JAM Journal of Applied Mathematics 1687-0042 1110-757X Hindawi Publishing Corporation 10.1155/2014/392301 392301 Research Article Some Inevitable Remarks on “Tripled Fixed Point Theorems for Mixed Monotone Kannan Type Contractive Mappings” Alsulami Hamed H. 1 Roldán-López-de-Hierro Antonio-Francisco 2 Karapınar Erdal 1, 3 Radenović Stojan 4 Liu Yansheng 1 Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah Saudi Arabia kau.edu.sa 2 Department of Mathematics, University of Jaén, Campus las Lagunillas s/n, 23071 Jaén Spain ujaen.es 3 Department of Mathematics, Atilim University, Incek, 06836 Ankara Turkey atilim.edu.tr 4 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd Serbia bg.ac.rs 2014 1192014 2014 26 02 2014 12 08 2014 14 08 2014 11 9 2014 2014 Copyright © 2014 Hamed H. Alsulami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We advise that the proof of Theorem 12 given by Borcut et al. (2014) is not correct, and it cannot be corrected using the same technique. Furthermore, we present some similar results as an approximation to the opened question if that statement is valid.

1. Introduction

The definition of coupled fixed point was firstly given by Guo and Lakshmikantham in . This concept, in the context of metric space, was reconsidered by Gnana Bhaskar and Lakshmikantham  in 2006 and by Lakshmikantham and Ciric  in the coincidence case. Later, Karapınar investigated this notion in the context of cone metric space. After that, Berinde and Borcut  presented the notion of tripled fixed point obtaining similar results, and the same authors extended their work to the coincidence case in  (see also, e.g., ).

A coupled fixed point of F : X × X X is a point ( x , y ) X 2 such that F ( x , y ) = x and F ( y , x ) = y . In order to ensure existence and uniqueness of coupled fixed points, Bhaskar and Lakshmikantham introduced the concept of mapping having the mixed monotone property. Henceforth, let be a partial order on X . The mapping F is said to have the mixed monotone property (with respect to ) if F ( x , y ) is monotone nondecreasing in x and monotone nonincreasing in y ; that is, for any x , y X , (1) x 1 , x 2 X , x 1 x 2 F ( x 1 , y ) F ( x 2 , y ) , y 1 , y 2 X , y 1 y 2 F ( x , y 1 ) F ( x , y 2 ) .

Inspired by the previous notions, Berinde and Borcut defined the concepts of tripled fixed point and mixed monotone property as follows. A tripled fixed point of F : X × X × X X is a point ( x , y , z ) X 3 such that F ( x , y , z ) = x , F ( y , x , y ) = y , and F ( z , y , z ) = z . The mapping F is said to have the mixed monotone property (with respect to ) if F ( x , y , z ) is monotone nondecreasing in x and z , and it is monotone nonincreasing in y ; that is, for any x , y , z X , (2) x 1 , x 2 X , x 1 x 2 F ( x 1 , y , z ) F ( x 2 , y , z ) , y 1 , y 2 X , y 1 y 2 F ( x , y 1 , z ) F ( x , y 2 , z ) , y 1 , y 2 X , y 1 y 2 F ( x , y , z 1 ) F ( x , y 2 , z ) . The second equation that defines a tripled fixed point, that is, F ( y , x , y ) = y , uses the point y twice in the arguments of F . This fact is necessary to ensure the existence of tripled fixed points of a nonlinear contration because, in such a case, the mixed monotone property is applicable.

Very recently, as a continuation of their pioneering works in the tripled case, Borcut et al. announced in  the following result.

Theorem 1 (Borcut et al. [<xref ref-type="bibr" rid="B7">10</xref>], Theorem 12).

Let ( X , ) be a partially ordered set and suppose there is a metric d on X such that ( X , d ) is a complete metric space. Let F : X 3 X be a mapping having the mixed monotone property on X . Assume that there exists a k [ 0,1 ) such that (3) d ( F ( x , y , z ) , F ( u , v , w ) ) k 8    [ d ( x , F ( x , y , z ) ) + d ( y , F ( y , x , y ) ) + d ( z , F ( z , y , x ) ) + d ( u , F ( u , v , w ) ) + d ( v , F ( v , u , v ) ) + d ( w , F ( w , v , u ) ) ] for all x u , y v , z w . Also suppose that either

F is continuous, or

X has the following properties:

if a nondecreasing sequence { x m } x , then x m x for all m ;

if a nonincreasing sequence { y m } y , then y m y for all m .

