An Average Linear Difference Scheme for the Generalized Rosenau-KdV Equation

Maobo Zheng 1 and Jun Zhou 2

1 Chengdu Technological University, Chengdu 610031, China
2 School of Mathematics and Computer Science, Yangtze Normal University, Chongqing 408100, China

Correspondence should be addressed to Jun Zhou; lmzjzgoi@sohu.com

Received 14 June 2013; Accepted 7 January 2014; Published 25 February 2014

1. Introduction

KdV equation has been used in very wide applications and undergone research which can be used to describe wave propagation and spread interaction as follows [1–4]:

\[u_t + uu_x + u_{xxx} = 0. \] (1)

In the study of the dynamics of dense discrete systems, the case of wave-wave and wave-wall interactions cannot be described using the well-known KdV equation. To overcome this shortcoming of the KdV equation, Rosenau [5, 6] proposed the so-called Rosenau equation:

\[u_t + uu_x + u_{xxx} + u_{xxxx} = 0. \] (2)

The existence and the uniqueness of the solution for (2) were proved by Park [7]. But it is difficult to find the analytical solution for (2). Since then, much work has been done on the numerical method for (2) ([8–13] and also the references therein). On the other hand, for the further consideration of the nonlinear wave, the viscous term \(u_{xxx} \) needs to be included [14]:

\[u_t + uu_x + u_{xxx} + u_{xxxx} + uu_x = 0. \] (3)

This equation is usually called the Rosenau-KdV equation. Zuo [14] discussed the solitary wave solutions and periodic solutions for Rosenau-KdV equation. In [15], a conservative linear finite difference scheme for the numerical solution for an initial-boundary value problem of Rosenau-KdV equation is considered. In this paper, we consider the following Generalized Rosenau-KdV equation:

\[u_t + uu_x + u_{xxx} + u_{xxxx} + \left(u^p \right)_x = 0, \] (4)

where \(p \geq 2 \) is an integer. When \(p = 2 \), (4) is called usual Rosenau-KdV (3).

In [16, 17], authors discussed the solitary solutions for the Generalized Rosenau-KdV equation with usual solitary ansatz method. The authors also gave the two invariants for the Generalized Rosenau-KdV equation. In particular, in [17], the authors not only studied the two types of soliton solution, one is solitary wave solution and the other is singular soliton. Furthermore, they also used the perturbation theory and the semivariation principle to study the perturbed Generalized Rosenau-KdV equation analytically. In [18], only ansatz method was applied to obtain the topological soliton solution or the shock solution of this equation. Three methods, ansatz method, \(G'/G \)-expansion method, and the exp-function method, were applied to extract a few more solutions to this equation in [19].

As we all know, most of the time, we need to think of the numerical solution of nonlinear evolution equations. Many
scholars in this field have a good work. In [20], the authors simulate the numerical solution of the Klein-Gordon equation by using the spectral method where rational Chebyshev functions are used as basic functions. In [21], the authors study the numerical solution of the two-dimensional Sine-Gordon equation (SGE) using a split-step Chebyshev Spectral Method. In [22], the authors develop a Galerkin spectral technique for computing localized solutions of equation with Sixth-Order Generalized Boussinesq Equation (6GBE). In [15], the authors propose a conservative three-level linear finite difference scheme with second-order convergent for the numerical solution of the initial-boundary value problem of Generalized Rosenau-KdV equation. But the numerical method of the initial-boundary value problem of Generalized Rosenau-KdV equation has not been studied till now. In this paper, we propose an average three-level linear finite difference scheme for (4) with the boundary conditions

\[
u (X_j, t) = u (X_j, t) = 0, \quad u_x (X_j, t) = u_x (X_j, t) = 0, \quad t \in [0, T],
\]

and initial condition

\[
u (x, 0) = u_0 (x).
\]

