Research Article

Pricing Options with Credit Risk in Markovian Regime-Switching Markets

Jinzi Li\(^1\) and Shixia Ma\(^2\)

\(^1\) College of Sciences, Minzu University of China, Beijing 100081, China
\(^2\) College of Sciences, Hebei University of Technology, Tianjin 300401, China

Correspondence should be addressed to Jinzhi Li; lijinzhi118@gmail.com

Received 16 February 2013; Revised 16 May 2013; Accepted 20 May 2013

Academic Editor: Shan Zhao

Copyright © 2013 J. Li and S. Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the valuation of European option with credit risk in a reduced form model when the stock price is driven by the so-called Markov-modulated jump-diffusion process, in which the arrival rate of rare events and the volatility rate of stock are controlled by a continuous-time Markov chain. We also assume that the interest rate and the default intensity follow the Vasicek models whose parameters are governed by the same Markov chain. We study the pricing of European option and present numerical illustrations.

1. Introduction

Pricing options with credit risk is an important topic in finance from both theoretical and practical perspectives. Credit risk refers to an investor’s risk that a borrower will default on making payments as promised. There are basically two kinds of models to describe the default: structural models and reduced form models. The structural approach was firstly introduced by Merton [1] who investigated European option pricing for modeling single corporate default. The approach is further extended by recent literature: see Ammann [2] and Klein and Inglis [3]. Another tractable approach is called reduced form model, which models the intensity of arrival of default events directly. The reduced form models can be seen in Artzner and Freddy [4], Duffie and Singleton [5], Duffie and Gärleanu [6], and Leung and Kwok [7] and are developed extensively by Su and Wang [8].

In this paper, we investigate the valuation of European option with credit risk in a reduced form model in Markovian regime-switching markets. We assume that the recovery rate is constant; that is, when the writer of the option defaults, a specified constant fraction times the payoff will be paid at maturity. In order to incorporate both rare events and time-inhomogeneity in finance market, we model the stock price by the so-called Markov-modulated jump-diffusion process, in which rare events are described as a compound Poisson process and the arrival rate of Poisson process and the volatility rate of stock are governed by a continuous-time Markov chain. The states of Markov chain can be interpreted as the states of the market. The transitions of the states of the market may describe changes of economy, finance, business cycles, and other conditions. In addition, we assume that the interest rate and the default intensity both follow the Vasicek models and the parameters of models are correlated with the same Markov chain. By the method of changing measures,
we obtain the closed form formula for the valuation of the European option.

The rest of this paper is organized as follows. Section 2 presents the model description. In Section 3, by applying Girsanov's measure changing theorem, we derive the formula of the pricing of European-style call option. We provide numerical analysis in Section 4. The concluding remarks are contained in Section 5.

2. The Model Description

Let (Ω, \mathcal{F}, P) be a complete probability space, where P is a neutral-risk probability measure. Define $\xi = \{\xi_t, t \geq 0\}$ on (Ω, \mathcal{F}, P) as a continuous-time, finite state Markov chain with n-state space E. We interpret the state of ξ as the states of the economy as follows (Elliott et al. [10] and Elliott and Osakwe [11]). Without loss of generality, we take the state space of ξ to be a finite set of unit vectors $\{e_1, e_2, \ldots, e_n\}$ with $e_i = (0, \ldots, 1, \ldots, 0) \in \mathbb{R}^n$. And ξ has the following semimartingale representation:

$$d\xi_t = Q\xi_t dt + dM_t,$$

where $Q = (q_{ij})$, $i,j = 1, \ldots, n$ is a Q-matrix of ξ and $M = \{M_t\}_{0 \leq t \leq T}$ is an \mathbb{R}^n-valued martingale with respect to the filtration generated by $\{\xi_t, 0 \leq t \leq T\}$ under P. Suppose that the stock price S_t and interest rate r_t satisfy the following stochastic differential equations (SDE):

$$\frac{dS_t}{S_{t-}} = (r_t - k_Y) dt + \sigma_t dW_{1t} + \left(e^{Y_t} - 1\right) dN(t),$$

