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Abstract. 
This paper is concerned with the numerical stability of Runge-Kutta methods for a class of nonlinear functional differential and functional equations. The sufficient conditions for the stability and asymptotic stability of 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraically stable Runge-Kutta methods are derived. A numerical test is given to confirm the theoretical results.


1. Introduction
This paper is concerned with the numerical solution of the following nonlinear functional differential and functional equations (FDFEs):
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				
			

			
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
				𝑧
				(
				𝑡
				)
				=
				𝑔
				(
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
				𝑡
				≥
				0
				,
			

		
	

					with the initial conditions 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝜑
				(
				𝑡
				)
				,
				𝑧
				(
				𝑡
				)
				=
				𝜓
				(
				𝑡
				)
				,
				𝑡
				≤
				0
				,
			

		
	

					where 
	
		
			
				𝜏
				>
				0
			

		
	
 is a real constant, 
	
		
			

				𝑦
			

		
	
 and 
	
		
			

				𝑧
			

		
	
 are unknown vectors of complex functions, 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 are given vectors of complex functions with appropriate domains of definition, and 
	
		
			

				𝜑
			

		
	
 and 
	
		
			

				𝜓
			

		
	
 are given vectors of complex functions which satisfy the consistency relation 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝜓
				(
				0
				)
				=
				𝑔
				(
				0
				,
				𝜑
				(
				0
				)
				,
				𝜑
				(
				−
				𝜏
				)
				,
				𝜓
				(
				−
				𝜏
				)
				)
				.
			

		
	

Systems of the form (1) are sometimes called hybrid systems [1] or coupled delay differential and difference equations [2, 3]. They arise widely in the fields of science and technology, such as control systems, physics, and biology (see [1–6] and the references therein). In particular, they include neutral delay differential equations (NDDEs) as special cases. In fact, the explicit NDDEs 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑦
			

			

				
			

			
				
				(
				𝑡
				)
				=
				𝑓
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
				𝑦
			

			

				
			

			
				
				(
				𝑡
				−
				𝜏
				)
			

		
	

					are equivalent to 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑦
			

			

				
			

			
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
				𝑧
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
			

		
	

					while the implicit NDDEs 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				[
				]
				𝑧
				(
				𝑡
				)
				−
				𝐺
				(
				𝑡
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
			

			

				
			

			
				=
				𝑓
				(
				𝑡
				,
				𝑧
				(
				𝑡
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
			

		
	

					are equivalent to 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				
			

			
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑦
				(
				𝑡
				)
				+
				𝐺
				(
				𝑡
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				,
				𝑧
				(
				𝑡
				)
				=
				𝑦
				(
				𝑡
				)
				+
				𝐺
				(
				𝑡
				,
				𝑧
				(
				𝑡
				−
				𝜏
				)
				)
				.
			

		
	

In recent years, numerical methods for explicit NDDEs and implicit NDDEs have been studied extensively and a significant number of numerical stability results have been found (see [7–20]). However, the above results of numerical stability cannot be applied to the more general problem (1). In 1999, Liu [6] discussed the numerical stability of Runge-Kutta collocation methods with a constrained grid and linear 
	
		
			

				𝜃
			

		
	
-methods with a uniformed grid for linear systems of FDFEs: 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑦
			

			

				
			

			
				(
				𝑡
				)
				+
				𝐴
			

			

				1
			

			
				𝑦
				(
				𝑡
				)
				+
				𝐴
			

			

				2
			

			
				𝑦
				(
				𝑡
				−
				𝜏
				)
				+
				𝐵
			

			

				1
			

			
				𝑧
				(
				𝑡
				−
				𝜏
				)
				=
				0
				,
				𝑧
				(
				𝑡
				)
				+
				𝐴
			

			

				3
			

			
				𝑦
				(
				𝑡
				)
				+
				𝐴
			

			

				4
			

			
				𝑦
				(
				𝑡
				−
				𝜏
				)
				+
				𝐵
			

			

				2
			

			
				𝑧
				(
				𝑡
				−
				𝜏
				)
				=
				0
				,
				𝑡
				≥
				0
				,
			

		
	

					where 
	
		
			

				𝜏
			

		
	
 is a positive constant and 
	
		
			

				𝐴
			

			

				1
			

		
	
, 
	
		
			

				𝐴
			

			

				2
			

		
	
, 
	
		
			

				𝐴
			

			

				3
			

		
	
, 
	
		
			

				𝐴
			

			

				4
			

		
	
, 
	
		
			

				𝐵
			

			

				1
			

		
	
, and 
	
		
			

				𝐵
			

			

				2
			

		
	
 are the coefficient matrices. Then, the asymptotic stability of linear multistep methods, one-leg methods, Runge-Kutta methods, multistep Runge-Kutta methods, and Rosenbrock methods for linear systems of FDFEs (8) was investigated in papers [21–23], respectively. Recently, Yu and Li [24] and Yu and Wen [25] dealt with the stability and asymptotic stability of the analytical and numerical solutions (obtained by one-leg methods) of nonlinear FDFEs (1), respectively. In the present paper, we further discuss the numerical stability of Runge-Kutta methods for the nonlinear FDFEs. The sufficient conditions for the stability and asymptotic stability of 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraically stable Runge-Kutta methods are derived.
2. Stability of the Problem Class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	

Let 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 be an inner product and 
	
		
			
				‖
				⋅
				‖
			

		
	
 the corresponding norm in complex 
	
		
			

				𝑁
			

		
	
-dimensional space 
	
		
			