If there exist x 0 , y 0 , z 0 X such that (4) x 0 F ( x 0 , y 0 , z 0 ) , y 0 F ( y 0 , x 0 , y 0 ) , z 0 F ( z 0 , y 0 , x 0 ) , then F has a tripled fixed point in X ; that is, there exist x , y , z X such that (5) F ( x , y , z ) = x , F ( y , x , y ) = y , F ( z , y , x ) = z .

This note is to advise that the proof given by the authors of the previous result is not correct, and it cannot be corrected using the same technique. Furthermore, we present some similar results as an approximation to the opened question if the previous theorem is valid.

2. A Review of the Incorrect Proof

Let us review the lines of their proof. Based on x 0 , y 0 , z 0 X , the authors defined, recursively, for all n 0 , (6) x n + 1 = F ( x n , y n , z n ) , y n + 1 = F ( y n , x n , y n ) , z n + 1 = F ( z n , y n , x n ) , and they proved that { x n } and { z n } were monotone nondecreasing sequences and { y n } was a monotone nonincreasing sequence in ( X , ) . Then, they defined, for all n N , (7) D x n + 1 = d ( x n + 1 , x n ) , D y n + 1 = d ( y n + 1 , y n ) , D z n + 1 = d ( z n + 1 , z n ) , D n + 1 = D x n + 1 + D y n + 1 + D z n + 1 . Using the contractivity condition (3), they proved that, taking into account that x n x n - 1 , y n y n - 1 , and z n z n - 1 , (8) D x n + 1 = d ( x n + 1 , x n ) = d ( F ( x n , y n , z n ) , F ( x n - 1 , y n - 1 , z n - 1 ) ) k 8 [ d ( x n , F ( x n , y n , z n ) ) + d ( y n , F ( y n , x n , y n ) ) + d ( z n , F ( z n , y n , x n ) ) + d ( x n - 1 , F ( x n - 1 , y n - 1 , z n - 1 ) ) + d ( y n - 1 , F ( y n - 1 , x n - 1 , y n - 1 ) ) + d ( z n - 1 , F ( z n - 1 , y n - 1 , x n - 1 ) ) ] = k 8 [ d ( x n , x n + 1 ) + d ( y n , y n + 1 ) + d ( z n , z n + 1 ) + d ( x n - 1 , x n ) + d ( y n - 1 , y n ) + d ( z n - 1 , z n ) ] = k 8 [ D x n + D y n + D z n + D x n + 1 + D y n + 1 + D z n + 1 ] . Based on this inequality, the authors immediately announced that (9) D y n + 1 k 8 [ D x n + 2 D y n + D x n + 1 + 2 D y n + 1 ] , (10) D z n + 1 k 8 [ D x n + D y n + D z n + D x n + 1 + D y n + 1 + D z n + 1 ] (see [10, page 4, inequalities ( 2.4 ) and ( 2.5 ) ]). However, these last two inequalities are false. In fact, we can only prove that (11) D y n + 1 = d ( y n + 1 , y n ) = d ( F ( y n , x n , y n ) , F ( y n - 1 , x n - 1 , y n - 1 ) ) k 8 [ d ( y n , F ( y n , x n , y n ) ) + d ( x n , F ( x n , y n , x n ) ) + d ( y n , F ( y n , x n , y n ) ) + d ( y n - 1 , F ( y n - 1 , x n - 1 , y n - 1 ) ) + d ( x n - 1 , F ( x n - 1 , y n - 1 , x n - 1 ) ) + d ( y n - 1 , F ( y n - 1 , x n - 1 , y n - 1 ) ) ] k 8 [ 2 d ( y n , y n + 1 ) + d ( x n , F ( x n , y n , x n ) ) + 2 d ( y n - 1 , y n ) + d ( x n - 1 , F ( x n - 1 , y n - 1 , x n - 1 ) ) ] k 8 [ 2 D y n + 1 + d ( x n , F ( x n , y n , x n ) ) + 2 D y n + d ( x n - 1 , F ( x n - 1 , y n - 1 , x n - 1 ) ) ] . However, comparing (9) with (11), we notice that D x n + 1 = d ( x n , x n + 1 ) = d ( x n , F ( x n , y n , z n ) ) does not necessarily coincide with d ( x n , F ( x n , y n , x n ) ) and, similarly, D x n = d ( x n - 1 , x n ) = d ( x n - 1 , F ( x n - 1 , y n - 1 , z n - 1 ) ) is not necessarily equal to d ( x n - 1 , F ( x n - 1 , y n - 1 , x n - 1 ) ) . Therefore, inequality (9) cannot be ensured.