$$dr_t = (a_t - b_t r_t) dt + \sigma_{2t} dW_{2t},$$

where W_{1t}, W_{2t} are standard Brownian motions and σ_{1t}, σ_{2t} are the stochastic volatility of the stock and the interest rate, respectively. $\{N_t\}_{0 \leq t \leq T}$ is Poisson process with the stochastic jump intensity $\{\lambda_t\}_{0 \leq t \leq T}$, and the jump amplitude is controlled by $\{Y_t\}, Y_s$ for $s \neq t$ independently identify distribution, and write $k = e^{Y_t} - 1$. Moreover, Y_t, N_t, λ_t are assumed to be mutually independent. $\sigma_{1t}, \sigma_{2t}, v_t, a_t, b_t$ are controlled by ξ_t, that is,

$$\sigma_{1t} = (\sigma_1, \xi_t), \quad \sigma_1 = (\sigma_{11}, \sigma_{12}, \ldots, \sigma_{1n}) \in (0, \infty)^n,$$

$$\sigma_{2t} = (\sigma_2, \xi_t), \quad \sigma_2 = (\sigma_{21}, \sigma_{22}, \ldots, \sigma_{2n}) \in (0, \infty)^n,$$

$$v_t = (v_t, \xi_t), \quad v = (v_1, v_2, \ldots, v_n) \in (0, \infty)^n,$$

$$a_t = (a_t, \xi_t), \quad a = (a_1, a_2, \ldots, a_n) \in (0, \infty)^n,$$

$$b_t = (b_t, \xi_t), \quad b = (b_1, b_2, \ldots, b_n) \in (0, \infty)^n,$$

where (\cdot, \cdot) denotes the inner product in \mathbb{R}^n. Let τ denote the default time of the writer of the option with default intensity process λ_t, and λ_t is given by

$$d\lambda_t = (\alpha_t - \beta_t \lambda_t) dt + \sigma_{3t} dW_{3t},$$

where W_{3t} is standard Brownian motion and σ_{3t} is the stochastic volatility of default intensity. $\sigma_{3t}, \alpha_t, \beta_t$ are also controlled by ξ_t and satisfy

$$\sigma_{3t} = (\sigma_3, \xi_t), \quad \sigma_3 = (\sigma_{31}, \sigma_{32}, \ldots, \sigma_{3n}) \in (0, \infty)^n,$$

$$\alpha_t = (\alpha_t, \xi_t), \quad \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in (0, \infty)^n,$$

$$\beta_t = (\beta_t, \xi_t), \quad \beta = (\beta_1, \beta_2, \ldots, \beta_n) \in (0, \infty)^n.$$

Moreover, we assume that N_t, Y_t are independent of $W_{1t}, W_{2t},$ and W_{3t} and the covariance matrix of the Brownian motion (W_{1t}, W_{2t}, W_{3t}) is

$$\begin{pmatrix}
1 & \rho_{12} & \rho_{13} \\
\rho_{21} & 1 & \rho_{23} \\
\rho_{31} & \rho_{32} & 1
\end{pmatrix}.$$

The filtration \mathcal{F}_t is generated by $\mathcal{F}_t = \mathcal{F}_t \vee \mathcal{F}_t^{1} \vee \mathcal{F}_t^{2} \vee \mathcal{F}_t^{3}$, where $\mathcal{F}_t^1 = \sigma(S_s, 0 \leq s \leq t), \mathcal{F}_t^2 = \sigma(r_s, 0 \leq s \leq t), \mathcal{F}_t^3 = \sigma(\xi_s, 0 \leq s \leq t)$, and $\mathcal{F}_t = \sigma(1_{\{\tau \leq s\}}, 0 \leq s \leq t)$.

