Research Article
Some New Generating Functions for q-Hahn Polynomials

Yun Zhou1 and Qiu-Ming Luo2

1 Basic Courses Department, Southeast University Chengxian College, Dongda Road, Pukou, Nanjing 210088, China
2 Department of Mathematics, Chongqing Higher Education Mega Center, Chongqing Normal University, Huxi Campus, Chongqing 401331, China

Correspondence should be addressed to Qiu-Ming Luo; luomath2007@163.com

Received 10 April 2014; Accepted 25 May 2014; Published 9 June 2014

Academic Editor: Senlin Guo

Copyright © 2014 Y. Zhou and Q.-M. Luo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We obtain some new generating functions for q-Hahn polynomials and give their proofs based on the homogeneous q-difference operator.

1. Introduction
Throughout this paper we suppose that $q \in \mathbb{C}$, $|q| < 1$, and the q-shifted factorials are defined by

$$ (a; q)_0 = 1, \quad (a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (n \geq 1). $$

Clearly,

$$ (a; q)_n = \frac{(a; q)_{\infty}}{(aq^n; q)_{\infty}}. $$

We also adopt the following compact notation for the multiple q-shifted factorials:

$$ (a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n(a_2; q)_n \cdots (a_m; q)_n, $$

$$ (a_1, a_2, \ldots, a_m; q)_{\infty} = (a_1; q)_\infty(a_2; q)_\infty \cdots (a_m; q)_\infty. $$

The basic hypergeometric series or q-series, ϕ_q, are defined by

$$ \phi_q \left(\pmatrix{a_1, a_2, \ldots, a_r \\
 b_1, b_2, \ldots, b_i}; q, z \right) $$

$$ = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \ldots, a_i; q)_n}{(q, b_1, b_2, \ldots, b_i; q)_n} \left[(-1)^n q^{\frac{1}{2}} \right]^{1+r} z^n. $$

Euler identity is as follows:

$$ \sum_{n=0}^{\infty} \frac{t^n}{(q; q)_n} = \frac{1}{(t; q)_{\infty}}. $$

The q-binomial theorem is as follows:

$$ \sum_{n=0}^{\infty} \frac{(a; q)_n}{(q; q)_n} x^n = \frac{(ax; q)_{\infty}}{(x; q)_{\infty}}. $$

The usual q-differential operator or q-derivative operator D_q is defined by (see [1, Page 177, (2.1)])

$$ D_q \left\{ f(a) \right\} = \frac{f(a) - f(aq)}{a}, $$

$$ D_q^n \left\{ f(a) \right\} = D_q \left\{ D_q^{n-1} \left\{ f(a) \right\} \right\}. $$

In [1], Chen and Liu introduced the q-exponential $T(bD_q)$ operator as follows (see [1, Page 17, (2.5)]):

$$ T \left(bD_q \right) = \sum_{n=0}^{\infty} \frac{(bD_q)^n}{(q; q)_n}. $$
and they get the q-operator identity of $T(b D_q)$ (see [1, Page 178, Theorems 2.2 and 2.3]) as follows:

$$T(b D_q) \left\{ \frac{1}{(at; q)_\infty} \right\} = \frac{1}{(at, bt; q)_\infty} |bt| < 1,$$

$$T(b D_q) \left\{ \frac{1}{(as, at; q)_\infty} \right\} = \frac{(abst; q)_\infty}{(as, at, bs, bt; q)_\infty} |bt| < 1. \quad (9)$$

Recently Chen et al. [2] introduced the following homogeneous q-difference D_{xy}

$$D_{xy} [f(x, y)] = \frac{f(x, q^{-1} y) - f(x, y)}{x - q^{-1} y} \quad (10)$$

and the homogeneous q-difference operator $E(D_{xy})$:

$$E(D_{xy}) = \sum_{k=0}^{\infty} D_{xy}^k q^k. \quad (11)$$

They obtained some properties of D_{xy} as follows:

$$D_{xy} \left\{ P_n(x, y) \right\} = (1 - q^n) P_{n-1}(x, y),$$

$$D_{xy} \left\{ \frac{y(t; q)_\infty}{(x, y | q)_\infty} \right\} = \frac{(yt; q)_\infty}{(xt; q)_\infty} \quad (12)$$

The classical Rogers-Szegö polynomial is defined by means of the generating function:

$$\sum_{n=0}^{\infty} h_n(x | q) \frac{t^n}{(q^n; q)_n} = \frac{1}{(t; q)_\infty}, |t| < 1; \quad (13)$$

obviously, we have

$$T(D_q) [x^n] = h_n(x | q) = \sum_{k=0}^{n} \binom{n}{k} x^k. \quad (14)$$

The homogeneous Rogers-Szegö polynomial is defined by

$$h_n(\frac{x+y}{2}, \frac{x-y}{2} | q) = \sum_{k=0}^{n} \binom{n}{k} x^k. \quad (15)$$

where $P_n(x, y) = (x - y)(x - yq) \cdots (x - yq^{n-1})$. Clearly, $h_n(x, y | q) = \Phi_{n/x}(x)$ are the Cauchy polynomials with the following generating function:

$$\sum_{k=0}^{\infty} P_k(x, y) \frac{z^k}{(q; q)_k} = \frac{(yz; q)_\infty}{(xz; q)_\infty}, \quad |xz| < 1. \quad (16)$$

