_n |t_n| < \infty$;

(iii) $\sum_{n=0}^\infty e_n < \infty$ where $e_n \geq 0$, for all $n \geq 0$.

Then, $\lim_{n \to \infty} a_n = 0$.
Lemma 10 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T : C \to C$ be a α-strictly pseudocontractive mapping. Let y and δ be two nonnegative real numbers such that $(y + \delta)^2 \leq y$. Then,
\[
\|y(x - y) + \delta (T x - T y)\| \leq (y + \delta) \|x - y\|, \quad \forall x, y \in C.
\] (25)

The following lemma appears implicitly in the paper of Reinermann [15].

Lemma 11 (see [15]). Let H be a real Hilbert space. Then, for all $x, y \in H$ and $\lambda \in [0, 1]$,
\[
\|\lambda x + (1 - \lambda) y\|^2 = \lambda \|x\|^2 + (1 - \lambda) \|y\|^2 - \lambda (1 - \lambda) \|x - y\|^2.
\] (26)

Lemma 12 (see [16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to R$ be a bifunction such that

(f1) $F(x, x) = 0$ for all $x \in C$;

(f2) F is monotone and upper hemicontinuous in the first variable;

(f3) F is lower semicontinuous and convex in the second variable.

Let $h : C \times C \to H$ be a bifunction such that

(h1) $h(x, x) = 0$ for all $x \in C$;

(h2) h is monotone and weakly upper semicontinuous in the first variable;

(h3) h is convex in the second variable.

Moreover, let one suppose that

(H) for fixed $r > 0$ and $x \in C$, there exists a bounded $K \subset C$ and $x_i \in K$ such that for all $z \in C \setminus K$, $-F(z, x) + h(z, x) + (1/r)(x - z, x - x) < 0$.

For $r > 0$ and $x \in H$, let $T_r : H \to 2^C$ be a mapping defined by
\[
T_r x = \left\{ z \in C : F(z, y) + h(z, y) + \frac{r}{2} (y - z, z - x) \geq 0, \forall y \in C \right\}
\] (27)
called the resolvent of F and h. Then,

(1) $T_r x \neq \emptyset$;

(2) $T_r x$ is a singleton;

(3) T_r is firmly nonexpansive;

(4) $EP(F, h) = Fix(T_r)$ and it is closed and convex.

Lemma 13 (see [16]). Let one suppose that (f1)-(f3), (h1)-(h3) and (H) hold. Let $x, y, r \in H, r_1, r_2 > 0$. Then,
\[
\|T_r y - T_r x\| \leq \|y - x\| + \frac{r_2 - r_1}{r_2} \|T_r y - y\|. \] (28)

Lemma 14 (see [17]). Suppose that the hypotheses of Lemma 12 are satisfied. Let $\{r_n\}$ be a sequence in $(0, \infty)$ with $\liminf_{n \to \infty} r_n > 0$. Suppose that $\{x_n\}$ is a bounded sequence. Then, the following statements are equivalent and true.

(a) if $\|x_n - T_{r_n} x_n\| \to 0$ as $n \to \infty$, each weak cluster point of $\{x_n\}$ satisfies the problem:
\[
F(x, y) + h(x, y) \geq 0, \quad \forall y \in C,
\] (29)

that is, $\omega_w(x_n) \subseteq EP(F, h)$.

(b) The demiclosedness principle holds in the sense that, if $x_n \to x^*$ and $\|x_n - T_{r_n} x_n\| \to 0$ as $n \to \infty$, then $(I - T_{r_n})x^* = 0$ for all $k \geq 1$.

3. Main Results

We now propose the following relaxed viscosity iterative scheme with regularization:

\[
F(u_n, y) + h(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0,
\]
\[
\forall y \in C,
\]
\[
y_{n,1} = \beta_{n,1} S_1 u_n + (1 - \beta_{n,1}) u_n,
\]
\[
y_{nj} = \beta_{nj} S_j u_n + (1 - \beta_{nj}) y_{nj-1}, \quad i = 2, \ldots, N,
\]
\[
y_n = \beta_n Q y_{n,N} + (1 - \beta_n) P_C \left(y_{n,N} - \lambda \nabla f_{a_n}(y_{n,N}) \right),
\]
\[
x_{n+1} = \sigma_n y_n + \gamma_n P_C \left(y_n - \lambda \nabla f_{a_n}(y_n) \right)
\]
\[+ \delta_n T P_C \left(y_n - \lambda \nabla f_{a_n}(y_n) \right),
\]
for all $n \geq 0$, where the mapping $Q : C \to C$ is a ρ-contraction; the mapping $T : C \to C$ is a α-strict pseudocontraction; $S_i : C \to C$ is a nonexpansive mapping for each $i = 1, \ldots, N$; $F : C \to H$ satisfies the Lipschitz condition (10) with $0 < \lambda < (2/\alpha L)$; $F, h : C \times C \to R$ are two bifunctions satisfying the hypotheses of Lemma 12; $\{a_n\}$ is a sequence in $(0, \infty)$ with $\sum_{n=0}^{\infty} a_n < \infty$; $\{\beta_{nj}\}$, $\{\gamma_n\}$ are sequences in $(0, 1)$ with $0 < \lim \inf_{n \to \infty} \gamma_n < 1$; $\{\delta_n\}$ is a sequence in $(0, 1)$ with $\sum_{n=1}^{\infty} \delta_n = 1$; $\{\beta_{n,i}\}$ are sequences in $(0, 1)$ and $\sum_{n=1}^{\infty} \delta_n \leq \gamma_n$, for all $n \geq 0$; $\{r_n\}$ is a sequence in $(0, \infty)$ with $\lim \inf_{n \to \infty} r_n > 0$ and $\lim \inf_{n \to \infty} r_n \gamma_n > 0$.

Before stating and proving the main convergence results, we first establish the following lemmas.

Lemma 15. Let one suppose that $\Omega = Fix(T) \cap \bigcap_{i=1}^{\infty} \text{Fix}(S_i) \cap EP(F, h) \cap \Gamma \neq \emptyset$. Then, the sequences $\{x_n\}$, $\{y_{n,i}\}$, $\{y_{nj}\}$ for all i, and $\{u_n\}$ are bounded.

Proof. First of all, we can show as in [18] that $P_C(I - \lambda \nabla f_{a_n})$ is nonexpansive for $\lambda \in (0, 2/(\alpha + L))$, and $P_C(I - \lambda \nabla f_{a_n})$ is nonexpansive for all $n \geq 0$ and $\lambda \in (0, 2/L)$. We observe that if $p \in \Omega$, then
\[
\|y_{n,1} - p\| \leq \|u_n - p\| \leq \|x_n - p\|.
\] (31)
For all, from $i = 2$ to $i = N$, by induction, one proves that
\[
\|y_{n,i} - p\| \leq \beta_n \|u_n - p\| + (1 - \beta_n) \|y_{n,i-1} - p\| \leq \|u_n - p\| \leq \|x_n - p\|. \tag{32}
\]
Thus, we obtain that for every $i = 1, \ldots, N$,
\[
\|y_{n,i} - p\| \leq \|u_n - p\| \leq \|x_n - p\|. \tag{33}
\]
For simplicity, put $\bar{y}_{n,N} = p_C(y_{n,N} - \lambda V_{a_n})$ and $\bar{y}_n = p_C(y_n - \lambda V_{a_n})$ for every $n \geq 0$. Then, $y_n = \alpha_n Q y_{n,N} + (1 - \alpha_n) \bar{y}_{n,N}$ and $x_{n+1} = \sigma_n y_n + y_n \bar{y}_n + \delta_n T \bar{y}_n$ for every $n \geq 0$. Taking into consideration that $T p = p$ and $p_C(I - \lambda V f)p = p$ for $\lambda \in (0, 2/L)$, we have
\[
\|\bar{y}_{n,N} - p\| = \|p_C(I - \lambda V f_{a_n}) y_{n,N} - p_C(I - \lambda V f)p\| \leq \|p_C(I - \lambda V f_{a_n}) y_{n,N} - p_C(I - \lambda V f)p\| + \|p_C(I - \lambda V f_{a_n}) p - p_C(I - \lambda V f)p\| \leq \|y_{n,N} - p\| + \|p_C(I - \lambda V f_{a_n}) p - p_C(I - \lambda V f)p\| \leq \|y_{n,N} - p\| + \|\alpha_n\| \|p\|. \tag{34}
\]
Similarly, we get $\|\bar{y}_n - p\| \leq \|y_n - p\| + \|\alpha_n\| \|p\|$. Thus, from (34) we have
\[
\|y_n - p\| = \beta_n \|Q y_{n,N} - p\| + (1 - \beta_n) \|\bar{y}_{n,N} - p\| \leq \beta_n \|Q y_{n,N} - p\| + (1 - \beta_n) \|\bar{y}_{n,N} - p\| \leq \beta_n \|Q y_{n,N} - Q p\| + \beta_n \|Q p - p\| + (1 - \beta_n) \|\|y_{n,N} - p\| + \|\alpha_n\| \|p\|\| \leq \beta_n \|Q y_{n,N} - Q p\| + \beta_n \|Q p - p\| + (1 - \beta_n) \|\|y_{n,N} - p\| + \|\alpha_n\| \|p\|\| \leq (1 - \beta_n) \|\|y_{n,N} - p\| + \|\alpha_n\| \|p\|\| \leq (1 - \beta_n) \|\|y_{n,N} - p\| + \|\alpha_n\| \|p\|\| \leq \max \left\{\|y_{n,N} - p\|, \|Q p - p\| \right\} + \|\alpha_n\| \|p\| \leq \max \left\{\|u_n - p\|, \|Q p - p\| \right\} + \|\alpha_n\| \|p\| \leq \max \left\{\|x_n - p\|, \|Q p - p\| \right\} + \|\alpha_n\| \|p\|. \tag{35}
\]
Since $(y_n + \delta_n)^n \leq y_n$ for all $n \geq 0$, utilizing Lemma 10, we derive from (35)
\[
\|x_{n+1} - p\| = \|\sigma (y_n - p) + y_n (\bar{y}_n - p) + \delta_n (T \bar{y}_n - p)\| \leq \|\sigma (y_n - p)\| + \|y_n (\bar{y}_n - p)\| + \|\delta_n (T \bar{y}_n - p)\| \leq \sigma_n \|y_n - p\| + \|y_n (\bar{y}_n - p)\| + \delta_n \|T \bar{y}_n - p\| \leq \|y_n - p\| + \|y_n + \delta_n\| \|\bar{y}_n - p\| \leq \|y_n - p\| + \|\alpha_n\| \|p\| \leq \max \left\{\|x_n - p\|, \|Q p - p\| \right\} + \|\alpha_n\| \|p\| + \|\alpha_n\| \|p\| \leq \max \left\{\|x_n - p\|, \|Q p - p\| \right\} + 2\|\alpha_n\| \|p\|. \tag{36}
\]
By induction, we get
\[
\|x_{n+1} - p\| \leq \max \left\{\|x_0 - p\|, \|Q p - p\| \right\} + 2\|\alpha_n\| \|p\|. \tag{37}
\]
This implies that $\{x_n\}$ is bounded and so are $\{y_n\}$, $\{u_n\}$, and $\{y_{n+1}\}$ for each $i = 1, \ldots, N$. It is clear that both $\{\bar{y}_{n,N}\}$ and $\{\bar{y}_n\}$ are also bounded. Since $\|\bar{y}_n - p\| \leq (1 + \xi)/(1 - \zeta) \|\bar{y}_n - p\|$, $T \bar{y}_n$ is also bounded.