3. Pricing Options with Credit Risk

We consider the case of a European call option with credit risk. Assume that the recovery rate is a constant ω. When the seller of option defaults, the payoff is given by ω times the payoff of the default-free option at maturity. Therefore, by the risk neutral pricing theorem, the valuation of the European call option at time t, with strike price K and maturity T, is given by

$$C(t, T) = E \left[e^{-\int_t^T r_s ds} (w (S_T - K)^+ 1_{\{\tau > T\}} + (S_T - K)^+ 1_{\{\tau \leq T\}}) | \mathcal{F}_t \right].$$

$$= E \left[e^{-\int_t^T r_s ds} (w (S_T - K)^+ + (1-w) (S_T - K)^+) 1_{\{\tau > T\}} | \mathcal{F}_t \right].$$

Following Lando [15],

$$E \left[e^{-\int_t^T r_s ds} (S_T - K)^+ 1_{\{\tau > T\}} | \mathcal{F}_t \right] = 1_{\{\tau \leq T\}} E \left[e^{-\int_t^T (r_s + \lambda_s) ds} (S_T - K)^+ | \mathcal{F}_t \right].$$

We can obtain the following expression:

$$C(t, T) = w E \left[e^{-\int_t^T r_s ds} (S_T - K)^+ | \mathcal{F}_t \right] + (1-w) 1_{\{\tau \geq T\}} E \left[e^{-\int_t^T (r_s + \lambda_s) ds} (S_T - K)^+ | \mathcal{F}_t \right]$$

$$= I_1 + I_2.$$
Integrated from \(t \) to \(T \) in both sides of (10),
\[
\int_t^T r_s \, ds = \int_t^T e^{-\int_s^T b(u) \, du} \, ds r_t + \int_t^T a_v \, dv \int_v^T e^{-\int_s^T b(u) \, du} \, ds \\
+ \int_t^T \sigma_{2v} \, dW_{2v} \int_v^T e^{-\int_s^T b(u) \, du} \, ds.
\]

(11)

Let \(M(x, y, T) = \int_y^T e^{-\int_s^y x \, du} \, ds \); then
\[
\int_t^T r_s \, ds = M(b, t, T) r_t + \int_t^T a_M(b, v, T) \, dv \\
+ \int_t^T \sigma_M(b, v, T) \, dW_{2v}.
\]

(12)

Similarly,
\[
\int_t^T \lambda_s \, ds = M(\beta, t, T) \lambda_t + \int_t^T a_v M(\beta, v, T) \, dv \\
+ \int_t^T \sigma_{3v} M(\beta, v, T) \, dW_{3v}.
\]

(13)

From (12) and (13), we have that
\[
Z(t, T) := E \left[\exp \left\{ -\int_t^T (r_s + \lambda_s) \, ds \right\} \mid \mathcal{F}_t \right]
= \exp \left\{ -M(b, t, T) r_t - M(\beta, t, T) \lambda_t \\
- \int_t^T a_M(b, u, T) \, du \\
- \int_t^T a_v M(\beta, u, T) \, du \right\} \\
\times \exp \left\{ \frac{1}{2} \int_t^T \sigma_{2v}^2 M^2(b, u, T) \, du \\
+ \frac{1}{2} \int_t^T \sigma_{3v}^2 M^2(\beta, u, T) \, du \right\} \\
\times \exp \left\{ \rho_{23} \int_t^T \sigma_{2u} \sigma_{3u} M(b, u, T) M(\beta, u, T) \, du \right\}.
\]

(14)

Thus, we can define the probability measure \(Q \) by
\[
\frac{dQ}{dP} \bigg|_{\mathcal{F}_t} = \exp \left\{ -\int_t^T (r_s + \lambda_s) \, ds \right\} \\
- \frac{1}{2} \int_t^T \sigma_{2u}^2 M^2(b, u, T) \, du \\
\times \exp \left\{ \rho_{23} \int_t^T \sigma_{2u} \sigma_{3u} M(b, u, T) M(\beta, u, T) \, du \right\},
\]

(15)

By Girsanov's theorem,
\[
dW_{2v}^Q = dW_{2v} + \sigma_M(b, v, T) M(\beta, v, T) \, dW_{3v} \\
dW_{3v}^Q = dW_{3v} + \sigma_M(\beta, v, T) M(b, v, T) \, dW_{3v}.
\]

(16)

where
\[
M_1(t) = \sigma_M(b, t, T) + \rho_{23} \sigma_{3v} M(\beta, t, T), \\
M_2(t) = \sigma_M(\beta, t, T) + \rho_{23} \sigma_{2v} M(b, t, T).
\]

(17)