The initial-boundary value problem (3)–(5) possesses the following conservative properties [16, 17]:

\[
M (t) = \int_{X_l}^{X_r} u \, dx = \int_{X_l}^{X_r} u_0 \, dx = M (0),
\]

\[
E (t) = \int_{X_l}^{X_r} \left(u^2 + u_x^2 \right) \, dx = \| u \|_{L^2}^2 + \| u_{xx} \|_{L^2}^2 = E (0).
\]

When \(X_l \ll 0, X_r \gg 0\), the initial-boundary value problem (4)–(6) and the Cauchy problem (4) are consistent, so the boundary conditions (5) are reasonable. Compared to the implicit C-N nonlinear scheme, the scheme in this paper is linear and it can reduce computing cost. We will prove existence, uniqueness, and stability of the numerical solution. The studies show that the convergence of the scheme is 2nd-order rate. The most important point is that the scheme is conservative for energy.

The rest of this paper is organized as follows. In Section 2, we propose a three-level average implicit linear finite difference scheme for Generalized Rosenau-KdV equation and discuss the discrete conservative properties for energy. In Section 3, we prove that the scheme is uniquely solvable. In Section 4, we prove that the finite difference scheme is 2nd-order convergent and unconditionally stable. In Section 5, we give some numerical simulation to verify our theoretical analysis. Finally, in Section 6, we get our conclusion.

2. Difference Scheme and Some Properties of Its Solution

In this section, we first give some notation which will be used in this paper and propose an average linear difference scheme for the problem of (4)–(6).

As usual, denote \(x_j = X_l + jh, t_n = n\tau, 0 \leq j \leq J, 0 \leq n \leq N\), where \(h = (X_r - X_l) / J\) and let \(\tau\) be the uniform, the spatial, and the temporal step size, respectively. Let \(u^n_j = u (jh, n\tau)\), \(Z^n_j = \{ u = (u_j) \mid u_{j-1} = u_0 = u_t = u_{j+1} = 0, -1 \leq j \leq J + 1 \}\). Throughout this paper, we will denote \(C\) as a generic constant independent of \(h\) and \(\tau\) that varies in the context.

We define the difference operators, inner product, and norms that will be used in this paper as follows:

\[
\left(u^n_j \right)_x = \frac{u^n_{j+1} - u^n_j}{h}, \quad \left(u^n_j \right)_{xx} = \frac{u^n_j - u^n_{j-1}}{\tau}, \\
\left(u^n_j \right)_x = \frac{u^n_{j+1} - u^n_j}{2h}, \\
\left(u^n_j \right)_t = \frac{u^n_{j+1} - u^n_j}{\tau}, \\
\left(u^n_j \right)_{x^2} = \frac{u^n_{j+1} - 2u^n_j + u^n_{j-1}}{\tau^2}, \\
\left(u^n_j \right)_{x^3} = \frac{u^n_{j+1} + u^n_j}{2\tau^2}.
\]

The initial-boundary value problem (6)–(8) satisfies

\[
\| u^n \|_\infty = \max_{0 \leq j \leq J-1} | u^n_j |.
\]

Since \(\| u^n \|_\infty = (p/(p+1))(\| u^n \|_L^p + \| u^n \|_L^p)\), the following finite difference scheme for the problem (4)–(6) is considered:

\[
\left(u^n_j \right)_x + \left(u^n_j \right)_{xx} + \left(u^n_j \right)_{x^2} = \left(u^n_j \right)_{x^3}, \\
\left(u^n_j \right)_x = \frac{\left(u^n_j \right)_{x^2} - \left(u^n_j \right)_{x^3}}{\tau}, \\
\left(u^n_j \right)_{x^2} = \frac{\left(u^n_j \right)_{x^3} - \left(u^n_j \right)_{x^4}}{\tau^2}, \\
\left(u^n_j \right)_{x^3} = \frac{\left(u^n_j \right)_{x^4} - \left(u^n_j \right)_{x^5}}{\tau^3}.
\]