Exactly in the same way, it can be possible to see that (10) cannot be proved using the contractivity condition (3). In such a case, the proof given by the authors, which decisively used inequalities (9) and (10), is false.

3. Some Berinde and Borcut’s Type Tripled Fixed Point Theorems

For the moment, the question about whether Theorem 1 is valid is opened. The following results are some approximations to this problem, using contractivity conditions that are inspired in (3). The main aim of this section is to show some results in this line of research using a well-known result by Ćirić . Our technique is based on some very recent works which showed that most of coupled/tripled/quadrupled fixed point results can be reduced to their corresponding unidimensional theorems in different frameworks (see, for instance, ). Before that, let us introduce some notation and basic results.

Given a binary relation on X , let us define (12) ( x , y , z ) ( u , v , w ) [ x u , y v , z w ] . If is a partial order on X , then is also a partial order on X 3 .

Given a metric d on X , let us define d 3 s , d 3 m : X 3 × X 3 [ 0 , ) , for all ( x , y , z ) , ( u , v , w ) X 3 , by (13) d 3 s ( ( x , y , z ) , ( u , v , w ) ) = d ( x , u ) + d ( y , v ) + d ( z , w ) , d 3 m ( ( x , y , z ) , ( u , v , w ) ) = max { d ( x , u ) , d ( y , v ) , d ( z , w ) } . Then d 3 s and d 3 m are metrics on X 3 . In addition to this, if d is complete, then d 3 s and d 3 m are also complete.

Given a mapping F : X 3 X , let us denote by T F 3 : X 3 X 3 the mapping (14) T F 3 ( x , y , z ) = ( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) ) ( x , y , z ) X 3 . Notice that a tripled fixed point of F is nothing but a fixed point of T F 3 . If F is d -continuous, then T F 3 is d 3 s -continuous. Furthermore, if F has the mixed monotone property with respect to , then T F 3 is nondecreasing with respect to (see ). We also recall the following result.

Definition 2.

Let d be a metric on X and let be a partial order on X . We will say that ( X , d , ) is regular if it verifies the following two properties:

if a nondecreasing sequence { x n } x , then x n x for all n ;

if a nonincreasing sequence { y n } y , then y n y for all n .

Lemma 3.

If ( X , d , ) is regular, then ( X 3 , d 3 s , ) is also regular.

The first version of the following theorem was given by Ćirić in 1972 (see ) in the case of metric spaces that were not necessarily partially ordered. A partially ordered version can be found, for example, in . Our main results will be consequences of the next result.

Theorem 4 (see e.g., [<xref ref-type="bibr" rid="B16">19</xref>]).

Let ( X , ) be a partially ordered set and suppose that there is a metric d on X such that ( X , d ) is a complete metric space. Let T : X X be a nondecreasing mapping and let k [ 0,1 ) be such that (15) d ( T x , T y ) k max ( d ( x , T y ) + d ( y , T x ) 2 d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( x , T y ) + d ( y , T x ) 2 ) for all x , y X such that x y . Also assume that F is continuous or ( X , d , ) is regular. If there exist x 0 X such that x 0 T x 0 , then F has a fixed point.

In the following result, we found some terms that play an important role in the contractivity condition (3).