\(W_{2v}^Q, W_{3v}^Q \), and \(W_{3v}^Q \) are standard Brownian motions under probability measure \(Q \), and \((W_{2v}^Q, W_{3v}^Q, W_{3v}^Q) \) has the same covariance matrix as \((W_{2v}, W_{3v}, W_{3v}) \). Therefore,
\[
E \left[e^{-\int_t^T (r_s + \lambda_s) \, ds} (S_T - K)^+ \mid \mathcal{F}_t \right]
= Z(t, T) E^Q \left((S_T - K)^+ \mid \mathcal{F}_t \right),
\]

(18)

In addition,
\[
E^Q \left((S_T - K)^+ \mid \mathcal{F}_t \right) = E^Q \left(S_T 1_{(S_T \geq K)} \mid \mathcal{F}_t \right) - K E^Q \left(1_{(S_T \geq K)} \mid \mathcal{F}_t \right).
\]

(19)

By the solution of SDE (2),
\[
S_T = S_t \exp \left\{ \int_t^T \left(r_s - kv_s - \frac{1}{2} \sigma_{3s}^2 \right) \, ds \\
+ \int_t^T \sigma_{1s} \, dW_{1s} + \int_t^T \gamma_s \, dN_s \right\}.
\]

(20)
Under Q,

$$
S_T = S_t \exp \left\{ \Lambda(t, T) + \int_t^T \sigma_{1s} dW_{1s}^Q + \int_t^T \sigma_{2s} M(b,s,T) \, ds + \int_t^T Y_s \, dN_s \right\},
$$

(21)

where

$$
\Lambda(t, T) = - \int_t^T \left(k \nu_s + \frac{1}{2} \nu_s^2 \right) \, ds + M(b,t,T) \, r_t + \rho_{12} \int_t^T \sigma_{1s} M(s) \, ds - \rho_{13} \int_t^T \sigma_{1s} M_1(s) \, ds - \rho_{23} \int_t^T \sigma_2 \sigma_3 M(s) \, ds.
$$

(22)

So,

$$
P^Q (S_T \geq K | \mathcal{F}_t) = P^Q \left(\int_t^T \sigma_{1s} \, dW_{1s}^Q + \int_t^T \sigma_{2s} M(b,s,T) \, dW_{2s}^Q \right. \left. \geq \ln \left(K/S_t \right) - \Lambda(t, T) - \int_t^T Y_s \, dN_s \right)
$$

$$
= P^Q \left(\int_t^T \sigma_{1s} \, dW_{1s}^Q + \int_t^T \sigma_{2s} M(b,s,T) \, dW_{2s}^Q \right. \left. \leq \ln \left(S_t/K \right) + \Lambda(t, T) + \int_t^T Y_s \, dN_s \right)
$$

$$
= \sum_{n=0}^{\infty} \left(\int_t^T \nu_s \, ds \right)^n / n! \exp \left\{ - \int_t^T \nu_s \, ds \right\} E(N(d_1)),
$$

(23)

where

$$
\Delta = \int_t^T \sigma_{1s}^2 \, ds + \int_t^T \sigma_{2s}^2 M^2(b,s,T) \, ds + 2 \rho_{12} \int_t^T \sigma_{1s} \sigma_{2s} M(b,s,T) \, ds + \ln \left(S_t/K \right) + \Lambda(t, T) + \sum_{j=1}^{\infty} Y_j.
$$

(24)

$E(\cdot)$ is the expectation of Y_j under P, and $N(\cdot)$ is distribution function of standard normal distribution. On the other hand, let

$$
\mathcal{L}(t, T)
$$

$$
:= E^Q (S_T \mid \mathcal{F}_t)
$$

$$
= S_t \exp \left\{ \int_t^T \sigma_{1s}^2 \, ds + \int_t^T \sigma_{2s}^2 M^2(b,s,T) \, ds \right. \left. \frac{1}{2} \int_t^T \sigma_{2s}^2 M\left(b, s, T \right) \, ds \right. \left. + \rho_{12} \int_t^T \sigma_{1s} \sigma_{2s} M(b,s,T) \, ds + k \int_t^T \nu_s \, ds \right\}.
$$

(25)