Lemma 1 (see [23]). For any two mesh functions, \(u, v \in Z^n_{Jh}\), one has

\[
\langle v_x, u \rangle = -\langle v, u_x \rangle, \quad \langle u_x, v \rangle = -\langle u, v_x \rangle, \\
\langle u, v_{x^3} \rangle = -\langle u, v_{x^3} \rangle.
\]

Then we have

\[
\langle u, u_{x^3} \rangle = -\langle u_x, u_{x^3} \rangle = -\| u_x \|^2.
\]

Furthermore, if \(\left(u^n_j \right)_{x^2} = \left(u^n_j \right)_{x^3} = 0\), then

\[
\langle u, u_{x^2} \rangle = \| u_x \|^2.
\]

Lemma 2. Suppose that \(u \in H^2 [X_l, X_r]\); then the solution of the initial-boundary value problem (4)–(6) satisfies

\[
\| u \|_{L^2} \leq C, \quad \| u_x \|_{L^2} \leq C, \quad \| u \|_{\infty} \leq C.
\]
Proof. It follows from the conservative law (8) that we get
\[\|u\|_{L^2} \leq C, \quad \|u_{xx}\|_{L^2} \leq C. \] (17)
Using part integration method, Hölder inequality, and Schwartz inequality, we get
\[\|u_n\|_{L^2}^2 = \int_{X_j} u_n u_x \, dx = u_{x}u_{x}^T \int_{X_j} u_{xx} \, dx \]
\[= -\int_{X_j} u_{xx} \, dx \leq \|u\|_{L^2} \|u_{xx}\|_{L^2} \leq C. \] (18)
Hence, \(\|u_{xx}\|_{L^2} \leq C \). According to Sobolev's inequality, we have \(\|u\|_{L^∞} \leq C \). \(\square \)

Theorem 3. Supposing \(u_0 \in H^2_0[X_j, X_j], \) then the scheme (10)–(12) is conservative for discrete energy; that is,
\[E^n = \frac{1}{2} \left(\|u^{n+1}\|_2^2 + \|u^n\|_2^2 \right) + \frac{1}{2} \left(\|u^{n+1}_{xx}\|_2^2 + \|u^n_{xx}\|_2^2 \right) \]
\[= E^{n-1} = \cdots = E^0. \] (19)
Proof. Computing the inner product of (10) with \(2u^n \) (i.e., \(u^{n+1} + u^{n-1} \)), we have
\[h \sum_{j=1}^{J-1} \left(\frac{1}{2\tau} (u^{n+1}_j - u^{n-1}_j) \cdot 2u^n_j + \left(\|u^n_j\|_x^2 \cdot 2u^n_j \right) \right. \]
\[+ \left. \|u^n_{j+1}\|_{xx} \cdot 2u^n_j + \frac{1}{2\tau} \left((u^{n+1}_j)_{xx} - (u^{n-1}_j)_{xx} \right) \cdot 2u^n_j \right) = 0, \] (20)
where
\[P_j = \frac{p}{p+1} \left\{ (u^n_j)_{xx} \cdot (u^n_j)_{x} \right\}. \] (21)
By the definition of \((u^n_j)_{xx} \), it follows from the first term of (20) that
\[h \sum_{j=1}^{J-1} \left(\frac{1}{2\tau} (u^{n+1}_j - u^{n-1}_j) \cdot 2u^n_j \right) = \frac{1}{2\tau} \left(\|u^{n+1}\|_2^2 - \|u^{n-1}\|_2^2 \right). \] (22)
By the definition of \(u_{xj} \), (14), and Lemma 1, it follows from the second and the third term of (20) that
\[\sum_{j=1}^{J-1} \left((u^n_j)_{x} \cdot u^n_j \right) + \sum_{j=1}^{J-1} \left((u^n_j)_{xx} \cdot u^n_j \right) = 0, \]
\[\sum_{j=1}^{J-1} \left((u^n_j)_{xx} \cdot 2u^n_j \right) = 0. \] (23)
According to the boundary condition (12) and (14) of Lemma 1, it follows from the forth term that
\[h \sum_{j=1}^{J-1} \frac{1}{2\tau} \left((u^{n+1}_j)_{xx} - (u^{n-1}_j)_{xx} \right) \cdot \bar{v}^n_j \]
\[= \frac{1}{2\tau} \left(\|u^n_{xx}\|_2^2 - \|u^{n-1}_{xx}\|_2^2 \right). \] (24)
According to (13) and (14), we have
\[\langle P, 2\bar{v}^n \rangle = \frac{2p}{p+1} \sum_{j=1}^{J-1} \left((u^n_j)_{pp} \cdot (u^n_{j+1})_x + \left((u^n_j)_{pp} \cdot (u^n_j)_{j-1} \right) \cdot \bar{v}^n_j \right) \]
\[= \frac{p}{p+1} \sum_{j=1}^{J-1} \left((u^n_j)_{pp} \cdot (u^n_{j+1})_x - (u^n_j)_{pp} \cdot (u^n_{j-1})_x \right) \]
\[- \frac{p}{p+1} \sum_{j=1}^{J-1} \left((u^n_j)_{pp} \cdot (u^n_{j+1})_{x} - (u^n_j)_{pp} \cdot (u^n_{j-1})_{x} \right) \]
\[= 0. \] (25)
Substituting (22)–(25) into (20), we have
\[\left(\|u^{n+1}\|_2^2 - \|u^{n-1}\|_2^2 \right) + \left(\|u^{n+1}_{xx}\|_2^2 - \|u^{n-1}_{xx}\|_2^2 \right) = 0. \] (26)
By the definition of \(E^n \), (19) holds. It implies that the difference scheme is conservative for energy.
In order to prove the boundedness of the numerical solution, we introduce the following lemma [23].