Theorem 5.

Let ( X , ) be a partially ordered set and suppose there is a metric d on X such that ( X , d ) is a complete metric space. Let F : X 3 X be a mapping having the mixed monotone property on X . Suppose that there exists k [ 0,1 ) such that (16) d ( F ( x , y , z ) , F ( u , v , w ) ) k 4 max ( ( 2 ) - 1 d ( x , u ) + d ( y , v ) + d ( z , w ) , d ( x , F ( x , y , z ) ) + d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) + d ( v , F ( w , v , u ) ) , ( d ( u , F ( x , y , z ) ) + d ( w , F ( z , y , x ) ) + d ( x , F ( u , v , w ) ) + d ( z , F ( w , v , u ) ) ) × ( 2 ) - 1 ) for all x , y , z , u , v , w X such that x u , y v , and z w . Also assume that F is continuous or ( X , d , ) is regular. If there exist x 0 , y 0 , z 0 X such that (17) x 0 F ( x 0 , y 0 , z 0 ) , y 0 F ( y 0 , x 0 , y 0 ) , z 0 F ( z 0 , y 0 , x 0 ) , then F has a tripled fixed point in X ; that is, there exist x , y , z X such that (18) F ( x , y , z ) = x , F ( y , x , y ) = y , F ( z , y , x ) = z .

Proof.

As F has the mixed monotone property on X with respect to , it follows that T F 3 is -nondecreasing. Let us define, for all x , y , z , u , v , w X , (19) M ( ( x , y , z ) , ( u , v , w ) ) = max ( ( 2 ) - 1 d 3 s ( ( x , y , z ) , ( u , v , w ) ) , d 3 s ( ( x , y , z ) , T F 3 ( x , y , z ) ) , d 3 s ( ( u , v , w ) , T F 3 ( u , v , w ) ) , ( ( ( u , v , w ) , T F 3 ( x , y , z ) ) d 3 s ( ( x , y , z ) , T F 3 ( u , v , w ) ) + d 3 s ( ( u , v , w ) , T F 3 ( x , y , z ) ) ) × ( 2 ) - 1 ) = max ( ( 2 ) - 1 d ( x , u ) + d ( y , v ) + d ( z , w ) , d ( x , F ( x , y , z ) ) + d ( y , F ( y , x , y ) ) + d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) + d ( v , F ( v , u , v ) ) + d ( w , F ( w , v , u ) ) , ( d ( x , F ( u , v , w ) ) + d ( y , F ( v , u , v ) ) + d ( z , F ( w , v , u ) ) + d ( u , F ( x , y , z ) ) + d ( v , F ( y , x , y ) ) + d ( w , F ( z , y , x ) ) ) × ( 2 ) - 1 ) . Assume that x u , y v , and z w ; that is, ( x , y , z ) ( u , v , w ) . In this case, the contractivity condition (16) guarantees that (20) d ( F ( x , y , z ) , F ( u , v , w ) ) k 4 max ( ( 2 ) - 1 d ( x , u ) + d ( y , v ) + d ( z , w ) , d ( x , F ( x , y , z ) ) + d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) + d ( v , F ( w , v , u ) ) , ( d ( u , F ( x , y , z ) ) + d ( w , F ( z , y , x ) ) + d ( x , F ( u , v , w ) ) + d ( z , F ( w , v , u ) ) ( d ( u , F ( x , y , z ) ) + d ( w , F ( z , y , x ) ) ) × ( 2 ) - 1 ) k 4 M ( ( x , y , z ) , ( u , v , w ) ) . Taking into account that z w , y v , and x u , we also find the same upper bound: (21) d ( F ( z , y , x ) , F ( w , v , u ) ) k 4 max ( d ( z , w ) + d ( y , v ) + d ( x , u ) , d ( z , F ( z , y , x ) ) + d ( x , F ( x , y , z ) ) , d ( v , F ( w , v , u ) ) + d ( u , F ( u , v , w ) ) , ( d ( w , F ( z , y , x ) ) + d ( u , F ( x , y , z ) ) + d ( z , F ( w , v , u ) ) + d ( x , F ( u , v , w ) ) ) × ( 2 ) - 1 ) k 4 M ( ( x , y , z ) , ( u , v , w ) ) . Furthermore, as v y , u x , and v y , (22) d ( F ( y , x , y ) , F ( v , u , v ) ) k 4 max ( d ( y , v ) + d ( x , u ) + d ( y , v ) , d ( y , F ( y , x , y ) ) + d ( y , F ( y , x , y ) ) , d ( v , F ( v , u , v ) ) + d ( v , F ( v , u , v ) ) , ( d ( v , F ( y , x , y ) ) + d ( v , F ( y , x , y ) ) + d ( y , F ( v , u , v ) ) + d ( y , F ( v , u , v ) ) ) × ( 2 ) - 1 ) = k 4 max ( ( y , F ( v , u , v ) ) d ( x , u ) + 2 d ( y , v ) , 2 d ( y , F ( y , x , y ) ) , 2 d ( v , F ( v , u , v ) ) , d ( v , F ( y , x , y ) ) + d ( y , F ( v , u , v ) ) ) k 4 2 M ( ( x , y , z ) , ( u , v , w ) ) = k 2 M ( ( x , y , z ) , ( u , v , w ) ) . Joining the last three inequalities, we deduce that, for all ( x , y , z ) , ( u , v , w ) X 3 such that ( x , y , z ) ( u , v , w ) , (23) d 3 s ( T F 3 ( x , y , z ) , T F 3 ( u , v , w ) ) = d 3 s ( ( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) ) , ( F ( u , v , w ) , F ( v , u , v ) , F ( w , v , u ) ) ) = d ( F ( x , y , z ) , F ( u , v , w ) ) + d ( F ( y , x , y ) , F ( v , u , v ) ) + d ( F ( z , y , x ) , F ( w , v , u ) ) = ( k 4 + k 4 + k 2 ) M ( ( x , y , z ) , ( u , v , w ) ) = k M ( ( x , y , z ) , ( u , v , w ) ) . As ( x 0 , y 0 , z 0 ) T F 3 ( x 0 , y 0 , z 0 ) , Theorem 4 guarantees that T F 3 has a fixed point; that is, F has a tripled fixed point.