We can define the probability measure R as follows:

$$
\frac{dR}{dQ} \bigg|_{\mathcal{F}_t} = \frac{S_T}{E^Q (S_T \mid \mathcal{F}_t)}
$$

$$
= \exp \left\{ \int_t^T \sigma_{1s} \, dW_{1s}^Q + \int_t^T \sigma_{2s} M(b,s,T) \, dW_{2s}^Q \right. \left. - \frac{1}{2} \int_t^T \sigma_{1s}^2 \, ds \right. \left. \frac{1}{2} \int_t^T \sigma_{2s}^2 M^2(b,s,T) \, ds \right. \left. \rho_{12} \int_t^T \sigma_{1s} \sigma_{2s} M(b,s,T) \, ds \right. \left. \rho_{12} \int_t^T \sigma_{1s} \sigma_{2s} M(b,s,T) \, ds \right. \left. \int_t^T Y_s \, dN_s - k \int_t^T \nu_s \, ds \right\}.
$$

(26)

By Girsanov’s theorem, we have that

$$
dW_{1t}^R = dW_{1t}^Q - \sigma_{1t} \, dt - \rho_{12} \sigma_{2t} M(b,t,T) \, dt,
$$

$$
dW_{2t}^R = dW_{2t}^Q - \sigma_{2t} M(b,t,T) \, dt - \rho_{12} \sigma_{1t} \, dt,
$$

(27)

where, under R, W_{1t}^R, W_{2t}^R are standard Brownian motions and their correlation coefficient is ρ_{12}, N_t is Poisson process with intensity $(k + 1) \nu_t$, and the density function of Y_1 is $e^y f(y)/(k + 1)$, where $f(\cdot)$ is the density function of Y_1 under P. Since, under R,

$$
S_T = S_t \exp \left\{ \Lambda(t, T) + \Delta + \int_t^T \sigma_{1s} \, dW_{1s}^R + \int_t^T \sigma_{2s} M(b,s,T) \, dW_{2s}^R + \int_t^T Y_s \, dN_s \right\},
$$

(28)
then
\[
E^Q \left(S_T^1|_{S_T \geq K} \mid \mathcal{F}_t \right) = \mathbb{L}(t, T) P^R \left(S_T \geq K \mid \mathcal{F}_t \right)
\]
\[
= \mathbb{L}(t, T) P^R \left(\int_t^T \sigma_{1s} dW_{1s} + \int_t^T \sigma_{2s} M(b, s, T) dW_{2s} \right)
\]
\[
\geq \ln \left(\frac{K}{S_t} \right) - \Lambda(t, T) - \int_t^T Y_s dN_s
\]
\[
= \mathbb{L}(t, T) P^R \left(\frac{\int_t^T \sigma_{1s} dW_{1s} + \int_t^T \sigma_{2s} M(b, s, T) dW_{2s}}{\sqrt{\Delta}} \right)
\]
\[
\leq \ln \left(\frac{S_t}{K} \right) + \Lambda(t, T) + \Delta + \int_t^T Y_s dN_s
\]
\[
= \mathbb{L}(t, T) \sum_{n=0}^{\infty} \left(\int_t^T \frac{\nu_s ds}{n!} \right)^n e^{-\int_t^T \nu_s ds} P^R \left(N(d_n) \right),
\]
(29)

where
\[
d_2 = \frac{\ln \left(\frac{S_t}{K} \right) + \Lambda(t, T) + \Delta + \sum_{j=1}^{n} Y_j}{\sqrt{\Delta}}
\]
(30)

and \(E^R(\cdot) \) is the expectation of \(Y_j \) under \(R \). By (23) and (29), we have the following lemma.

Lemma 1. Consider the Following:
\[
E \left[e^{-\int_t^T (r_s + \lambda_s) ds} (S_T - K)^+ \mid \mathcal{F}_t \right] = Z(t, T)
\]
\[
\times \sum_{n=0}^{\infty} \left(\frac{\int_t^T \nu_s ds}{n!} \right)^n e^{-\int_t^T \nu_s ds} \left[\mathbb{L}(t, T) E^R \left(N(d_2) \right) - K E \left(N(d_1) \right) \right].
\]
(31)