Lemma 4 (Discrete Sobolev's inequality). There exist two constants \(C_1 \) and \(C_2 \) such that
\[\|u^n\|_{L^2} \leq C_1 \|u^n\| + C_2 \|u^n_{xx}\|. \] (27)

Theorem 5. Suppose \(u_0 \in H^2_0[X_j, X_j]; \) then the solution \(u^n \) of (10)–(12) satisfies \(\|u^n\| \leq C, \|u^n_{xx}\| \leq C, \) which yields \(\|u^n\|_{L^∞} \leq C \) \((n = 1, 2, \ldots, N)\).
Proof. It follows from (19) that
\[\|u^n\| \leq C, \quad \|u^n_{xx}\| \leq C. \] (28)
By Lemma 1 and Schwartz inequality, we get
\[\|u^n_{xx}\|_2^2 \leq \|u^n\| \|u^n_{xx}\| \leq \frac{1}{2} \left(\|u^n\|^2 + \|u^n_{xx}\|^2 \right) \leq C. \] (29)
According to Lemma 4, we have \(\|u^n\|_{L^∞} \leq C \) \((n = 1, 2, \ldots, N)\). \(\square \)
3. Solvability

Theorem 6. There exists \(u^n \in Z^0 \) \((1 \leq n \leq N)\) which satisfies the difference scheme (10)–(12).

Proof. By mathematical induction, it is obvious that \(u^0 \) is uniquely determined by the initial condition (II). We can choose a second-order method to compute \(u^1 \) (such as C-N scheme [10, 15]). It implies that \(u^0, u^1 \) are uniquely determined. Now assuming \(u^0, u^1, \ldots, u^{n} \) are uniquely solvable, consider \(u^{n+1} \) in (10) which satisfies

\[
\frac{1}{2\tau}u_{jj}^{n+1} + (u_{j}^{n+1})_{x} + (u_{j}^{n+1})_{xx} + \frac{1}{2\tau}(u_{j}^{n+1})_{xxx} = 0.
\]

Computing the inner product of (30) with \(u^{n+1} \), we obtain

\[
\frac{1}{2\tau}\|u^{n+1}\|^2 + \frac{1}{2\tau}\|u^{n+1}\|^2 + \langle \Phi(u^n, u^{n+1}), u^{n+1} \rangle = 0,
\]

where \(\Phi(u^n, u^{n+1}) = (p/2(p+1))(u^{n+1})^p - (u^n)^p + [(u^{n+1})^p - (u^n)^p]_x \).