\textbf{Lemma 16.} Let one suppose that $\Omega \neq 0$. Moreover, let one suppose that the following hold:

(H1) $\lim_{n \to \infty} b_n = 0$ and $\sum_{n=0}^{\infty} b_n = \infty$;

(H2) $\sum_{n=1}^{\infty} |b_n - b_{n-1}| < \infty \text{ or } \lim_{n \to \infty} (|b_n - b_{n-1}|/b_n) = 0$;

(H3) $\sum_{n=1}^{\infty} |b_n - b_{n-1}| < \infty \text{ or } \lim_{n \to \infty} (|b_n - b_{n-1}|/b_n) = 0$ for each $i = 1, \ldots, N$;

(H4) $\sum_{n=1}^{\infty} |r_n - r_{n-1}| < \infty \text{ or } \lim_{n \to \infty} (|r_n - r_{n-1}|/r_n) = 0$;

(H5) $\sum_{n=1}^{\infty} |\sigma_n - \sigma_{n-1}| < \infty \text{ or } \lim_{n \to \infty} (|\sigma_n - \sigma_{n-1}|/\sigma_n) = 0$;

(H6) $\sum_{n=1}^{\infty} |y_n/(1 - \sigma_n) - y_{n-1}/(1 - \sigma_{n-1})| < \infty \text{ or } \lim_{n \to \infty} (1/\beta_n) |y_n/(1 - \sigma_n) - y_{n-1}/(1 - \sigma_{n-1})| = 0$.

Then, $\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0$, that is, $\{x_n\}$ is asymptotically regular.

\textbf{Proof.} Taking into account $0 < \lim \inf_{n \to \infty} \sigma_n \leq \lim \sup_{n \to \infty} \sigma_n < 1$, we may assume, without loss of generality, that $\{\sigma_n\} \subset [c, d]$ for some $c, d \in (0, 1)$. First, we write
\[x_n = \sigma_{n-1} y_{n-1} + (1 - \sigma_{n-1}) y_n, \text{ for all } n \geq 1, \text{ where } \nu_{n-1} = \frac{x_n - \sigma_{n-1} y_{n-1}}{(1 - \sigma_{n-1})}. \text{ It follows that for all } n \geq 1 \]

\[
\nu_n - \nu_{n-1} = \frac{x_{n+1} - \sigma_n y_n - x_n - \sigma_{n-1} y_{n-1}}{1 - \sigma_n}
\]

\[
= \frac{y_n \bar{y}_n + \delta_n T \bar{y}_n - \frac{y_n \bar{y}_{n-1} + \delta_n T \bar{y}_{n-1}}{1 - \sigma_n}}{1 - \sigma_n}
\]

\[
= \nu_n (\bar{y}_n - \bar{y}_{n-1}) + \frac{\delta_n (T \bar{y}_n - T \bar{y}_{n-1})}{1 - \sigma_n}
\]

\[
+ \left(\frac{y_n - y_{n-1}}{1 - \sigma_n} \right) \bar{y}_{n-1}
\]

\[
+ \left(\frac{\delta_n}{1 - \sigma_n} \right) T \bar{y}_{n-1}.
\]

(38)

Since \(\gamma_n + \delta_n \mathcal{K} \leq \gamma_n \) for all \(n \geq 0 \), utilizing Lemma 10, we have

\[
\| y_n (\bar{y}_n - \bar{y}_{n-1}) + \delta_n (T \bar{y}_n - T \bar{y}_{n-1}) \|
\]

\[
\leq (\gamma_n + \delta_n) \| \bar{y}_n - \bar{y}_{n-1} \|. \tag{39}
\]

Next, we estimate \(\| y_n - y_{n-1} \| \). Observe that for every \(n \geq 1 \)

\[
\| y_n - y_{n-1} \|
\]

\[
\leq \| P_C(I - \lambda V f_{\alpha_n}) y_{n, N} - P_C(I - \lambda V f_{\alpha_n}) y_{n-1, N} \|
\]

\[
+ \| P_C(I - \lambda V f_{\alpha_n}) y_{n-1, N} - P_C(I - \lambda V f_{\alpha_n}) y_{n-1, N} \|
\]

\[
\leq \| y_{n, N} - y_{n-1, N} \|
\]

\[
+ \| P_C(I - \lambda V f_{\alpha_n}) y_{n-1, N} - (I - \lambda V f_{\alpha_n}) y_{n-1, N} \|
\]

\[
= \| y_{n, N} - y_{n-1, N} \| + \| \lambda \mathcal{V} f_{\alpha_n} (y_{n-1, N}) - \lambda \mathcal{V} f_{\alpha_n} (y_{n-1, N}) \|
\]

\[
= \| y_{n, N} - y_{n-1, N} \| + \lambda \| \alpha_n - \alpha_{n-1} \| \| y_{n, N} \|, \tag{40}
\]

and similarly,

\[
\| \bar{y}_n - \bar{y}_{n-1} \| \leq \| y_n - y_{n-1} \| + \lambda \| \alpha_n - \alpha_{n-1} \| \| y_{n, N} \|. \tag{41}
\]

Also, from (30), we have

\[
y_n = \beta_n Q y_{n, N} + (1 - \beta_n) \bar{y}_{n, N}
\]

\[
y_{n-1} = \beta_{n-1} Q y_{n-1, N} + (1 - \beta_{n-1}) \bar{y}_{n-1, N}, \tag{42}
\]

\(\forall n \geq 1. \)

Simple calculations show that

\[
y_n - y_{n-1} = (1 - \beta_n) (\bar{y}_{n, N} - \bar{y}_{n-1, N})
\]

\[
+ (\beta_n - \beta_{n-1}) (Q y_{n-1, N} - \bar{y}_{n-1, N}) + \beta_n (Q y_{n, N} - Q y_{n-1, N}). \tag{43}
\]

Then, passing to the norm we get from (40) that

\[
\| y_n - y_{n-1} \|
\]

\[
\leq (1 - \beta_n) \| \bar{y}_{n, N} - \bar{y}_{n-1, N} \|
\]

\[
+ \| \beta_n - \beta_{n-1} \| \| Q y_{n-1, N} - \bar{y}_{n-1, N} \| + \beta_n \| Q y_{n, N} - Q y_{n-1, N} \|
\]

\[
\leq (1 - \beta_n) \| \bar{y}_{n, N} - \bar{y}_{n-1, N} \| + \lambda \| \alpha_n - \alpha_{n-1} \| \| y_{n-1, N} \|
\]

\[
+ \beta_n \| y_{n, N} - y_{n-1, N} \| + (1 - \beta_n) \| Q y_{n-1, N} - \bar{y}_{n-1, N} \|
\]

\[
\leq (1 - (1 - \rho) \beta_n) \| y_{n, N} - y_{n-1, N} \|
\]

\[
+ \lambda \| \alpha_n - \alpha_{n-1} \| \| y_{n-1, N} \|
\]

\[
+ \beta_n \| y_{n, N} - y_{n-1, N} \|
\]

\[
\leq (1 - (1 - \rho) \beta_n) \| y_{n, N} - y_{n-1, N} \|
\]

\[
+ \lambda \| \alpha_n - \alpha_{n-1} \| \| y_{n-1, N} \|
\]

\[
+ \beta_n \| y_{n, N} - y_{n-1, N} \|, \tag{44}
\]

where \(\lambda \| y_{n, N} \| + \| Q y_{n, N} - \bar{y}_{n, N} \| \leq M_1 \), for all \(n \geq 0 \) for some \(M_1 \geq 0 \). Furthermore, by the definition of \(y_{n,i} \) one obtains that, for all \(i = N, \ldots, 2 \)

\[
\| y_{n,i} - y_{n-1,i} \| \leq \beta_{n,i} \| u_n - u_{n-1} \|
\]

\[
+ \| S_i u_{n-1} - y_{n-1, i-1} \| \| \beta_{n,i} - \beta_{n-1,i} \| \tag{45}
\]

\[
+ (1 - \beta_{n,i}) \| y_{n-1, i-1} - y_{n-1, i-2} \|.
\]

In the case of \(i = 1 \), we have

\[
\| y_{n,1} - y_{n-1,1} \|
\]

\[
\leq \beta_{n,1} \| u_n - u_{n-1} \|
\]

\[
+ \| S_1 u_{n-1} - u_{n-1} \| \| \beta_{n,1} - \beta_{n-1,1} \|
\]

\[
+ (1 - \beta_{n,1}) \| u_{n-1} - u_{n-2} \| \| \beta_{n,1} - \beta_{n-1,1} \|. \tag{46}
\]