In the following, in order to calculate \(I_1 \), we write
\[
E \left[e^{-\int_t^T r_s ds} (S_T - K)^+ \mid \mathcal{F}_t \right] = E \left[e^{-\int_t^T r_s ds} S_T^1|_{S_T \geq K} \mid \mathcal{F}_t \right] - KE \left[e^{-\int_t^T r_s ds} 1_{S_T \geq K} \mid \mathcal{F}_t \right]
\]
(32)

Denote by \(P(t, T) \) the value at time \(t \) of a \(T \) maturity zero coupon bond whose face value is 1. Then
\[
P(t, T) = E \left[e^{-\int_t^T r_s ds} \mid \mathcal{F}_t \right].
\]
(33)

From (12),
\[
P(t, T) = \exp \left\{ -M(b, t, T) r_t - \int_t^T a_s M(b, s, T) dv + \frac{1}{2} \int_t^T \sigma_{2s}^2 M^2(b, s, T) dv \right\},
\]
(34)

Define the Radon-Nikodym derivative given by
\[
dQ^T \over dP = e^{-\int_t^T r_s ds} E^Q \left(N(d_2) \right),
\]
(35)

and by Girsanov's theorem, under \(Q^T \),
\[
dW_{2s}^T = dW_{2s} + \sigma_{2s} M(b, s, T) dt
\]
(36)

Thus \(S_T \) can be rewritten as
\[
S_T = S_t \exp \left\{ \mathbb{A}(t, T) + \int_t^T M(b, v, T) \sigma_{2v} dW_{2v}^Q + \int_t^T \sigma_{1s} dW_{1v}^Q + \int_t^T Y_s dN_s \right\},
\]
(37)

where
\[
\mathbb{A}(t, T) = -\int_t^T \left(k v_s + \frac{1}{2} \sigma_{1s}^2 \right) ds + M(b, t, T) r_t
\]
(38)

\[
- \int_t^T a_s M(b, s, T) ds - \int_t^T \sigma_{2s}^2 M^2(b, s, T) ds
\]
(39)
Then
\[p^Q (S_T \geq K \mid \mathcal{F}_t) = p^Q_T \left(\int_t^T \sigma_{1u} dW^Q_{1u} + \int_t^T \sigma_{2u} M (b_s, s, T) dW^Q_{2u} \right) \]
\[\geq \ln \left(\frac{K}{S_t} \right) - \mathcal{A} (t, T) - \int_t^T Y_s dN_s \]
\[= p^Q \left(\int_t^T \sigma_{1u} dW^Q_{1u} + \int_t^T \sigma_{2u} M (b_s, s, T) dW^Q_{2u} \right) \]
\[\leq \ln (S_t/K) + \mathcal{A} (t, T) + \int_t^T Y_s dN_s \] (40)

where \(E(\cdot) \) is the expectation of \(Y_j \) under \(P \),
\[d_3 = \frac{\ln (S_t/K) + \mathcal{A} (t, T) + \sum_{j=1}^n Y_j}{\sqrt{\Delta}}. \] (41)

Therefore,
\[I_4 = KP (t, T) E^{Q^T} \left(1_{(S_t \geq K)} \mid \mathcal{F}_t \right) \]
\[= KP (t, T) \sum_{n=0}^{\infty} \left(\int_t^T \nu_s ds \right)^n \frac{1}{n!} e^{- \int_t^T \nu_s ds} E \left(N (d_3) \right). \] (42)

Finally, let
\[A (t, T) := E \left(e^{- \int_t^T r_s ds} S_T \mid \mathcal{F}_t \right) \]
\[= S_t \exp \left\{ - \int_t^T (k \nu_s + \frac{1}{2} \sigma_{1u}^2) ds + \frac{1}{2} \int_t^T \sigma_{1u}^2 ds + k \int_t^T \nu_s ds \right\}. \] (43)

We define
\[\frac{dQ^S}{dP} = \frac{e^{- \int_t^T r_s ds} S_T}{E \left(e^{- \int_t^T r_s ds} S_T \mid \mathcal{F}_t \right)} \]
\[= \exp \left\{ \int_t^T \sigma_{1v} dW^S_{1v} - \frac{1}{2} \int_t^T \sigma_{2v}^2 dy \right. \]
\[+ \int_t^T Y_s dN (s) - k \int_t^T \nu_s ds \}, \]
\[\] (44)
\[\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left[e^{- \int_t^T r_s ds} (S_t - K)^+ \mid \mathcal{F}_t \right] \]
\[= \sum_{n=0}^{\infty} \left(\int_t^T \nu_s ds \right)^n \frac{1}{n!} \]
\[\times e^{- \int_t^T \nu_s ds} \left[A (t, T) E^S \left(N (d_4) \right) - KP (t, T) E \left(N (d_3) \right) \right]. \] (45)

From (42) and (33), we can conclude the following lemma.