From the above properties, we have

$$E(D_{xy}) \left\{ P_n(x, y) \right\} = h_n(x, y | q), \quad (17)$$

$$\sum_{n=0}^{\infty} h_n(x, y | q) \frac{t^n}{(q^n; q)_n} = \frac{(yt; q)_\infty}{(xt, y; q)_\infty}. \quad (18)$$

Lemma 1 (see [3, Lemma 2.3]). For $|t|, |xt| < 1$,

$$E(D_{xy}) \left\{ \frac{y(t; q)_\infty}{(x, y | q)_\infty} P_n(x, y) \right\} \frac{t^n}{(q^n; q)_n} \quad (19)$$

where $P_n(x, q)$ is the q-Hahn polynomial defined by [4]

$$\sum_{n=0}^{\infty} \Phi_n^{(a)}(x) \frac{t^n}{(q, q)_n} = \frac{(xt; q)_\infty}{(t, xt; q)_\infty}. \quad (20)$$

We have

$$\Phi_n^{(a)}(x) = \sum_{k=0}^{n} \binom{n}{k} a^k x^k. \quad (21)$$

Clearly, $\Phi_n^{(0)}(x) = h_n(x | q)$.

Recently, Chen et al. [3] gave some new proofs of the following results based on the method of homogeneous q-difference operator $E(D_{xy})$.

Theorem 2. Consider the following:

$$\sum_{n=0}^{\infty} \Phi_n^{(a)}(x) \Phi_n^{(b)}(y) \frac{t^n}{(q^n; q)_n} \frac{t^n}{(q^n; q)_n} \quad (22)$$

$$= \frac{(xt, yb; q)_\infty}{(t, xt; q)_\infty} \frac{\Phi_n^{(a)}(x) \Phi_n^{(b)}(y)}{s^n} x^n.$$

Theorem 3. Consider the following:

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} \Phi_{m+n}^{(a)}(x) \Phi_n^{(b)}(y) \frac{t^n}{(q^n; q)_n} \frac{t^n}{(q^n; q)_n} \quad (23)$$

$$= \frac{(xas; q)_\infty}{(s, xs, xt, q)_\infty} \frac{1}{s^n} \frac{s^n}{\Phi_n^{(a)}(x) \Phi_n^{(b)}(y)} x^n.$$

For more references on the q-difference operators, see [1, 5–16].

In the present paper, we obtains some new generating functions for q-Hahn polynomials and give their proofs based on the homogeneous q-difference operator.

2. Some New Generating Functions for q-Hahn Polynomial

In the present section we obtain the following new generating functions of q-Hahn polynomial.
Theorem 4. For $|z| < 1$,

\[
\sum_{k=0}^{\infty} \Phi_{nk}^{(a)}(x) z^k (q; q)_k^n = \frac{(axz; q)_{\infty}}{(z, xz; q)_{\infty}} \sum_{k=0}^{n} \left[\frac{n}{} \right] (a, z; q)_k z^k.
\]

(24)

Proof. Let $x \mapsto y$ and $a \mapsto b$ in (21), we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \Phi_{nk}^{(a)}(x) \Phi_{nk}^{(b)}(y) z^n (q; q)_k^n = \sum_{n=0}^{\infty} \frac{\Phi_n^{(a)}(x) \Phi_n^{(b)}(y)}{(q; q)_k^n} z^n (q; q)_k^n.
\]

(25)

By the q-binomial theorem (6) and noting that $(b q; q)_k = (q; q)_k$, we have

\[
(xaz, ybz; q)_{\infty} \sum_{k=0}^{\infty} \frac{(a, b, z, q)_k}{(z, xz, yz; q)_{\infty}} (xyz)^k = \frac{(xaz; q)_{\infty}}{(z, xz, q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, b, z, q)_k}{(aq, q)_k} (yz)^k = \frac{(xaz; q)_{\infty}}{(z, xz, q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, z, q)_k}{(q, q)_k} (b q; q)_k (xyz)^k.
\]

(26)

By (17), (25), and (26), we obtain

\[
\sum_{k=0}^{\infty} \frac{\Phi_{nk}^{(a)}(x) (b q; q)_k (xyz)^k}{(q, q)_k} = \frac{(xaz; q)_{\infty}}{(z, xz, q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, z, q)_k}{(q, q)_k} (b q; q)_k (xyz)^k.
\]

(27)

Comparing the coefficients of $z^k (q; q)_k^n$ on both sides of (27), we obtain the formula (24) immediately. This proof is complete.