Substituting (46) in all (45) type one obtains for \(i = 2, \ldots, N \)

\[
\| y_{n,i} - y_{n-1,i} \| \leq \| u_n - u_{n-1} \|
\]

\[
+ \sum_{k=2}^{i} \| S_k u_{n-1} - y_{n-1, k-1} \| \| \beta_{n,k} - \beta_{n-1,k} \|
\]

\[
+ \| S_i u_{n-1} - u_{n-1} \| \| \beta_{n,1} - \beta_{n-1,1} \|. \tag{47}
\]
This together with (44) implies that
\[
\|y_n - y_{n-1}\| \\
\leq (1 - (1 - \rho) \beta_n) \\
\times \left[\|u_n - u_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|) \right] \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|u_n - u_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right).
\]

By Lemma 13, we know that
\[
\|u_n - u_{n-1}\| \leq \|x_n - x_{n-1}\| + \kappa \left| 1 - \frac{r_{n-1}}{r_n} \right|, \tag{49}
\]
where \(\kappa = \sup_{n \geq 0} \|u_n - x_n\|\). So, substituting (49) in (48) we obtain
\[
\|y_n - y_{n-1}\| \\
\leq (1 - (1 - \rho) \beta_n) \left(\|x_n - x_{n-1}\| + \kappa \left| 1 - \frac{r_{n-1}}{r_n} \right| \right) \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \\
\leq (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| \\
+ \sum_{k=2}^{N} \|S_k u_{n-1} - y_{n-1,k-1}\| \|\beta_{n,k} - \beta_{n-1,k}\| \\
+ \|S_1 u_{n-1} - u_{n-1}\| \|\beta_{n,1} - \beta_{n-1,1}\| \\
+ M_1 \left(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| \right) \]
Then, passing to the norm, we get from (51)

\[
\|x_{n+1} - x_n\| \leq (1 - \sigma_n) \|v_n - v_{n-1}\| + |\sigma_n - \sigma_{n-1}| \|y_{n-1} - v_{n-1}\| + \sigma_n \|y_n - y_{n-1}\|
\]

Further, we observe that

\[
x_{n+1} = \sigma_n y_n + (1 - \sigma_n) v_n,
\]

\[
x_n = \sigma_{n-1} y_{n-1} + (1 - \beta_{n-1}) v_{n-1},
\]

(52)

\forall n \geq 1.

Simple calculations show that

\[
x_{n+1} - x_n = (1 - \sigma_n) (v_n - v_{n-1}) + (\sigma_n - \sigma_{n-1}) (y_{n-1} - v_{n-1}) + \sigma_n (y_n - y_{n-1}).
\]

(53)

Then, passing to the norm, we get from (51)

\[
\|x_{n+1} - x_n\| \leq (1 - \sigma_n) \|v_n - v_{n-1}\| + |\sigma_n - \sigma_{n-1}| \|y_{n-1} - v_{n-1}\| + \sigma_n \|y_n - y_{n-1}\|
\]

\[
\leq (1 - \sigma_n)
\]

\[
\times \left\{ (1 - (1 - \rho) \beta_n) \|x_n - x_{n-1}\| + M_3 \left[\frac{r_n - r_{n-1}}{b} + \sum_{k=1}^{N} |\beta_{n,k} - \beta_{n-1,k}| + 2 |\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| + \frac{y_n - y_{n-1}}{1 - \sigma_n} \right] \right\}
\]

(54)

where \(M_3 + \lambda \|y_{\sigma_n}\| + \|\tilde{y}_{\sigma_n}\| + \|T\tilde{y}_{\sigma_n}\| \leq M_3\), for all \(n \geq 0\) for some \(M_3 \geq 0\).

Let \(\{x_n\}\) be asymptotically regular. Then, \(\|x_n - y_n\| \to 0\) and \(\|x_n - u_n\| = \|x_n - T_{\rho_n} x_n\| \to 0\) as \(n \to \infty\).

Lemma 17. Let one suppose that \(\Omega \neq \emptyset\). Let one suppose that \(\{x_n\}\) is asymptotically regular. Then, \(\|x_n - y_n\| \to 0\) and \(\|x_n - u_n\| = \|x_n - T_{\rho_n} x_n\| \to 0\) as \(n \to \infty\).

Proof. We recall that, by the firm nonexpansivity of \(T_{\rho_n}\), a standard calculation (see [17]) shows that if \(v \in EP(F, h)\), then

\[
\|u_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - u_n\|^2.
\]

(55)

Let \(\rho \in \Omega\). Then by Lemma 11, we have from (33)–(34) the following

\[
\|\bar{y}_n - p\|^2 \leq \|\beta_n (Q y_{\sigma_n, N} - p) + (1 - \beta_n) (\bar{y}_{\sigma_n, N} - p)\|^2 \leq \beta_n \|Q y_{\sigma_n, N} - p\|^2 + (1 - \beta_n) \|\bar{y}_{\sigma_n, N} - p\|^2 \leq \beta_n \|Q y_{\sigma_n, N} - p\|^2 + \|\|y_{\sigma_n, N} - p\| + \lambda \alpha_n \|p\| \|^2
\]
\[= \beta_n \|Qy_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \\
+ \lambda \alpha_n \|p\| (2 \|y_{n,N} - p\| + \lambda \alpha_n \|p\|) \\
\leq \beta_n \|Qy_{n,N} - p\|^2 + \|x_n - p\|^2 \\
+ \lambda \alpha_n \|p\| (2 \|x_n - p\| + \lambda \alpha_n \|p\|), \quad (56) \]

\[
\|\tilde{y}_n - p\|^2 = \|P_C (I - \lambda Vf_{n}) y_n - P_C (I - \lambda Vf) p\|^2 \\
\leq (\|y_n - p\| + \lambda \alpha_n \|p\|)^2 \\
= \|y_n - p\|^2 + \lambda \alpha_n \|p\| (2 \|y_n - p\| + \lambda \alpha_n \|p\|). \quad (57) \]

Since \(y_n + \delta_n x \leq y_n\) for all \(n \geq 0\), using Lemma 10, we have

\[
\|x_{n+1} - p\|^2 \\
= \|\sigma_n (y_n - p) + y_n (\tilde{y}_n - p) + \delta_n (T \tilde{y}_n - p)\|^2 \\
= \|\sigma_n (y_n - p) + (y_n + \delta_n) \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
- \sigma_n (y_n + \delta_n) \|y_n - p\| - \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
= \sigma_n \|y_n - p\|^2 + (y_n + \delta_n) \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
- \sigma_n (y_n + \delta_n) \|y_n - p\| - \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
= \sigma_n \|y_n - p\|^2 + (y_n + \delta_n) \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
- \sigma_n (y_n + \delta_n) \|y_n - p\| - \frac{1}{y_n + \delta_n} \|y_n (\tilde{y}_n - p) + \lambda \alpha_n \|p\| (T \tilde{y}_n - p)\|^2 \\
\leq \sigma_n \|y_n - p\|^2 + (y_n + \delta_n) \|\tilde{y}_n - p\|^2 \\
- \frac{\sigma_n}{y_n + \delta_n} \|x_{n+1} - y_n\|^2 \\
= \sigma_n \|y_n - p\|^2 + (1 - \sigma_n) \|\tilde{y}_n - p\|^2 \\
- \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2 \\
\leq \sigma_n \|y_n - p\|^2 + (1 - \sigma_n) \|\tilde{y}_n - p\|^2 \\
- \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2 \\
\leq \sigma_n \|y_n - p\|^2 + \|x_n - p\|^2 \\
+ \lambda \alpha_n \|p\| (2 \|x_n - p\| + \lambda \alpha_n \|p\|) \\
+ \lambda \alpha_n \|p\| (2 \|y_n - p\| + \lambda \alpha_n \|p\|) \\
- \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2 \\
\leq \beta_n \|Qy_{n,N} - p\|^2 + \|x_n - p\|^2 \\
+ \lambda \alpha_n \|p\| (2 \|x_n - p\| + \lambda \alpha_n \|p\|) \\
+ \lambda \alpha_n \|p\| (2 \|y_n - p\| + \lambda \alpha_n \|p\|) \\
- \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2 \\
\leq \|x_n - p\|^2 + \beta_n \|Qy_{n,N} - p\|^2 \\
+ 2 \lambda \alpha_n \|p\| (\|x_n - p\| + \|y_n - p\| + \lambda \alpha_n \|p\|) \\
- \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2. \quad (58) \]

Taking into account \(0 < \lim_{n \to \infty} \sigma_n \leq \lim_{n \to \infty} \sigma_n < 1\), we may assume that \(\{\sigma_n\} \subset [c, d]\) for some \(c, d \in (0, 1)\). So, we deduce that

\[
\frac{c}{1 - c} \|x_{n+1} - y_n\|^2 \\
\leq \frac{\sigma_n}{1 - \sigma_n} \|x_{n+1} - y_n\|^2 \\
\leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + \beta_n \|Qy_{n,N} - p\|^2 \\
+ 2 \lambda \alpha_n \|p\| (\|x_n - p\| + \|y_n - p\| + \lambda \alpha_n \|p\|) \\
\leq (\|x_n - p\| + \|x_{n+1} - p\|) \|x_n - x_{n+1}\| + \beta_n \|Qy_{n,N} - p\|^2 \\
+ 2 \lambda \alpha_n \|p\| (\|x_n - p\| + \|y_n - p\| + \lambda \alpha_n \|p\|). \quad (59) \]

Since \(\alpha_n \to 0, \beta_n \to 0\) and \(\|x_n - x_{n+1}\| \to 0\) as \(n \to \infty\), we conclude from the boundedness of \(\{x_n\}, \{y_n\}\), and \(\{y_n,N\}\) that \(\|x_{n+1} - y_n\| \to 0\) as \(n \to \infty\). This together with \(\|x_n - x_{n+1}\| \to 0\), implies that

\[
\lim_{n \to \infty} \|x_n - y_n\| = 0. \quad (60) \]
Furthermore, from (33), (55), and (56), we have
\[
\|y_n - p\|^2 \leq \beta_n\|Qy_{nN} - p\|^2 + \|y_{nN} - p\|^2 + \lambda\alpha_n\|p\| (2\|x_{nN} - p\| + \lambda\alpha_n\|p\|)
\]
\[
\leq \beta_n\|Qy_{nN} - p\|^2 + \|u_n - p\|^2 + \lambda\alpha_n\|p\| (2\|x_{nN} - p\| + \lambda\alpha_n\|p\|)
\]
\[
\leq \beta_n\|Qy_{nN} - p\|^2 + \|x_n - p\|^2 - \|y_n - p\|^2 + \lambda\alpha_n\|p\| (2\|x_n - p\| + \lambda\alpha_n\|p\|),
\]
which hence implies that
\[
\|x_n - u_n\|^2 \leq \beta_n\|Qy_{nN} - p\|^2 + \|x_n - p\|^2 - \|y_n - p\|^2 + \lambda\alpha_n\|p\| (2\|x_n - p\| + \lambda\alpha_n\|p\|)
\]
\[
\leq \beta_n\|Qy_{nN} - p\|^2 + \|x_n - p\|^2 - \|y_n - p\|^2 + \lambda\alpha_n\|p\| (2\|x_n - p\| + \lambda\alpha_n\|p\|).
\]