Lemma 2. Consider the following:
\[E \left[e^{- \int_t^T r_s ds} (S_t - K)^+ \mid \mathcal{F}_t \right] \]
\[= \sum_{n=0}^{\infty} \left(\int_t^T \nu_s ds \right)^n \frac{1}{n!} \]
\[\times e^{- \int_t^T \nu_s ds} \left[A (t, T) E^S \left(N (d_4) \right) - KP (t, T) E \left(N (d_3) \right) \right]. \] (46)

Combined with the previous lemmas, the price of European call option at time \(t \) is given by the following theorem.
Table 1: The parameter values.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value in state e_1</th>
<th>Value in state e_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of S</td>
<td>$\sigma_{11} = 0.2$</td>
<td>$\sigma_{12} = 0.4$</td>
</tr>
<tr>
<td>Jump intensity</td>
<td>$\nu_1 = 15$</td>
<td>$\nu_2 = 30$</td>
</tr>
<tr>
<td>Speed of reversion of r</td>
<td>$b_1 = 2$</td>
<td>$b_2 = 1$</td>
</tr>
<tr>
<td>Long-term average of r</td>
<td>$a_1/b_1 = 0.04$</td>
<td>$a_2/b_2 = 0.02$</td>
</tr>
<tr>
<td>Volatility of r</td>
<td>$\sigma_{21} = 0.15$</td>
<td>$\sigma_{22} = 0.3$</td>
</tr>
<tr>
<td>Speed of reversion of λ</td>
<td>$\beta_1 = 1.5$</td>
<td>$\beta_2 = 2$</td>
</tr>
<tr>
<td>Long-term average of λ</td>
<td>$\alpha_1/\beta_1 = 0.01$</td>
<td>$\alpha_2\beta_2 = 0.02$</td>
</tr>
<tr>
<td>Volatility of λ</td>
<td>$\sigma_{31} = 0.25$</td>
<td>$\sigma_{32} = 0.45$</td>
</tr>
<tr>
<td>Initial stock price</td>
<td>$S_0 = 100$</td>
<td></td>
</tr>
<tr>
<td>Initial interest rate</td>
<td>$r_0 = 0.04$</td>
<td></td>
</tr>
<tr>
<td>Initial default intensity</td>
<td>$\lambda_0 = 0.5$</td>
<td></td>
</tr>
<tr>
<td>Mean jump size</td>
<td>$\mu_j = 0$</td>
<td></td>
</tr>
<tr>
<td>Standard deviation of jump size</td>
<td>$\sigma_j = 0.1$</td>
<td></td>
</tr>
</tbody>
</table>

Theorem 3. The price of European call option with credit risk at time t is

$$C(t, T) = \sum_{n=0}^{\infty} \left(\int_t^T \nu_s ds \right)^n \cdot \frac{1}{n!} \times e^{-\int_t^T \nu_s ds} \left[w \left(\int_t^T \sigma_s ds \right)^2 \right] \times \left(\mathcal{L}(t, T) E^S \left(N(d_1) \right) - K P(t, T) E \left(N(d_2) \right) \right) \left[1 - \omega \right] \left(\mathcal{L}(t, T) E^R \left(N(d_3) \right) - K E \left(N(d_4) \right) \right).$$

(50)

4. Numerical Analysis

In this section, we will employ Monte Carlo simulation and perform a numerical analysis for European-style call option with credit risk under the Markov-modulated jump-diffusion model. We consider that the Markov chain ξ has two states, which means that macroeconomic shifts between the two states: e_1 ("boom" or "good") and e_2 ("recession" or "bad"). We assume that the current economy is in boom and that the transition probability matrix of the two-state Markov chain ξ is given by

$$
\begin{pmatrix}
 p_{11} & p_{12} \\
 p_{21} & p_{22}
\end{pmatrix} =
\begin{pmatrix}
 0.7 & 0.3 \\
 0.2 & 0.8
\end{pmatrix}.
$$

(51)

Assume that Y, is normally distributed with mean μ_j and standard deviation σ_j. We will adopt the specimen values for the model parameters as Table 1. We consider a range of spot-to-strike ratios S_0/K from 0.8 to 1.2 and assume that one year has 252 trading days. We perform 10 000 simulations for computing the option price.