Theorem 6.

Let ( X , ) be a partially ordered set and suppose that there is a metric d on X such that ( X , d ) is a complete metric space. Let F : X 3 X be a mapping having the mixed monotone property on X . Suppose that there exists k [ 0,1 ) such that (24) d ( F ( x , y , z ) , F ( u , v , w ) ) k max { d ( x , F ( x , y , z ) ) , d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) , d ( w , F ( w , v , u ) ) } for all x , y , z , u , v , w X such that x u , y v , and z w . Also assume that F is continuous or ( X , d , ) is regular. If there exist x 0 , y 0 , z 0 X such that (25) x 0 F ( x 0 , y 0 , z 0 ) , y 0 F ( y 0 , x 0 , y 0 ) , z 0 F ( z 0 , y 0 , x 0 ) , then F has a tripled fixed point in X ; that is, there exist x , y , z X such that (26) F ( x , y , z ) = x , F ( y , x , y ) = y , F ( z , y , x ) = z .

Proof.

Following the lines of the previous proof, consider X 3 provided with the metric d 3 m . Assume that x u , y v , and z w ; that is, ( x , y , z ) ( u , v , w ) . In this case, the contractivity condition (24) guarantees that (27) d ( F ( x , y , z ) , F ( u , v , w ) ) k max { d ( x , F ( x , y , z ) ) , d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) , d ( w , F ( w , v , u ) ) } , and the same upper bound is valid for d ( F ( z , y , x ) , F ( w , v , u ) ) . Moreover, as v y , u x , and v y , (28) d ( F ( v , u , v ) , F ( y , x , y ) ) k max { d ( v , F ( v , u , v ) ) , d ( y , F ( y , x , y ) ) } .