Using Taylor expansion, we know that \(R_j^n = O(\tau^2 + h^2) \) holds if \(\tau, h \to 0 \).

Theorem 8. Suppose \(u_0 \in H^2[X_1,X_2] \), \(u(x,t) \in C^{3+} \), then the solution \(u^n \) of the scheme (10)–(12) converges to the solution of problem (3)–(5) and the rate of convergence is \(R_j^n = O(\tau^2 + h^2) \) by the \(\| \cdot \|_{\infty} \) norm.

Proof. Subtracting (10) from (36) and letting \(e_j^n = v^n_j - u^n_j \), we have

\[
\langle e_j^n, e_j^n \rangle = 0, \quad \langle e_j^n, e_j^n \rangle = 0.
\]

Similar to (22) and (24), we get

\[
\langle R^n, 2\delta^n \rangle = \frac{1}{2\tau} \left(\|e^n_{i+1,i} - e^n_{i,i} \|^2 - \|e^n_{i,i} \|^2 \right) + \frac{1}{2\tau} \left(\|e^n_{i,i+1} - e^n_{i+1,i} \|^2 - \|e^n_{i,i+1} \|^2 \right).
\]

where

\[
Q_1 = \frac{p}{1+p} \{ (v^n_j)^{p-1} (v^n_j)_{x} - (u^n_j)^{p-1} (u^n_j)_{x} \},
\]

\[
Q_2 = \frac{p}{1+p} \{ (v^n_j)^{p-1} v^n_j - (u^n_j)^{p-1} v^n_j \}.
\]

Therefore, we get

\[
\|e^n_{i,i} \|^2 + \|e^n_{i+1,i} \|^2\).
\]
According to Lemma 2, Theorem 5, and Schwartz inequality, we have

\[-\langle Q_1, 2\vec{e}^n \rangle = -\frac{2p}{1 + p} h \sum_{j=1}^{J-1} \left[(v_j)^{p-1}(\vec{v}_j) \cdot \left(u_j^{n-1}(\vec{u}_j)^{-1} \right) \right] \vec{e}_j^n \]

\[= -\frac{2p}{1 + p} h \sum_{j=0}^{J-1} \left[(v_j)^{p-1} \cdot (\vec{v}_j) \right] \vec{e}_j^n \]

\[+ -\frac{2p}{1 + p} h \sum_{j=0}^{J-1} \left[(v_j)^{p-1} \cdot (u_j^{n-1}) \right] \left(\vec{u}_j\right) \sum_{j=0}^{J-1} \left[(u_j^{n-1}) \cdot \vec{e}_j^n \right] \]

\[\leq C h \sum_{j=0}^{J-1} \left[(\vec{e}_j^n) \cdot \vec{e}_j^n \right] \]

\[\leq C \sum_{j=0}^{J-1} \left[(\vec{e}_j^n) \right] \]

\[\leq C \left[\|e^n\|^2 + \|e^{n-1}\|^2 \right]. \tag{52} \]

Similarly,

\[-\langle Q_2, 2\vec{e}^n \rangle \leq C \left[\|e^{n+1}\|^2 + \|e^n\|^2 + \|e^{n-1}\|^2 + 2\|e^n\|^2 \right]. \tag{43} \]

Furthermore,

\[\langle R^n, 2\vec{e}^n \rangle = \left(R^n, e^{n+1} + e^{n-1}\right) \]

\[\leq \|R^n\| \cdot \left(\|e^{n+1}\| + \|e^{n-1}\| \right). \tag{44} \]