Theorem 5. For $|t| < 1$,

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \Phi_{nk}^{(a)}(x) \Phi_{nk}^{(b)}(y) \frac{t^n}{(q; q)_k^n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Phi_{nk}^{(a)}(x) \Phi_{nk}^{(b)}(y) t^n}{(q; q)_k^n}.
\]

(28)

Proof. By (17) and (19), we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{h_{vn}^{(a)}(x, y | q) h_n^{(a)}(u, v | q) t^n}{(q; q)_k^n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{h_{vn}^{(a)}(x, y | q) h_n^{(a)}(u, v | q) t^n}{(q; q)_k^n}.
\]

(29)

Setting $y/x = a, v/u = b, u = y$ in the last sum, we obtain the formula (28) of Theorem 5. This proof is complete.

Theorem 6. For $|l| < 1, |s| < 1, |t| < 1$,

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Phi_{nk}^{(a)}(x) \Phi_{nk}^{(b)}(y) t^n}{(q; q)_k^n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Phi_{nk}^{(a)}(x) \Phi_{nk}^{(b)}(y) t^n}{(q; q)_k^n}.
\]

(30)

Proof. By (17) and (19), we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{h_{vn}^{(a)}(x, y | q) h_n^{(a)}(u, v | q) t^n}{(q; q)_k^n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{h_{vn}^{(a)}(x, y | q) h_n^{(a)}(u, v | q) t^n}{(q; q)_k^n}.
\]

(31)
Setting $y/x = a, v/u = b, u = y$ in the last sum, we obtain the formula (30) of Theorem 6. This proof is complete.

Theorem 7. For $|t| < 1$,

\[
\sum_{m,n,k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y) = \sum_{k=0}^\infty \left(\sum_{i,j=0}^k \frac{k!}{i! j!} (x; q)_i (y; q)_j \frac{(a; q)_i (b; q)_j}{(q; q)_i (q; q)_j} \right) t^k.
\]

\[
= \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

Proof. Applying (2) and the Euler identity (5) and noting (21), then the right-hand side is equal to (30) as follows:

\[
\frac{(x; q)_m (y; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y) = \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

\[
= \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

By (30) and (33), we have

\[
\sum_{m,n,k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y) = \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

Comparing the coefficients of $t^m s^n/(q; q)_m (q; q)_n$ on both sides of (34), we obtain the formula (32) immediately.

Theorem 8. For $|t| < 1$,

\[
\sum_{m,n=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y) = \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

\[
= \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]

\[
= \sum_{k=0}^\infty \frac{t^k}{(q; q)_k} \frac{(a; q)_m (b; q)_n (q; q)_k}{(q; q)_k} \phi^{(a)}_{m+k} (x) \phi^{(b)}_{n+k} (y).
\]
Proof. Set $n = 0$ and then let $k \mapsto n$ in (32) and note that
\[\Phi^{(b)}_0 (x) = 1; \text{by (21) and (22), we obtain} \]
\[
\sum_{n=0}^{\infty} \frac{\Phi^{(a)}_m (x)}{\Phi^{(b)}_m (y)} \frac{t^n}{(q; q)_n}
= \sum_{n=0}^{\infty} \frac{t^n}{(q; q)_n} \sum_{i,j=0}^{\infty} \frac{n}{i} \frac{n}{j} (x;q)_i
\times (y;q)_j x^{n-i} y^{n-j} \Phi^{(a)}_m (xq^j)
\]
\[
= \sum_{n=0}^{\infty} \frac{t^n}{(q; q)_n} \sum_{i,j=0}^{\infty} \frac{n}{i} \frac{n}{j} (x;q)_i (y;q)_j x^{n-i} y^{n-j}
\times \sum_{s=0}^{m} m \binom{m}{s} (a;q)_s (xq^s)^s
\]
\[
= \sum_{n=0}^{\infty} \frac{t^n}{(q; q)_n} \sum_{s=0}^{m} m \binom{m}{s} (a;q)_s x^{s+n} y^n \Phi^{(a)}_n (x;q) \Phi^{(b)}_n (y)
\times \sum_{s=0}^{m} m \binom{m}{s} (a;q)_s (x;xyt;q)_s \Phi^{(a)}_s (x;xyt,q)
\times s \Phi_2 \left(\frac{xyt, xa, yb}{xyt, xt, yt;q}_s \right)
\times \left((x;yat, yb; q)_s \Phi_2 \left(\frac{xyt, xa, yb}{xyt, xt, yt; q}_s \right) \right) \times s \Phi_2 \left(\frac{xyt, xa, yb}{xyt, xt, yt; q}_s \right).
\]

This proof is complete. \hfill \blacksquare

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
The present investigation was supported by the Natural Science Foundation Project of Chongqing, China, under Grant CSTC2011JJA00024, the Research Project of Science and Technology of Chongqing Education Commission, China, under Grant KJ120625, and the Fund of Chongqing Normal University, China, under Grant nos. 10XLR017 and 2011XLZ07.

References