(62)

Since \(\alpha_n \to 0\), \(\beta_n \to 0\) and \(\|x_n - y_n\| \to 0\) as \(n \to \infty\), we deduce from the boundedness of \(\{x_n\}\), \(\{y_n\}\), and \(\{y_{nN}\}\) that
\[
\lim_{n \to \infty} \|x_n - u_n\| = 0.
\]
(63)

Remark 18. By the last lemma we have \(\omega_n(x_n) = \omega_n(u_n)\) and \(\omega_i(x_n) = \omega_i(u_n)\); that is, the sets of strong/weak cluster points of \(\{x_n\}\) and \(\{u_n\}\) coincide.

Of course, if \(\beta_{n,i} \to \beta_i \neq 0\), as \(n \to \infty\), for all index \(i\), the assumptions of Lemma 16 are enough to assert that
\[
\lim_{n \to \infty} \|x_{n,i} - x_n\| = 0, \quad \forall i \in \{1, \ldots, N\}.
\]
(64)

In the next lemma, we examine the case in which at least one sequence \(\beta_{n,k_0}\) is a null sequence.

Lemma 19. Let one suppose that \(\Omega \neq \emptyset\). Let one suppose that (H1) holds. Moreover, for an index \(k_0 \in \{1, \ldots, N\}\), \(\lim_{n \to -\infty} \beta_{n,k_0} = 0\), and the following hold:

(H7) for all \(i\),
\[
\lim_{n \to -\infty} \frac{|\beta_{n,i} - \beta_{n-1,i}|}{\beta_{n,k_0}} = \lim_{n \to -\infty} \frac{|x_n - x_{n-1}|}{\beta_{n,k_0}} = \lim_{n \to -\infty} \frac{|y_n - y_{n-1}|}{\beta_{n,k_0}} = \frac{1}{\beta_{n,k_0}} \left| \frac{y_n}{1 - \alpha_n} - \frac{y_{n-1}}{1 - \alpha_{n-1}} \right| = 0;
\]
(65)

(H8) there exists a constant \(\tau > 0\) such that \((1/\beta_n)(1/\beta_{n,k_0} - 1/\beta_{n-1,k_0}) < \tau\) for all \(n \geq 1\). Then,
\[
\lim_{n \to -\infty} \frac{x_{n+1} - x_n}{\beta_{n,k_0}} = 0.
\]
(66)

Proof. We start by (54). Dividing both the terms by \(\beta_{n,k_0}\) we have
\[
\frac{\|x_{n+1} - x_n\|}{\beta_{n,k_0}} \leq \left| 1 - (1 - \rho) \beta_n \right| \left| \frac{x_n - x_{n-1}}{\beta_{n,k_0}} \right|
\]
\[
+ M \left[\frac{r_n - r_{n-1}}{b\beta_{n,k_0}} + \frac{\sum_{k=1}^{N} |\beta_{n,k} - \beta_{n-1,k}|}{\beta_{n,k_0}} \right]
\]
\[
+ 2 \frac{|\alpha_n - \alpha_{n-1}|}{\beta_{n,k_0}} + \frac{|\beta_n - \beta_{n-1}|}{\beta_{n,k_0}} + \frac{\sigma_n - \sigma_{n-1}}{\beta_{n,k_0}}
\]
\[
+ \frac{|y_n/ (1 - \sigma_n) - y_{n-1}/ (1 - \sigma_{n-1})|}{\beta_{n,k_0}}.
\]
(67)

So, by (H8) we have
\[
\frac{\|x_{n+1} - x_n\|}{\beta_{n,k_0}} \leq \left| 1 - (1 - \rho) \beta_n \right| \left| \frac{x_n - x_{n-1}}{\beta_{n,k_0}} \right|
\]
\[
+ \left| 1 - (1 - \rho) \beta_n \right| \left| \frac{x_n - x_{n-1}}{\beta_{n,k_0}} \right| \frac{1}{\beta_{n-1,k_0}} - \frac{1}{\beta_{n-1,k_0}}
\]
\[
+ M \left[\frac{r_n - r_{n-1}}{b\beta_{n,k_0}} + \frac{\sum_{k=1}^{N} |\beta_{n,k} - \beta_{n-1,k}|}{\beta_{n,k_0}} \right]
\]
\[
+ \frac{|y_n/ (1 - \sigma_n) - y_{n-1}/ (1 - \sigma_{n-1})|}{\beta_{n,k_0}}
\]
\[
+ \frac{|\beta_n - \beta_{n-1}|}{\beta_{n,k_0}} + \frac{\sigma_n - \sigma_{n-1}}{\beta_{n,k_0}} + \frac{|\beta_n - \beta_{n-1}|}{\beta_{n,k_0}}
\]
\[
\leq \left| 1 - (1 - \rho) \beta_n \right| \left| \frac{x_n - x_{n-1}}{\beta_{n,k_0}} \right|
\]
\[
+ \left| \frac{x_n - x_{n-1}}{\beta_{n,k_0}} \right| \frac{1}{\beta_{n-1,k_0}} - \frac{1}{\beta_{n-1,k_0}}
\]
\[
+ M \left[\frac{r_n - r_{n-1}}{b\beta_{n,k_0}} + \frac{\sum_{k=1}^{N} |\beta_{n,k} - \beta_{n-1,k}|}{\beta_{n,k_0}} \right]
\]
\[
+ \frac{|y_n/ (1 - \sigma_n) - y_{n-1}/ (1 - \sigma_{n-1})|}{\beta_{n,k_0}}.
\]
\[
\begin{align*}
+ \frac{|y_n^T (1 - \sigma_n) - y_{n-1}^T (1 - \sigma_{n-1})|}{\beta_{n,k_0}} \\
+ \frac{2|\alpha_n - \alpha_{n-1}|}{\beta_{n,k_0}} \\
+ \frac{[\beta_n - \beta_{n-1}]}{\beta_{n,k_0}} + \frac{[\sigma_n - \sigma_{n-1}]}{\beta_{n,k_0}} \\
\leq [1 - (1 - \rho)\beta_n] \frac{\|x_n - x_{n-1}\|}{\beta_{n-1,k_0}} + \beta_n \tau \|x_n - x_{n-1}\| \\
+ M \left[\frac{|r_n - r_{n-1}|}{b\beta_{n,k_0}} + \sum_{k=1}^{N} \frac{|\beta_{n,k} - \beta_{n-1,k}|}{\beta_{n,k_0}} \\
+ \frac{|y_n^T (1 - \sigma_n) - y_{n-1}^T (1 - \sigma_{n-1})|}{\beta_{n,k_0}} \\
+ \frac{2|\alpha_n - \alpha_{n-1}|}{\beta_{n,k_0}} + \frac{[\beta_n - \beta_{n-1}]}{\beta_{n,k_0}} + \frac{[\sigma_n - \sigma_{n-1}]}{\beta_{n,k_0}} \right].
\end{align*}
\]

(68)

Proof. Let \(p \in \Omega \). Then, by Lemma 11 we have

\[
\|y_n - p\|^2 \\
= \|\beta_n (Q_{y,n} - p) + (1 - \beta_n) (\tau_{y,n} - p)\|^2 \\
\leq \beta_n \|Q_{y,n} - p\|^2 + (1 - \beta_n) \|\tilde{y}_{n,N} - p\|^2 \\
= \beta_n \|Q_{y,n} - p\|^2 + (1 - \beta_n) \\
\times \|p_C (I - \lambda v f_{\alpha_n}) y_{n,N} - p_C (I - \lambda \nabla f)p\|^2 \\
\leq \beta_n \|Q_{y,n} - p\|^2 + (1 - \beta_n) \\
\times \|I - \lambda \nabla f\| \|y_{n,N} - (I - \lambda \nabla f)p\|^2 \\
\leq \beta_n \|Q_{y,n} - p\|^2 + (1 - \beta_n) \]

\[
\left[\|Q_{y,n} - p\|^2 + (1 - \beta_n) \right] \\
\times \left[\|I - \lambda \nabla f\| \|y_{n,N} - (I - \lambda \nabla f)p\|^2 \\
- 2\lambda \alpha_n \|y_{n,N} - (I - \lambda \nabla f)p\|^2 \right. \\
\leq \beta_n \|Q_{y,n} - p\|^2 + (1 - \beta_n) \).
\]

(71)

Therefore, utilizing Lemma 9, from (H1), (H7), and the asymptotical regularity of \(\{x_n\} \) (due to Lemma 16), we deduce that

\[
\lim_{n \to \infty} \frac{\|x_{n+1} - x_n\|}{\beta_{n,k_0}} = 0. \tag{69}
\]