Substituting (42)–(44) into (41), we get

\[\left(\|e^{n+1}\|^2 - \|e^{n-1}\|^2\right) + \left(\|e^{n+1}\|^2 - \|e^{n+1}\|^2\right) \]

\[\leq C \sum_{j=0}^{J-1} \left[(\vec{e}_j^n) \right] \]

\[\leq C \left[\|e^n\|^2 + \|e^{n-1}\|^2 \right]. \tag{45} \]

Similar to the proof of (29)

\[\|e\|^2 \leq \|e^n\| \leq \frac{1}{2} (\|e^n\| + \|e^{n-1}\|) \leq C. \tag{46} \]

It follows from (45) that

\[\left(\|e^{n+1}\|^2 + \|e^n\|^2\right) + \gamma \left(\|e^{n+1}\|^2 + \|e^{n-1}\|^2\right) \]

\[\leq C \sum_{j=0}^{J-1} \left[(\vec{e}_j^n) \right] \]

\[+ \|e^n\|^2 + \|e^{n-1}\|^2 \right] + 2\|\vec{R}^n\|^2 \]. \tag{47} \]

Let \(B^n = \|e^n\|^2 + \|e^{n+1}\|^2 + \|e^{n-1}\|^2\); it follows from (47) that

\[\left(1 - C\tau\right) \left(B^{n+1} - B^n\right) \leq 2C\tau B^n + 2\|\vec{R}^n\|^2. \tag{48} \]

If \(\tau\) is sufficiently small which satisfies \(1 - C\tau > 0\), we get

\[B^{n+1} - B^n \leq C B^n + \|\vec{R}^n\|^2. \tag{49} \]

Summing up (49) from 0 to \(n - 1\), we get

\[B^n \leq B^0 + C \sum_{l=0}^{n-1} B^l + C \sum_{l=0}^{n-1} \|\vec{R}^l\|^2. \tag{50} \]

Choose a second-order method to compute \(u^l\) (such as C-N scheme) and notice that

\[\sum_{l=0}^{n-1} \|\vec{R}^l\|^2 \leq n \tau \max_{0 \leq t \leq n-1} \|e^n\|^2 \leq T \cdot O \left(\tau^2 + h^2\right)^2. \tag{51} \]

From the discrete initial conditions, we know that \(e^0 = 0\); then we have

\[B^0 = O \left(\tau^2 + h^2\right). \tag{52} \]

Therefore,

\[B^n \leq O \left(\tau^2 + h^2\right)^2. \tag{53} \]

According to Lemma 7, we get

\[B^n \leq O \left(\tau^2 + h^2\right)^2. \tag{54} \]

It implies

\[\|e^n\| \leq O \left(\tau^2 + h^2\right), \tag{55} \]

\[\|e^n\| \leq O \left(\tau^2 + h^2\right). \tag{56} \]

By Lemma 4, we have

\[\|e^n\| \leq O \left(\tau^2 + h^2\right). \tag{57} \]

This completes the proof of Theorem 8. □
In order to prove the stability of the difference scheme, we import the initial-boundary problem

\[
 u_t + u_x + u_{xxx} + u_{xxxx} + (u^p)_x = \omega(x,t),
\]

\[
 u(X_l,t) = u(X_r,t) = 0,
\]

\[
 u_x(X_l,t) = u_x(X_r,t) = 0,
\]

\[
 u_{xx}(X_l,t) = u_{xx}(X_r,t) = 0,
\]

\[
 t \in [0,T],
\]

\[
 u(x,0) = \psi(x), \quad x \in [X_l,X_r],
\]

where \(\omega(x,t), \psi(x) \) are smooth enough.

We propose the difference scheme of the problem (58)

\[
 (U^n_j)_t + (U^n_j)_x + (U^n_j)_xx + (U^n_j)_xxx + \left(\frac{p}{1+p} \left((U^n_j)^{p-1} (U^n_j)_x^p \right) \right) + (\omega^n_j) = 0,
\]

\[
 U^0_j = U_0(x_j) + \psi_j, \quad 0 \leq j \leq J-1,
\]
Table 1: The errors estimated in the sense of L_∞ for $p = 3$ at $T = 40$.