For each $\omega = 0.4, 0.6, 0.8, 1$, we consider the impact of the spot-to-strike ratio on the option price. From Figure 1, we observe that the option price increases as the spot-to-strike ratio increases. We can also see that the greater the ω, the greater the option price. When $\omega = 1$, it follows that there is no default risk. It is a result of the fact that the payoff at the maturity will increase as the recovery rate increases.

Figure 2 depicts the plot of the option price against the spot-to-strike ratio for each maturity $T = 0.5, 1, 1.5$. From these plots, we find that the longer the maturities, the greater the option price.

In the following, we compare the option price with different correlation coefficients for fixed maturity $T = 1$.
Figure 3: The option price with different correlation coefficients ρ_{12} for $T = 1, \omega = 0.4, \rho_{13} = 0.5$, and $\rho_{23} = 0.6$.

Figure 4: The option price with different correlation coefficients ρ_{13} for $T = 1, \omega = 0.4, \rho_{12} = 0.7$, and $\rho_{23} = 0.6$.

Figure 5: The option price in Markov-modulated model and non-Markov-modulated models.

Finally, we investigate the difference of the option price in Markov-modulated model and non-Markov-modulated models. From Figure 6, we can observe that the call option price in good economy is lower than that in bad economy. The reason is that when economy is bad, the volatility of the risky asset is great so that the option price is higher. In our model, we assume that the current economy is good, so Markov-modulated model is close to the model for a good economy, while the two plots and the model for a bad economy are relatively far apart. In Markov-modulated model, we take into
consideration the changes of the state of the economy, so
Markov-modulated model is more in accord with the reality
for the pricing of the defaultable options.

5. Conclusion

The pricing of European option with credit risk in a reduced
form model was studied, while the stock price was driven by
Markov-modulated jump-diffusion models. The interest rate
and the default intensity followed the Vasicek models, and the
parameters were also controlled by the same Markov chain.
Compared with most of the credit risk models, the main
advantage is that we incorporated Markov-modulated rates
into the models. We applied Girsanov's theorem to obtain the
equivalent martingale measure and derived the closed form
formula for the valuation of the European option. Finally,
from the numerical illustrations, we obtain the effects of the
recovery rate, the maturity, the correlation coefficients, and
the jump intensity of stock on the option price.

Acknowledgments

The authors would like to thank the referee for many helpful
and valuable comments and suggestions. Jinzhi Li would like
to acknowledge the National Commission of Ethnic Affair
(no.12ZYZ003) and the Ministry of Education of Humanities
and Social Sciences Project (no. I1YJC790102).

References

470, 1974.
[2] M. Ammann, Credit Risk Valuation: Methods, Models, and
when the option's payoff can increase the risk of financial
distress,” Journal of Banking and Finance, vol. 25, no. 5, pp. 993–
[4] P. Artzner and D. Freddy, “Default risk insurance and incom-
1995.
defaultable bonds,” Review of Financial Studies, vol. 12, no. 4,
default swaps: Markov chain interacting intensities model with
[8] X. Su and W. Wang, “Pricing options with credit risk in a
reduced form model,” Journal of the Korean Statistical Society,
processing: a self calibrating model,” International Journal of
processes with Markov switching compensators,” Finance and
under a generalized Markov-modulated jump-diffusion model,”
Stochastic Analysis and Applications, vol. 25, no. 4, pp. 821–843,
2007.
under two-factor Markov-modulated stochastic volatility mod-
[14] L. J. Bo, Y. J. Wang, and X. W. Yang, “Markov-modulated jump-
diffusions for currency option pricing,” Insurance, vol. 46, no. 3,