Lemma 20. Let one suppose that \(\Omega \neq \emptyset \). Let one suppose that (H1)--(H6) hold. Then,

\[
\lim_{n \to \infty} \|\tilde{y}_{n,N} - y_n\| = \lim_{n \to \infty} \|\tilde{y}_n - y_n\| = 0. \tag{70}
\]
Since \(\alpha_n \to 0 \), \(\beta_n \to 0 \), \(\|x_n - y_n\| \to 0 \), and \(0 < \lambda < 2/L \), from the boundedness of \(\{x_n\} \), \(\{y_n\} \), and \(\{y_n,N\} \) it follows that
\[
\lim_{n \to \infty} \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| = 0,
\]
and hence
\[
\lim_{n \to \infty} \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| = 0. \tag{73}
\]
Moreover, from the firm nonexpansiveness of \(P_C \) we obtain
\[
\begin{align*}
\|\bar{y}_{n,N} - p\|^2 & = \|P_C(I - \lambda \nabla f)u_{n,N} - P_C(I - \lambda \nabla f)p\|^2 \\
& \leq \left\langle (I - \lambda \nabla f_{a_n})u_{n,N} - (I - \lambda \nabla f)p, \bar{y}_{n,N} - p \right\rangle \\
& = \frac{1}{2} \left\{ \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2 + \|\bar{y}_{n,N} - p\|^2 - \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p - (\bar{y}_{n,N} - p)\|^2 \right\} \\
& \leq \frac{1}{2} \left\{ \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2 + 2\lambda \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \times \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p\| \\
& + 2\lambda \left(y_{n,N} - \bar{y}_{n,N}, \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \right) \\
& - \lambda^2 \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2 \right\},
\end{align*}
\]
and so
\[
\begin{align*}
\|\bar{y}_{n,N} - p\|^2 & \leq \|y_{n,N} - p\|^2 - \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2 \\
& + 2\lambda \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \times \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p\| \\
& + 2\lambda \left(y_{n,N} - \bar{y}_{n,N}, \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \right) \\
& - \lambda^2 \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2.
\end{align*}
\]
Thus, we have
\[
\begin{align*}
\|y_n - p\|^2 & \leq \beta_n \|Qy_{n,N} - p\|^2 + (1 - \beta_n) \|\bar{y}_{n,N} - p\|^2 \\
& \leq \beta_n \|Qy_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \\
& - \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2 \\
& + 2\lambda \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \times \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p\| \\
& + 2\lambda \left(y_{n,N} - \bar{y}_{n,N}, \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \right) \\
& - \lambda^2 \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2,
\end{align*}
\]
which implies that
\[
(1 - \beta_n) \|y_{n,N} - \bar{y}_{n,N}\|^2 \\
\leq \beta_n \|Qy_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \\
- \|y_n - p\|^2 + 2\lambda \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \\
\times \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p\| \\
+ 2(1 - \beta_n) \lambda \left(y_{n,N} - \bar{y}_{n,N}, \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \right) \\
- \lambda^2 \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2,
\]
\[
\leq \beta_n \|Qy_{n,N} - p\|^2 + \|x_n - p\|^2 \\
- \|y_n - p\|^2 + 2\lambda \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \\
\times \|\nabla f_{a_n}(y_{n,N}) - (I - \lambda \nabla f)p\| \\
+ 2(1 - \beta_n) \lambda \left(y_{n,N} - \bar{y}_{n,N}, \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \right) \\
- \lambda^2 \|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\|^2.
\]
Since \(\beta_n \to 0 \), \(\|x_n - y_n\| \to 0 \), and \(\|\nabla f_{a_n}(y_{n,N}) - \nabla f(p)\| \to 0 \), from the boundedness of \(\{x_n\} \), \(\{y_n\} \), \(\{y_n,N\} \), and \(\{\bar{y}_{n,N}\} \), it follows that \(\lim_{n \to \infty} \|y_{n,N} - \bar{y}_{n,N}\| = 0 \). Observe that
\[
\|y_n - \bar{y}_{n,N}\| = \beta_n \|Qy_{n,N} - \bar{y}_{n,N}\| \to 0 \quad \text{as} \quad n \to \infty, \tag{78}
\]
and hence
\[
\|\bar{y}_{n,N} - y_n\| \\
\leq \|\bar{y}_{n,N} - y_{n,N}\| + \|y_{n,N} - y_n\| \\
= \|P_C \left(I - \lambda \nabla f_{a_n} \right) y_n - P_C \left(I - \lambda \nabla f_{a_n} \right) y_{n,N} + \|\bar{y}_{n,N} - y_{n,N}\| \\
\leq \|y_n - y_{n,N}\| + \|y_{n,N} - y_n\| \\
\leq \|y_{n,N} - y_{n,N}\| + \|y_{n,N} - y_{n}\| + \|\bar{y}_{n,N} - y_{n}\| \\
= 2 \|y_n - \bar{y}_{n,N}\| + \|\bar{y}_{n,N} - y_{n,N}\| \to 0 \quad \text{as} \quad n \to \infty. \tag{79}
\]
Thus, \(\lim_{n \to \infty} \|\bar{y}_{n,N} - y_n\| = 0 \).
\[\square\]

Lemma 21. Let one suppose that \(\Omega \neq \emptyset \). Let one suppose that \(0 < \lim \inf_{n \to \infty} \beta_n \leq \lim \sup_{n \to \infty} \beta_n \leq 1 \) for each \(i = 1, \ldots, N \). Moreover, suppose that \((H1)-(H6) \) are satisfied. Then, \(\lim_{n \to \infty} \|S_{n} - I_{n}\| = 0 \) for each \(i = 1, \ldots, N \).
Proof. First of all, observe that

\[x_{n+1} - y_n = y_n (\tilde{y}_n - y_n) + \delta_n (T\tilde{y}_n - y_n) \]

\[= y_n (\tilde{y}_n - y_n) + \delta_n (T\tilde{y}_n - Ty_n) + \delta_n (Ty_n - y_n). \]

(80)

By Lemmas 16 and 20, we know that \(\|x_{n+1} - x_n\| \to 0 \) and \(\|\tilde{y}_n - y_n\| \to 0 \) as \(n \to \infty \). Hence, utilizing Lemma 7(i), we have

\[\|\delta_n (Ty_n - y_n)\| \]

\[= \|x_{n+1} - y_n (\tilde{y}_n - y_n) - \delta_n (T\tilde{y}_n - Ty_n)\| \]

\[\leq \|x_{n+1} - y_n\| + \|y_n \tilde{T}_n - y_n\| + \delta_n \|T\tilde{y}_n - Ty_n\| \]

\[\leq \|x_{n+1} - y_n\| + \|y_n - y_n\| + \|T\tilde{y}_n - Ty_n\| \]

\[\leq \|x_{n+1} - x_n\| + \|x_n - y_n\| + \|y_n - y_n\| + \frac{1 + \alpha}{1 - \alpha} \|\tilde{y}_n - y_n\| \]

\[= \|x_{n+1} - x_n\| + \|x_n - y_n\| + \frac{2}{1 - \alpha} \|\tilde{y}_n - y_n\|, \]

(81)

which together with \(\|x_n - y_n\| \to 0 \) implies that \(\lim_{n \to \infty} \|\delta_n (Ty_n - y_n)\| = 0 \). Taking into account \(\lim \inf_{n \to \infty} \|\delta_n\| > 0 \), we have

\[\lim_{n \to \infty} \|Ty_n - y_n\| = 0. \]

(82)

Let us show that for each \(i \in \{1, \ldots, N\} \), one has \(\|S_n u_n - y_{n,i} - 1\| \to 0 \) as \(n \to \infty \). Let \(\rho_1 \in \Omega \). When \(i = N \), by Lemma 11, we have from (33)-(34) the following:

\[\|y_n - p\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + (1 - \beta_n) \|\tilde{y}_n - N - 1\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|\tilde{y}_n - N - 1\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + (\|y_{n,N} - p\| + \alpha_n \|p\|)^2 \]

\[= \beta_n \|Q y_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[= \beta_n \|Q y_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \]

\[+ (1 - \beta_n) \|y_{n,N} - p\|^2 \]

\[- \beta_n (1 - \beta_n) \|S_N u_n - y_{n,N-1}\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|u_n - p\|^2 \]

\[- \beta_n (1 - \beta_n) \|S_N u_n - y_{n,N-1}\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[+ \alpha_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \].

(83)

So, we have

\[\beta_n (1 - \beta_n) \|S_N u_n - y_{n,N-1}\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|u_n - p\|^2 \]

\[- \beta_n (1 - \beta_n) \|S_N u_n - y_{n,N-1}\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \].

(84)

Since \(\alpha_n \to 0 \), \(\beta_n \to 0 \), \(0 < \lim \inf_{n \to \infty} \beta_n \leq \lim \sup_{n \to \infty} \beta_n \), \(\beta_n \leq \beta_n N \) \in \{1, \ldots, N - 1\}\), it is known that \(\{\|S_N u_n - y_{n,N-1}\|\} \) is a null sequence.

Let \(i \in \{1, \ldots, N - 1\} \). Then, one has

\[\|y_n - p\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|\tilde{y}_n - N - 1\|^2 \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + (\|y_{n,N} - p\| + \lambda_n \|p\|)^2 \]

\[= \beta_n \|Q y_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \]

\[+ (1 - \beta_n) \|y_{n,N-1} - 1\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \|y_{n,N} - p\|^2 \]

\[+ (1 - \beta_n) \|y_{n,N-1} - 1\|^2 \]

\[+ \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[+ \alpha_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[\leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \]

\[+ \alpha_n \|p\| (2 \|y_{n,N} - p\| + \alpha_n \|p\|) \].