<table>
<thead>
<tr>
<th>h</th>
<th>τ</th>
<th>$|e^N|_\infty$</th>
<th>$|e^N(h, \tau)|\infty/|e^{2N}(h/2, \tau/2)|\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>1.34986e - 002</td>
<td>—</td>
</tr>
<tr>
<td>0.125</td>
<td>0.125</td>
<td>3.42489e - 003</td>
<td>3.94134</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.0625</td>
<td>8.59570e - 004</td>
<td>3.98441</td>
</tr>
<tr>
<td>0.03125</td>
<td>0.03125</td>
<td>2.15150e - 004</td>
<td>3.99521</td>
</tr>
</tbody>
</table>

Table 2: The errors estimated in the sense of L_∞ for $p = 5$ at $T = 40$.

<table>
<thead>
<tr>
<th>h</th>
<th>τ</th>
<th>$|e^N|_\infty$</th>
<th>$|e^N(h, \tau)|\infty/|e^{2N}(h/2, \tau/2)|\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>1.79985e - 002</td>
<td>—</td>
</tr>
<tr>
<td>0.125</td>
<td>0.125</td>
<td>4.56804e - 003</td>
<td>3.94009</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.0625</td>
<td>1.14689e - 003</td>
<td>3.98299</td>
</tr>
<tr>
<td>0.03125</td>
<td>0.03125</td>
<td>2.87085e - 004</td>
<td>3.99494</td>
</tr>
</tbody>
</table>

$U_0^n = U_j^n = 0$, $(U_0^n)_\xi = (U_j^n)_\xi = 0$, \((U_0^n)_{\xi\xi} = (U_j^n)_{\xi\xi} = 0 \), \(\omega^n_j = \omega(x_j, t_n) \), \(\psi_j = \psi(x_j) \).

Similar to the proof of Theorem 8, we can prove the stability Theorem 9.

Theorem 9. Supposing \(u_j^n \) is the solution of the scheme (10)–(12) and \(U_j^n \) is the solution of the scheme (59), denote \(e_j^n = U_j^n - u_j^n \). If the mesh steps h, τ are small enough, we can get the stability result

$$
\| e^n \| + \| e^{2n} \| \leq C \left(\| \psi \|^2 + \tau \sum_{l=0}^{n-1} \| \omega \|^2 \right). \quad (60)
$$

5. **Numerical Validation**

In this section, we conduct some numerical experiments to verify theoretical results obtained in the previous sections. We take $X_l = -60$, $X_r = 90$ and consider the two cases $p = 3, 5$, respectively.

According to [16, 17], when $p = 3$, the soliton solution is as follows:

$$
u(x, t) = \frac{1}{4} \sqrt{-15 + 3 \sqrt{41}} \times \sec h \frac{1}{4} \sqrt{\frac{-5 + \sqrt{41}}{2}} \left[x - \frac{1}{10} \left(5 + \sqrt{41} \right) t \right], \quad (61)
$$

and the initial condition is

$$
u(x, 0) = \frac{1}{4} \sqrt{-15 + 3 \sqrt{41}} \sec h \frac{1}{4} \sqrt{\frac{-5 + \sqrt{41}}{2}} x. \quad (62)
$$

When $p = 5$, the soliton solution is

$$
u(x, t) = \sqrt{\frac{4}{15}} \left(-5 + \sqrt{34} \right) \times \sec h \frac{1}{3} \sqrt{-5 + \sqrt{34}} \left[x - \frac{1}{10} \left(5 + \sqrt{34} \right) t \right], \quad (63)
$$

and initial condition is

$$
u(x, 0) = \sqrt{\frac{4}{15}} \left(-5 + \sqrt{34} \right) \sec h \frac{1}{3} \sqrt{-5 + \sqrt{34}} x. \quad (64)
$$

Since the three-level implicit finite difference scheme cannot start by itself, we need to select other two-level schemes (such as the C-N Scheme) to get u^0. Then, reusing initial value u^0, we apply the average implicit linear three-level difference scheme (10)–(12) for the problem (4)–(6) to work out u^2, u^3, \ldots. Iterative method is not required for the linear scheme, so it saves computing time.