Therefore (29) d 3 m ( T F 3 ( x , y , z ) , T F 3 ( u , v , w ) ) = d 3 m ( ( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) ) , ( F ( u , v , w ) , F ( v , u , v ) , F ( w , v , u ) ) ( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) ) ) = max { d ( F ( x , y , z ) , F ( u , v , w ) ) , d ( F ( y , x , y ) , F ( v , u , v ) ) , d ( F ( z , y , x ) , F ( w , v , u ) ) } k max { d ( x , F ( x , y , z ) ) , d ( y , F ( y , x , y ) ) , d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) , d ( v , F ( v , u , v ) ) , d ( w , F ( w , v , u ) ) } = k max { d 3 m ( ( x , y , z ) , T F 3 ( x , y , z ) ) , d ( ( u , v , w ) , T F 3 ( u , v , w ) ) } . Theorem 4 guarantees that T F 3 has a fixed point; that is, F has a tripled fixed point.

The following particularization is also inspired by some Berinde and Borcut’s results.

Corollary 7.

Let ( X , ) be a partially ordered set and suppose that there is a metric d on X such that ( X , d ) is a complete metric space. Let F : X 3 X be a mapping having the mixed monotone property on X . Suppose that there exists a , b , c , e [ 0,1 ) such that a + b + c + e < 1 and (30) d ( F ( x , y , z ) , F ( u , v , w ) ) a d ( x , F ( x , y , z ) ) + b d ( z , F ( z , y , x ) ) + c d ( u , F ( u , v , w ) ) + e d ( w , F ( w , v , u ) ) for all x , y , z , u , v , w X such that x u , y v , and z w . Also assume that F is continuous or ( X , d , ) is regular. If there exist x 0 , y 0 , z 0 X such that (31) x 0 F ( x 0 , y 0 , z 0 ) , y 0 F ( y 0 , x 0 , y 0 ) , z 0 F ( z 0 , y 0 , x 0 ) , then F has a tripled fixed point in X ; that is, there exist x , y , z X such that (32) F ( x , y , z ) = x , F ( y , x , y ) = y , F ( z , y , x ) = z .

Proof.

Let us define k = a + b + c + e [ 0,1 ) . If ( x , y , z ) , ( u , v , w ) X 3 are such that ( x , y , z ) ( u , v , w ) , then (33) d ( F ( x , y , z ) , F ( u , v , w ) ) a d ( x , F ( x , y , z ) ) + b d ( z , F ( z , y , x ) ) + c d ( u , F ( u , v , w ) ) + e d ( w , F ( w , v , u ) ) ( a + b + c + e ) max { d ( x , F ( x , y , z ) ) , d ( z , F ( z , y , x ) ) , d ( u , F ( u , v , w ) ) , d ( w , F ( w , v , u ) ) } , so the previous theorem is applicable.

The following result presents a contractivity condition more similar to (3) than (16). It follows from the previous result using a = b = c = e = k / 4 .

Corollary 8.

Let ( X , ) be a partially ordered set and suppose that there is a metric d on X such that ( X , d ) is a complete metric space. Let F : X 3 X be a mapping having the mixed monotone property on X . Suppose that there exists k [ 0,1 ) such that (34) d ( F ( x , y , z ) , F ( u , v , w ) ) k 4 [ d ( x , F ( x , y , z ) ) + d ( z , F ( z , y , x ) ) + d ( u , F ( u , v , w ) ) + d ( w , F ( w , v , u ) ) ] for all x , y , z , u , v , w X such that x u , y v , and z w . Also assume that F is continuous or ( X , d , ) is regular. If there exist x 0 , y 0 , z 0 X such that (35) x 0 F ( x 0 , y 0 , z 0 ) , y 0 F ( y 0 , x 0 , y 0 ) , z 0 F ( z 0 , y 0 , x 0 ) , then F has a tripled fixed point in X ; that is, there exist x , y , z X such that (36) F ( x , y , z ) = x , F ( y , x , y ) = y , F ( z , y , x ) = z .

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contribution

All authors contributed equally and significantly in writing this paper. All authors read and approved the final paper.

Acknowledgments

This research was supported by Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia. The authors offer thanks to anonymous referees for their remarkable comments, suggestion, and ideas which helped to improve this paper. Antonio-F. Roldán-López-de-Hierro has been partially supported by Junta de Andalucía by Project FQM-268 of the Andalusian CICYE.