(84)
\begin{equation}
+ (\beta_{N,N} + (1 - \beta_{N,N}) \beta_{N-1,N}) \|x_n - p\|^2
+ \prod_{k=N-1}^{N} (1 - \beta_{n,k}) \|y_{n,N-2} - p\|^2,
\end{equation}
and so, after \((N - i + 1)\) iterations,
\begin{align*}
\|y_n - p\|^2 & \leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda \alpha_{n} \|p\| \left(2 \|y_{n,N} - p\| + \lambda \alpha_{n} \|p\|\right) \\
& + \left(\beta_{n,N} + \sum_{j=2}^{N} \left(\prod_{1}^{N} (1 - \beta_{n,j})\right) \beta_{n,j-1}\right) \\
& \times \|x_n - p\|^2 + \prod_{k=N-1}^{N} (1 - \beta_{n,k}) \|y_{n,j} - p\|^2 \\
& \leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda \alpha_{n} \|p\| \left(2 \|y_{n,N} - p\| + \lambda \alpha_{n} \|p\|\right) \\
& + \left(\beta_{n,N} + \sum_{j=2}^{N} \left(\prod_{1}^{N} (1 - \beta_{n,j})\right) \beta_{n,j-1}\right) \\
& \times \|x_n - p\|^2 + \prod_{k=N-1}^{N} (1 - \beta_{n,k}) \\
& \times \left[\beta_{n,N} \|S u_{n} - p\|^2 + (1 - \beta_{n,N}) \|y_{n,j-1} - p\|^2\right] \\
& \leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda \alpha_{n} \|p\| \left(2 \|y_{n,N} - p\| + \lambda \alpha_{n} \|p\|\right) \\
& + \|x_n - p\|^2 - \beta_{n,N} \prod_{k=N-1}^{N} (1 - \beta_{n,k}) \|S u_{n} - y_{n,j-1}\|^2.
\end{align*}
Again, we obtain that
\begin{equation}
\beta_{n,N} \prod_{k=N-1}^{N} (1 - \beta_{n,k}) \|S u_{n} - y_{n,j-1}\|^2
\end{equation}
\begin{align*}
& \leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda \alpha_{n} \|p\| \left(2 \|y_{n,N} - p\| + \lambda \alpha_{n} \|p\|\right) \\
& + \|x_n - p\|^2 - \|y_n - p\|^2 \\
& \leq \beta_n \|Q y_{n,N} - p\|^2 + \lambda \alpha_{n} \|p\| \left(2 \|y_{n,N} - p\| + \lambda \alpha_{n} \|p\|\right) \\
& + \left(\|x_n - p\|^2 + \|y_n - p\|\right) \|x_n - y_n\|.
\end{align*}
Since \(\alpha_n \to 0, \beta_n \to 0, 0 < \liminf_{n \to \infty} \beta_{n,i} \leq \limsup_{n \to \infty} \beta_{n,i} < 1\) for each \(i = 1, \ldots, N - 1\), and \(\lim_{n \to \infty} \|S u_{n} - y_{n,i}\| = 0\), it is known that
\begin{equation}
\lim_{n \to \infty} \|S u_{n} - y_{n,i}\| = 0.
\end{equation}
Obviously, for \(i = 1\), we have \(\|S_1 u_{n} - u_n\| \to 0\). To conclude, we have that
\begin{equation}
\|S_2 u_{n} - u_n\| \leq \|S_2 u_{n} - y_{n,1}\| + \|y_{n,1} - u_n\|
\end{equation}
\begin{equation}
= \|S_2 u_{n} - y_{n,1}\| + \beta_{n,1} \|S_1 u_{n} - u_n\|
\end{equation}
from which \(\|S_2 u_{n} - u_n\| \to 0\). Thus, by induction \(\|S_i u_{n} - u_n\| \to 0\) for all \(i = 1, \ldots, N\) since it is enough to observe that
\begin{equation}
\|S_1 u_{n} - u_n\|
\end{equation}
\begin{equation}
\leq \|S_1 u_{n} - y_{n,1}\| + \|y_{n,1} - S_1 u_{n}\| + \|S_1 u_{n} - u_n\|
\end{equation}
\begin{equation}
\leq \|S_1 u_{n} - y_{n,1}\| + (1 - \beta_{n,1}) \|S_1 u_{n} - y_{n,2}\|
\end{equation}
\begin{equation}
+ \|S_1 u_{n} - u_n\|
\end{equation}
\begin{equation}
\leq 0.
\end{equation}

Remark 2. As an example, we consider \(N = 2\) and the following sequences:
(a) \(\sigma_n = 1/2 + 2/n, \gamma_n = \delta_n = 1/4 - 1/n\) for all \(n > 4\);
(b) \(\beta_n = 1/\sqrt{n}, r_n = 2 - 1/n\) for all \(n > 1\);
(c) \(\beta_{n,1} = 1/2 - 1/n, \beta_{n,2} = 1/2 - 1/n^2\) for all \(n > 2\).

Then, they satisfy the hypotheses on the parameter sequences in Lemma 21.

Lemma 23. Let one suppose that \(\Omega \neq 0\) and \(\beta_{n,i} \to \beta_i\) for all \(i = n \to \infty\). Suppose there exists \(k \in \{1, \ldots, N\}\) such that \(\beta_{n,k} \to 0\) as \(n \to \infty\). Let \(k_0 \in \{1, \ldots, N\}\) be the largest index such that \(\beta_{n,k_0} \to 0\) as \(n \to \infty\). Suppose that
(i) \((\alpha_n + \beta_n) / \beta_{n,k_0} \to 0\) as \(n \to \infty\);
(ii) if \(i \leq k_0\) and \(\beta_{n,i} \to 0\), then \(\beta_{n,k_0} / \beta_{n,i} \to 0\) as \(n \to \infty\);
(iii) if \(\beta_{n,i} \to \beta_i \neq 0\), then \(\beta_i\) lies in \((0,1)\).

Moreover, suppose that \((\text{H1}), (\text{H7}), \text{and (H8)}\) hold. Then,
\(\lim_{n \to \infty} \|S_i u_{n} - u_n\| = 0\) for each \(i = 1, \ldots, N\).

Proof. First of all, we note that if \((\text{H7})\) holds, then also \((\text{H2})\)–\((\text{H6})\) are satisfied. So \(\{x_n\}\) is asymptotically regular. Let \(k_0\) be as in the hypotheses. As in Lemma 21, for every index \(i \in \{1, \ldots, N\}\) such that \(\beta_{n,i} \to \beta_i \neq 0\) (which leads to \(0 < \liminf_{n \to \infty} \beta_{n,i} \leq \limsup_{n \to \infty} \beta_{n,i} < 1\)), one has \(\|S u_{n} - y_{n,i}\| \to 0\) as \(n \to \infty\).

For all the other indexes \(i \leq k_0\), we can prove that \(\|S_i u_{n} - y_{n,i}\| \to 0\) as \(n \to \infty\) in a similar manner. By the following relation (due to (86)):
\begin{equation}
\|x_{n+1} - p\|^2
\end{equation}
\begin{equation}
\leq \sigma_n \|y_n - p\|^2 + (\gamma_n + \delta_n) \|\bar{y}_n - p\|^2
\end{equation}
\begin{equation}
= \sigma_n \|y_n - p\|^2 + (1 - \sigma_n) \|\bar{y}_n - p\|^2
\end{equation}
\[
\begin{align*}
\leq \sigma_n \| y_n - p \|^2 + (1 - \sigma_n) \left(\| y_n - p \| + \lambda_n \| p \| \right)^2 \\
\leq (\| y_n - p \| + \lambda_n \| p \|)^2 \\
= \| y_n - p \|^2 + \lambda_n \| p \| (2 \| y_n - p \| + \lambda_n \| p \|) \\
\leq \beta_n \| Q y_{n,n} - p \|^2 + \lambda_n \| p \| (2 \| y_{n,n} - p \| + \lambda_n \| p \|) \\
+ \| x_n - p \|^2 - \beta_n \sum_{k=1}^{N} (1 - \beta_n) \| S u_n - y_{n-1,j} \|^2 \\
+ \lambda_n \| p \| (2 \| y_n - p \| + \lambda_n \| p \|) \\
\leq \beta_n \| Q y_{n,n} - p \|^2 + 2 \lambda_n \| p \| \\
\times (\| x_n - p \| + \| y_n - p \| + \lambda_n \| p \|) \\
+ \| x_n - p \|^2 - \beta_n \sum_{k=1}^{N} (1 - \beta_n) \| S u_n - y_{n,j-1} \|^2,
\end{align*}
\] (91)

we immediately obtain that
\[
\prod_{k=1}^{N} (1 - \beta_n) \| S u_n - y_{n-1,j} \|^2 \\
\leq \frac{\beta_n}{\beta_{n,j}} \| Q y_{n,n} - p \|^2 + \frac{\lambda_n}{\beta_{n,j}} 2 \lambda \| p \| \\
\times (\| x_n - p \| + \| y_n - p \| + \lambda_n \| p \|) \\
+ \| x_n - p \|^2 - \frac{\beta_n}{\beta_{n,k}} \| x_{n+1} - x_n \|.
\] (92)

By Lemma 19 or by hypothesis (ii) of the sequences, we have
\[
\frac{\| x_n - x_{n+1} \|}{\beta_{n,j}} = \frac{\| x_n - x_{n+1} \|}{\beta_{n,k} \beta_{n,j}} \to 0.
\] (93)

So, the thesis follows. \Box

Remark 24. Let us consider \(N = 3 \) and the following sequences:

(a) \(\alpha_n = 1/n^{5/4} \), \(\beta_n = 1/n^{1/2} \), \(r_n = 2 - 1/n^2 \), for all \(n > 1 \);
(b) \(\alpha_n = 1/2 + 2/n^2 \), \(\gamma_n = \delta_n = 1/4 - 1/n^2 \), for all \(n > 2 \);
(c) \(\beta_{n,1} = 1/n^{1/4} \), \(\beta_{n,2} = 1/2 - 1/n^2 \), \(\beta_{n,3} = 1/n^{1/3} \), for all \(n > 1 \).

It is easy to see that all hypotheses (i)–(iii), (H1), (H7), and (H8) of Lemma 23 are satisfied.

Remark 25. Under the hypotheses of Lemma 23, analogously to Lemma 21, one can see that
\[
\lim_{n \to \infty} \| S u_n - y_{n-1,j} \| = 0, \quad \forall i \in \{2, \ldots, N\}.
\] (94)

Corollary 26. Let one suppose that either Lemma 21 or Lemma 23 are satisfied. Then, \(\omega_n(x_n) = \omega_n(u_n) = \omega_n(y_{n,1}) \), \(\omega_n(x_n) = \omega_n(u_n) = \omega_n(y_{n,1}) \), and \(\omega_n(x_n) = \omega_n(u_n) \subset \Omega \).

Proof. By Remark 18, we have \(\omega_n(x_n) = \omega_n(u_n) \) and \(\omega_n(y_{n,1}) = \omega_n(u_n) \). Observe that
\[
\| x_n - y_{n,1} \| \leq \| x_n - u_n \| + \| y_{n,1} - u_n \| = \| x_n - u_n \| + \beta_{n,1} \| S u_n - u_n \|.
\] (95)

By Lemmas 17 and 21, \(\| x_n - u_n \| \to 0 \) and \(\| S u_n - u_n \| \to 0 \) as \(n \to \infty \), and hence
\[
\lim_{n \to \infty} \| x_n - y_{n,1} \| = 0.
\] (96)

So, we get \(\omega_n(x_n) = \omega_n(y_{n,1}) \) and \(\omega_n(x_n) = \omega_n(y_{n,1}) \).