First of all, we simulate the wave graph of the numerical solution to the average linear implicit scheme (10)–(12). The wave graph comparison of numerical solution $u(x_j, t_n)$ between different time step and space step at various times is given in Figures 1, 2, 3, and 4. For $p = 3$ and $p = 5$, the figures show that the height of the wave graph at different time is almost identical. It implies that the energy is conservative.

Secondly, we conduct numerical simulations in different time step and space step for $p = 3$ and $p = 5$, respectively, when time is 40 s. We list some results in Tables 1 and 2 for $p = 3$ and $p = 5$, respectively. All results show that the numerical solution is 2nd-order convergent and unconditionally stable. Meanwhile, we also list the conservative invariants E^n at different time in Tables 3 and 4 for $p = 3$ and $p = 5$. These results testify that the studied scheme is conservative for energy.

6. **Conclusions**

In brief, we first proposed an average linear implicit scheme for the Generalized Rosenau-KdV equation, which has a wide range of applications in various areas of scientific researches. The solvability, convergence, energy conservation,
Table 3: The energy of different time in different time step and space step for \(p = 3 \).

<table>
<thead>
<tr>
<th>((h, \tau))</th>
<th>(T = 10) s</th>
<th>(T = 20) s</th>
<th>(T = 30) s</th>
<th>(T = 40) s</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0.25, 0.25))</td>
<td>1.682528993311382</td>
<td>1.682528993311723</td>
<td>1.682528993311437</td>
<td>1.682528993311429</td>
</tr>
<tr>
<td>((0.125, 0.125))</td>
<td>1.682543082596648</td>
<td>1.682543082567992</td>
<td>1.682543082564207</td>
<td>1.682543082565549</td>
</tr>
<tr>
<td>((0.0625, 0.0625))</td>
<td>1.68254661032036</td>
<td>1.68254661113070</td>
<td>1.68254661138651</td>
<td>1.68254661129625</td>
</tr>
<tr>
<td>((0.03125, 0.03125))</td>
<td>1.68254794622366</td>
<td>1.68254793895496</td>
<td>1.68254793810830</td>
<td>1.6825479366520</td>
</tr>
</tbody>
</table>

Table 4: The energy of different time in different time step and space step for \(p = 5 \).

<table>
<thead>
<tr>
<th>((h, \tau))</th>
<th>(T = 10) s</th>
<th>(T = 20) s</th>
<th>(T = 30) s</th>
<th>(T = 40) s</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0.25, 0.25))</td>
<td>3.110674902410195</td>
<td>3.110674902410293</td>
<td>3.11067490249525</td>
<td>3.110674902410005</td>
</tr>
<tr>
<td>((0.125, 0.125))</td>
<td>3.110702938807032</td>
<td>3.110702938807032</td>
<td>3.110702938804688</td>
<td>3.110702938803995</td>
</tr>
<tr>
<td>((0.0625, 0.0625))</td>
<td>3.1107079964298041</td>
<td>3.1107079964308914</td>
<td>3.110707996458443</td>
<td>3.110709964168867</td>
</tr>
<tr>
<td>((0.03125, 0.03125))</td>
<td>3.110711721444649</td>
<td>3.110711720432934</td>
<td>3.11071171700600</td>
<td>3.110711718996421</td>
</tr>
</tbody>
</table>

and stability with \(O(\tau^2 + h^3) \) of the discrete solutions were analyzed in detail. Numerical simulations were carried out to testify that the theoretical analyses are right and our scheme is accurate and reliable.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