Guo D. J. Lakshmikantham V. Coupled fixed points of nonlinear operators with applications Nonlinear Analysis: Theory, Methods & Applications 1987 11 5 623 632 10.1016/0362-546X(87)90077-0 MR886653 2-s2.0-0001396368 Bhaskar T. G. Lakshmikantham V. Fixed point theorems in partially ordered metric spaces and applications Nonlinear Analysis: Theory, Methods & Applications 2006 65 7 1379 1393 10.1016/j.na.2005.10.017 MR2245511 2-s2.0-33745215115 Lakshmikantham V. Ćirić L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces Nonlinear Analysis: Theory, Methods & Applications 2009 70 12 4341 4349 10.1016/j.na.2008.09.020 MR2514765 2-s2.0-63749106584 Berinde V. Borcut M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces Nonlinear Analysis: Theory, Methods & Applications 2011 74 15 4889 4897 10.1016/j.na.2011.03.032 MR2810674 2-s2.0-79958820971 Borcut M. Berinde V. Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces Applied Mathematics and Computation 2012 218 10 5929 5936 10.1016/j.amc.2011.11.049 MR2873069 2-s2.0-84655176373 Aydi H. Karapinar E. Radenovic S. Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales A 2013 107 2 339 353 10.1007/s13398-012-0077-3 MR3199716 Aydi H. Karapinar E. Shatanawi W. Tripled coincidence point results for generalized contractions in ordered generalized metric spaces Fixed Point Theory and Applications 2012 2012, article 101 10.1186/1687-1812-2012-101 Aydi H. Karapınar E. Vetro C. Meir-Keeler type contractions for tripled fixed points Acta Mathematica Scientia 2012 32 6 2119 2130 10.1016/S0252-9602(12)60164-7 MR2989401 2-s2.0-84868034731 Aydi H. Karapnar E. New Meir-Keeler type tripled fixed-point theorems on ordered partial metric spaces Mathematical Problems in Engineering 2012 2012 17 409872 10.1155/2012/409872 2-s2.0-84867943466 Borcut M. Păcurar M. Berinde V. Tripled fixed point theorems for mixed monotone Kannan type contractive mappings Journal of Applied Mathematics 2014 2014 8 120203 10.1155/2014/120203 MR3182362 Ćirić L. B. Fixed point theorems for mappings with a generalized contractive iterate at a point Publications de l'Institut Mathématique 1972 13(27) 11 16 MR0346765 Roldán A. Martínez-Moreno J. Roldán C. Karapnar E. Some remarks on multidimensional fixed point theorems To appear in Fixed Point Theory Samet B. Karapinar E. Aydi H. Rajić V. Ć. Discussion on some coupled fixed point theorems Fixed Point Theory and Applications 2013 2013, article 50 10.1186/1687-1812-2013-50 2-s2.0-84877018614 Khamsi M. A. Remarks on cone metric spaces and fixed point theorems of contractive mappings Fixed Point Theory and Applications 2010 2010 7 315398 MR2661183 10.1155/2010/315398 Radenović S. Remarks on some recent coupled coincidence point results in symmetric G-metric spaces Journal of Operators 2013 2013 8 290525 10.1155/2013/290525 Radenović S. Remarks on some coupled coincidence point results in partially ordered metric spaces Arab Journal of Mathematical Sciences 2014 20 1 29 39 10.1016/j.ajmsc.2013.02.003 Agarwal R. P. Karapınar E. Remarks on some coupled fixed point theorems in G-metric spaces Fixed Point Theory and Applications 2013 2013, article 2 10.1186/1687-1812-2013-2 MR3019359 Jleli M. Samet B. Remarks on G -metric spaces and fixed point theorems Fixed Point Theory and Applications 2012 2012, article 210 7 10.1186/1687-1812-2012-210 MR3017214 Radenovi S. Kadelburg Z. Generalized weak contractions in partially ordered metric spaces Computers & Mathematics with Applications 2010 60 6 1776 1783 10.1016/j.camwa.2010.07.008 2-s2.0-78049430028