Let \(p \in \omega_n(x_n) \). Since \(p \in \omega_n(u_n) \), by Lemma 21 and Lemma 7(ii) (demiclosedness principle), we have \(p \in \text{Fix}(S_i) \) for all index \(i \), that is, \(p \in \bigcap_i \text{Fix}(S_i) \). Taking into consideration that \(T \) is \(\xi \)-strictly pseudocontractive, by Lemma 7(i), we get
\[
\| T x_n - x_n \| \\
\leq \| T x_n - T y_n \| + \| T y_n - y_n \| + \| y_n - x_n \| \\
\leq \frac{1}{1 - \xi} \| x_n - y_n \| + \| y_n - T y_n \| + \| y_n - x_n \| \\
= \frac{2}{1 - \xi} \| x_n - y_n \| + \| y_n - T y_n \|,
\] (97)

which together with \(\| x_n - y_n \| \to 0 \) (by Lemma 17) and \(\| y_n - T y_n \| \to 0 \) (by (82)) implies that
\[
\lim_{n \to \infty} \| x_n - T x_n \| = 0.
\] (98)

Utilizing Lemma 7(ii) (demiclosedness principle), we have \(p \in \text{Fix}(T) \). Furthermore, by Lemmas 14 and 17, we know that \(p \in \text{EP}(F, h) \). Finally, by similar argument as in [18], we can show that \(p \in \Gamma \), and as a result \(p \in \Omega \). \Box

Theorem 27. Let one suppose that \(\Omega \neq \emptyset \). Let \(\{ \beta_n \}, \{ \beta_{n,j} \}, i = 1, \ldots, N \), be sequences in \((0, 1)\) such that \(0 < \liminf_{n \to \infty} \beta_{n,j} \leq \limsup_{n \to \infty} \beta_{n,j} < 1 \) for all index \(i \). Moreover, Let one suppose that (H1)–(H6) hold. Then, the sequences \(\{ x_n \}, \{ y_n \}, \) and \(\{ u_n \} \), explicitly defined by scheme (30), all converge strongly to the unique solution \(x^* \in \Omega \) of the following variational inequality:
\[
\langle Q x^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega.
\] (99)

Proof. Since the mapping \(P_{\Omega}Q \) is a \(p \)-contraction, it has a unique fixed point \(x^* \); it is the unique solution of (99). Since (H1)–(H6) hold, the sequence \(\{ x_n \} \) is asymptotically regular (by Lemma 16). In terms of Lemma 17, \(\| x_n - y_n \| \to 0 \) and
\[\| x_n - u_n \| \to 0 \text{ as } n \to \infty. \] Moreover, utilizing Lemmas 8 and 10, we have from (33)-(34) the following:

\[
\begin{align*}
\| x_{n+1} - x^* \|^2 \\
\leq & \sigma_n \| y_n - x^* \|^2 + (1 - \sigma_n) \| y_n - x^* \|^2 \\
\leq & \sigma_n \| y_n - x^* \|^2 + (1 - \sigma_n) (\| y_n - x^* \| + \lambda \alpha_n \| p \|)^2 \\
\leq & (\| y_n - x^* \| + \lambda \alpha_n \| p \|)^2 \\
\leq & \beta_n (Qy_{n, N} - Qx^*) + (1 - \beta_n) (\bar{y}_{n, N} - x^*) \\
+ & 2 \beta_n \langle Qx^* - x^*, y_n - x^* \rangle \\
+ & \lambda \alpha_n \| p \| (2 \| y_n - x^* \| + \lambda \alpha_n \| p \|)
\end{align*}
\]

(100)

Now, let \(\{ x_{n_k} \} \) be a subsequence of \(\{ x_n \} \) such that

\[
\text{lim sup}_{n \to \infty} \langle Qx^* - x^*, y_n - x^* \rangle = \text{lim sup}_{k \to \infty} \langle Qx^* - x^*, x_{n_k} - x^* \rangle.
\]

(101)

By the boundedness of \(\{ x_n \} \), we may assume, without loss of generality, that \(x_{n_k} \to z \in \omega_w(x_n) \). According to Corollary 26, we know that \(\omega_w(x_n) \subseteq \Omega \), and hence \(z \in \Omega \). Taking into consideration that \(x^* = P_\Omega Qx^* \) we obtain from (101) that

\[
\text{lim sup}_{n \to \infty} \langle Qx^* - x^*, y_n - x^* \rangle = \text{lim sup}_{n \to \infty} \left[\langle Qx^* - x^*, x_n - x^* \rangle + \langle Qx^* - x^*, y_n - x_n \rangle \right]
\]

(102)

Since \(\sum_{i=0}^{\infty} \alpha_n < \infty \) and \(\sum_{i=0}^{\infty} \beta_n = \infty \), we deduce that \(\sum_{i=0}^{\infty} \lambda \alpha_n \| p \| (2 \| y_n - x^* \| + \lambda \alpha_n \| p \|) < \infty \) and \(\sum_{i=0}^{\infty} (1 - \rho) \beta_n = \infty \). In terms of Lemma 9 we derive \(x_{n_k} \to z^* \) as \(n \to \infty \). □

In a similar way, we can derive the following result.

Theorem 28. Let one suppose that \(\Omega \neq \emptyset \). Let \(\{ \beta_{n,i} \}, \{ \beta_{n,i} \}, i = 1, \ldots, N \), be sequences in \((0,1) \) such that \(\beta_{n,i} \to \beta_i \) for all \(i \) as \(n \to \infty \). Suppose that there exists \(k \in \{ 1, \ldots, N \} \) for which \(\beta_{n,k} \to 0 \) as \(n \to \infty \). Let \(k_0 \in \{ 1, \ldots, N \} \) the largest index for which \(\beta_{n,k_0} \to 0 \). Moreover, let one suppose that (H1), (H7), and (H8) hold, and

(i) \((\alpha_n + \beta_n)/\beta_{n,k_0} \to 0 \) as \(n \to \infty \);

(ii) if \(i \leq k_0 \) and \(\beta_{n,i} \to 0 \), then \(\beta_{n,i}/\beta_{n,i} \to 0 \) as \(n \to \infty \);

(iii) if \(\beta_{n,i} \to \beta_i \neq 0 \), then \(\beta_i \) lies in \((0,1) \).

Then, the sequences \(\{ x_j \}, \{ y_j \}, \) and \(\{ u_n \} \) explicitly defined by scheme (30) all converge strongly to the unique solution \(x^* \in \Omega \) of the following variational inequality:

\[
\langle Qx^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega.
\]

(103)

Remark 29. According to the above argument processes for Theorems 27 and 28, we can readily see that if in scheme (30), the iterative step \(y_n = \beta_n Qy_{n, N} + (1 - \beta_n) P_{\Omega}(y_{n, N} - \lambda \nabla f_{\alpha}(y_{n, N})) \) is replaced by the iterative one \(y_n = \beta_n Qx_n + (1 - \beta_n) P_{\Omega}(y_{n, N} - \lambda \nabla f_{\alpha}(y_{n, N})) \), then Theorems 27 and 28 remain valid.

Remark 30. Theorems 27 and 28 improve, extend, supplement, and develop [17, Theorems 3.12 and 3.13] and [1, Theorems 5.2 and 6.1] in the following aspects:

(a) the multistep iterative scheme (30) of [17] is extended to develop our relaxed viscosity iterative scheme (30) with regularization for MP (3), EP (10), and strict pseudocontraction \(T \) by virtue of Xu iterative schemes in [1];

(b) the argument techniques in Theorems 27 and 28 are very different from the ones in [17, Theorems 3.12 and 3.13] and the ones in [1, Theorems 5.2 and 6.1] because we use the properties of strict pseudocontractive mappings and maximal monotone mappings (see, e.g., Lemmas 7 and 10);
(c) compared with the proof of Theorems 5.2 and 6.1 in [1], the proof of Theorems 27 and 28 shows that
\[
\lim_{n \to \infty} \| y_{n,N} - P_C(I - \lambda \nabla f_{a_n}) y_{n,N} \| = 0 \text{ via the argument of}
\]
\[
\lim_{n \to \infty} \| \nabla f_{a_n}(y_{n,N}) - \nabla f(p) \| = 0, \text{ for all } p \in \Omega \text{ (see}
\]
\[
\text{Lemma 20 and its proof)}); \]

(d) the problem of finding an element of \(\text{Fix}(T) \cap \bigcap_{i=1}^N \text{Fix}(S_i) \cap \text{EP}(F, h) \cap \Gamma \) in Theorems 27 and 28 is
more general than the one of finding an element of \(\text{Fix}(T) \cap \bigcap_{i=1}^N \text{Fix}(S_i) \cap \text{EP}(F, h) \) in [17, Theorems 3.12 and 3.13] and the one of finding an element of \(\Gamma \) in [1, Theorems 5.2 and 6.1].

4. Applications

For a given nonlinear mapping \(A : C \to H \), we consider
again the variational inequality problem (VIP) of finding \(x \in C \) such that
\[
\langle Ax, y - x \rangle \geq 0, \quad \forall y \in C. \quad (104)
\]

Recall that if \(u \) is a point in \(C \), then the following relation holds:
\[
u \in \text{VI}(C, A) \iff u = P_C(I - \lambda A) u, \quad \text{for some } \lambda > 0, \quad (105)
\]
from which we have the following relation:
\[
u \in \Gamma \iff u \in \text{VI}(C, \nabla f) \iff u = P_C(I - \lambda \nabla f) u,
\]
for some \(\lambda > 0. \)

An operator \(A : C \to H \) is said to be an \(\alpha \)-inverse
strongly monotone operator if there exists a constant \(\alpha > 0 \) such that
\[
\langle Ax - Ay, x - y \rangle \geq \alpha \| Ax - Ay \|^2, \quad \forall x, y \in C. \quad (107)
\]

As an example, we recall that the \(\alpha \)-inverse strongly
monotone operators are firmly nonexpansive mappings if \(\alpha \geq 1 \) and that every \(\alpha \)-inverse strongly
monotone operator is also a \((1/\alpha)\) Lipschitz continuous (see [19]). We observe that, if \(A \)
is \(\alpha \)-inverse strongly monotone, the mapping \(P_C(I - \mu A) \) is nonexpansive for all \(\mu \in (0, 2\alpha) \) since they are compositions of nonexpansive mappings (see [19, page 419]).

Let us consider \(S_1, \ldots, S_M \) a finite number of nonexpansive
self-mappings on \(C \) and \(A_1, \ldots, A_N \) be a finite number of \(\alpha \)-inverse
strongly monotone operators. Let \(T : C \to C \) be a \(\zeta \)-strict pseudoncontraction on \(C \) with fixed points. Let
us consider the following mixed problem of finding \(x^* \in \text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma \) such that
\[
\left\{ \begin{array}{l}
\langle (1 - S_1) x^*, y - x^* \rangle \geq 0, \quad \forall y \in \text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma, \\
\langle (1 - S_2) x^*, y - x^* \rangle \geq 0, \quad \forall y \in \text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma, \\
\vdots \\
\langle (1 - S_M) x^*, y - x^* \rangle \geq 0, \quad \forall y \in \text{EP}(F, h) \cap \Gamma,
\end{array} \right.
\]
\[
\Rightarrow \langle T x^*, y - x^* \rangle \geq 0, \quad \forall y \in \text{EP}(F, h) \cap \Gamma,
\]
\[
\therefore \langle Q x^*, y - x^* \rangle \geq 0, \quad \forall y \in \Omega. \quad (108)
\]

We denote by (SVI) the set of solutions of the above \((N + M)\) system. This problem is equivalent to finding a common
fixed point of \(T, \{P_{\text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma} \}^N_{i=1}, \{P_C(I - \mu A_i) \}^M_{j=1} \). The following results are then consequences of Theorems 27 and 28.

Theorem 31. Let one suppose that \(\Omega = \text{Fix}(T) \cap \text{SVI} \cap \text{EP}(F, h) \cap \Gamma \neq \emptyset \). Fix \(\mu \in (0, 2\alpha] \), and \(\lambda \in (0, 2/L) \). Let \(\{x_n\}, \{\beta_{n,i}\}, \{\psi_{n,j}\}, i = 1, \ldots, (M + N), \) be sequences in (0, 1) such that
\[
0 < \liminf_{n \to \infty} \beta_{n,i} \leq \limsup_{n \to \infty} \beta_{n,i} < 1 \text{ for all index } i. \text{ Moreover, Let one suppose that (H1)-(H6) hold. Then the sequences \(\{x_n\}, \{\psi_{n,j}\}, \) and \(\{u_n\} \) explicitly defined by the following scheme:
\]
\[
F(u_n, y) + h(u_n, y) + \frac{1}{r_n} (y - u_n, u_n - x_n) \geq 0, \quad \forall y \in C, \quad (109)
\]
\[
y_{n,1} = \beta_{n,1} P_{\text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma} S_1 u_n + (1 - \beta_{n,1}) u_n,
\]
\[
y_{n,i} = \beta_{n,i} P_{\text{Fix}(T) \cap \text{EP}(F, h) \cap \Gamma} S_i u_n + (1 - \beta_{n,i}) u_n
\]
\[
+ (1 - \beta_{n,i}) y_{n,i-1}, \quad i = 2, \ldots, M,
\]
\[
y_{n,M+1} = \beta_{n,M+1} P_C(I - \mu A_i) u_n + (1 - \beta_{n,M+1}) u_n
\]
\[
+ \delta_n TP_C(y_n - \lambda \nabla f_{a_n}(y_n)) + \delta_n u_n,
\]
\[
x_{n+1} = \sigma_n y_n + \eta_n P_C(y_n - \lambda \nabla f_{a_n}(y_n)) + \delta_n u_n, \quad \forall n \geq 0,
\]
\[
\text{all converge strongly to the unique solution } x^* \in \Omega \text{ of the following variational inequality:}
\]
\[
\langle Q x^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega. \quad (110)
\]
Theorem 32. Let one suppose that $\Omega \neq 0$. Fix $\mu \in (0, 2\alpha]$ and $\lambda \in (0, 2/L)$. Let $\{\beta_{n,i}\}, \{\beta_{n,i}\}, i = 1, \ldots, (M + N)$, be sequences in $(0, 1)$ and $\beta_{n,i} \to \beta_i$ for all i as $n \to \infty$. Suppose that there exists $k \in \{1, \ldots, M + N\}$ such that $\beta_{n,k} \to 0$ as $n \to \infty$. Let $k_0 \in \{1, \ldots, M + N\}$ be the largest index for which $\beta_{n,k_0} \to 0$. Moreover, let one suppose that $(H1), (H7)$, and $(H8)$ hold, and

(i) $(\alpha_n + \beta_{n,i})/\beta_{n,k_0} \to 0$ as $n \to \infty$;

(ii) if $i \leq k_0$ and $\beta_{n,i} \to 0$, then $\beta_{n,k}/\beta_{n,i} \to 0$ as $n \to \infty$;

(iii) if $\beta_{n,i} \to \beta_i \neq 0$, then β_i lies in $(0, 1)$.

Then, the sequences $\{x_n\}, \{y_n\}$, and $\{\gamma_n\}$ explicitly defined by scheme (109) all converge strongly to the unique solution $x^* \in \Omega$ of the following variational inequality:

$$\langle Qx^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega.$$ \hfill (113)

Remark 33. If we choose $\gamma = A_1 = \cdots = A_N = 0$ in system (108), we obtain a system of hierarchical fixed point problems introduced by Moudafi and Mainge [20, 21].

Further, utilizing Theorems 27 and 28, we again give the following strong convergence theorems for finding a common element of the solution set Γ of MP (3), the solution set $EP(F, h)$ of EP (10), and the common fixed point set $(\cap_{i} Fix(S_i))$ of a finite family of nonexpansive mappings $S_i : C \to C, i = 1, \ldots, N$.

Theorem 34. Let one suppose that $\Omega = (\cap_{i} Fix(S_i)) \cap EP(F, h) \cap \Gamma \neq 0$. Let $\{\beta_{n,i}\}, \{\beta_{n,i}\}, i = 1, \ldots, N$, be sequences in $(0, 1)$ such that $0 < \liminf_{n \to \infty} \beta_{n,i} \leq \limsup_{n \to \infty} \beta_{n,i} < 1$ for all index i. Moreover, let one suppose that there hold (H1)–(H6) with $\gamma_n = 0$, for all $n \geq 0$. Then, the sequences $\{x_n\}, \{y_n\}$, and $\{u_n\}$ generated explicitly by

$$F(u_n, y) + h(u_n, y) + \frac{1}{r_n}\langle y - u_n, u_n - x_n \rangle \geq 0, \quad \forall y \in C,$$

$$y_{n,1} = \beta_{n,1}S_1u_n + (1 - \beta_{n,1})u_n,$$

$$y_{n,i} = \beta_{n,i}S_iu_n + (1 - \beta_{n,i})y_{n,i-1}, \quad i = 2, \ldots, N,$$

$$y_i = \beta_{n,i}Qy_{n,i} + (1 - \beta_{n,i})P_C\left(y_{n,i} - \lambda\nabla f_{n,i}(y_{n,i})\right),$$

$$x_{n+1} = \sigma_n y_n + (1 - \sigma_n)P_C\left(y_n - \lambda\nabla f_{n,i}(y_n)\right), \quad \forall n \geq 0,$$ \hfill (112)

all converge strongly to the unique solution $x^* \in \Omega$ of the following variational inequality:

$$\langle Qx^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega.$$ \hfill (113)

Proof. In Theorems 27, put $T = I$ the identity mapping and $\gamma_n = 0$, for all $n \geq 0$. Then, T is a λ-strictly pseudocontractive mapping with $\lambda = 0$. Hence, we deduce that $\Omega = Fix(T) \cap \cap_{i} Fix(S_i) \cap EP(F, h) \cap \Gamma = \cap_{i} Fix(S_i) \cap EP(F, h) \cap \Gamma \neq 0$.

Thus, the conditions in Theorem 27 are all satisfied, and from which we obtain the desired result.

Theorem 35. Let one suppose that $\Omega = (\cap_{i} Fix(S_i)) \cap EP(F, h) \cap \Gamma \neq 0$. Let $\{\beta_{n,i}\}, \{\beta_{n,i}\}, i = 1, \ldots, N$, be sequences in $(0, 1)$ such that $\beta_{n,i} \to \beta_i$ for all i as $n \to \infty$. Suppose that there exists $k \in \{1, \ldots, N\}$ for which $\beta_{n,k} \to 0$ as $n \to \infty$. Let $k_0 \in \{1, \ldots, N\}$ be the largest index for which $\beta_{n,k_0} \to 0$. Moreover, let one suppose that there hold $(H1), (H7)$, and $(H8)$ with $\gamma_n = 0$, for all $n \geq 0$, and

(i) $(\alpha_n + \beta_{n,i})/\beta_{n,k_0} \to 0$ as $n \to \infty$;

(ii) if $i \leq k_0$ and $\beta_{n,i} \to 0$, then $\beta_{n,k}/\beta_{n,i} \to 0$ as $n \to \infty$;

(iii) if $\beta_{n,i} \to \beta_i \neq 0$, then β_i lies in $(0, 1)$.

Then the sequences $\{x_n\}, \{y_n\}$, and $\{u_n\}$ generated explicitly by (112) all converge strongly to the unique solution $x^* \in \Omega$ of the following variational inequality:

$$\langle Qx^* - x^*, z - x^* \rangle \leq 0, \quad \forall z \in \Omega.$$ \hfill (115)

Acknowledgments

This research was partially supported by the National Science Foundation of China (10717169), Innovation Program of Shanghai Municipal Education Commission (09ZZ133), and Leading Academic Discipline Project of Shanghai Normal University (DZL707). This research was partially supported by the Grant from the NSC 101-2115-M-037-001.

References

Submit your manuscripts at http://www.hindawi.com