				ℂ
			

			

				𝑁
			

		
	
; assume that the mappings 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 in (1) satisfy the following conditions: 
						
	
 		
 			
				(
				9
				)
			
 			
				(
				1
				0
				)
			
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝑢
				R
				e
			

			

				1
			

			
				−
				𝑢
			

			

				2
			

			
				
				,
				𝑓
				𝑡
				,
				𝑢
			

			

				1
			

			
				
				
				,
				𝑣
				,
				𝑤
				−
				𝑓
				𝑡
				,
				𝑢
			

			

				2
			

			
				‖
				‖
				𝑢
				,
				𝑣
				,
				𝑤
				
				
				≤
				𝛼
			

			

				1
			

			
				−
				𝑢
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				,
				∀
				𝑡
				≥
				0
				,
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				,
				𝑣
				,
				𝑤
				∈
				ℂ
			

			

				𝑁
			

			
				,
				‖
				‖
				𝑓
				
				𝑡
				,
				𝑢
				,
				𝑣
			

			

				1
			

			
				,
				𝑤
			

			

				1
			

			
				
				
				−
				𝑓
				𝑡
				,
				𝑢
				,
				𝑣
			

			

				2
			

			
				,
				𝑤
			

			

				2
			

			
				
				‖
				‖
				≤
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑣
			

			

				1
			

			
				−
				𝑣
			

			

				2
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			
				‖
				‖
				𝑤
			

			

				1
			

			
				−
				𝑤
			

			

				2
			

			
				‖
				‖
				,
				∀
				𝑡
				≥
				0
				,
				𝑢
				,
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				𝑤
			

			

				1
			

			
				,
				𝑤
			

			

				2
			

			
				∈
				ℂ
			

			

				𝑁
			

			
				,
				‖
				‖
				𝑔
				
				𝑡
				,
				𝑢
			

			

				1
			

			
				,
				𝑣
			

			

				1
			

			
				,
				𝑤
			

			

				1
			

			
				
				
				−
				𝑔
				𝑡
				,
				𝑢
			

			

				2
			

			
				,
				𝑣
			

			

				2
			

			
				,
				𝑤
			

			

				2
			

			
				
				‖
				‖
				≤
				𝛾
			

			

				1
			

			
				‖
				‖
				𝑢
			

			

				1
			

			
				−
				𝑢
			

			

				2
			

			
				‖
				‖
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑣
			

			

				1
			

			
				−
				𝑣
			

			

				2
			

			
				‖
				‖
				‖
				‖
				𝑤
				+
				𝛿
			

			

				1
			

			
				−
				𝑤
			

			

				2
			

			
				‖
				‖
				,
				∀
				𝑡
				≥
				0
				,
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				,
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				𝑤
			

			

				1
			

			
				,
				𝑤
			

			

				2
			

			
				∈
				ℂ
			

			

				𝑁
			

			

				,
			

		
	

					where 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

			

				1
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

		
	
, 
	
		
			

				𝛾
			

			

				2
			

		
	
, and 
	
		
			

				𝛿
			

		
	
 are real constants and 
	
		
			
				𝛿
				<
				1
			

		
	
.
Throughout this paper, we assume that the problem (1) has unique exact solution 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑧
				(
				𝑡
				)
			

		
	
 and denote the problem class consisting of all problems (1) with (9)–(11) by class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
.
Remark 1. Inequality 2.1 means that we admit of stiffness of the problem, that is, admitting large value for the classical Lipschitz constant of 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑢
				,
				𝑣
				,
				𝑤
				)
			

		
	
 with respect to the second argument 
	
		
			

				𝑢
			

		
	
 (for the concept of stiffness we refer to [26, 27]).
Remark 2. Linear systems of FDFEs (8) belong to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
, where 
	
		
			
				𝛼
				=
				𝜇
				(
				−
				𝐴
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				𝜇
				(
				⋅
				)
			

		
	
 is the logarithmic matrix norm corresponding to the inner product norm in 
	
		
			

				ℂ
			

			

				𝑁
			

		
	
, and 
	
		
			

				𝛽
			

			

				1
			

			
				=
				‖
				𝐴
			

			

				2
			

			

				‖
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

			
				=
				‖
				𝐵
			

			

				1
			

			

				‖
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

			
				=
				‖
				𝐴
			

			

				3
			

			

				‖
			

		
	
, 
	
		
			

				𝛾
			

			

				2
			

			
				=
				‖
				𝐴
			

			

				4
			

			

				‖
			

		
	
, 
	
		
			
				𝛿
				=
				‖
				𝐵
			

			

				2
			

			

				‖
			

		
	
.
For problems of the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
, we have the following stability results (see [24]).
Theorem 3.  Suppose the problem (1) belongs to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 and 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				≤
				0
			

		
	
. Then one has the following inequalities: 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑦
				(
				𝑡
				)
				−
			

			

				∼
			

			
				𝑦
				‖
				‖
				‖
				(
				𝑡
				)
				≤
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				‖
				‖
				‖
				𝜓
				(
				𝑡
				)
				,
				𝑡
				>
				0
				,
				𝑧
				(
				𝑡
				)
				−
			

			

				∼
			

			
				𝑧
				‖
				‖
				‖
				≤
				
				𝛾
				(
				𝑡
				)
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				
			
			
				
				1
				−
				𝛿
				+
				𝛿
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				𝜓
				(
				𝑡
				)
				𝑡
				>
				0
				.
			

		
	

Here and later, 
	
		
			

				∼
			

			
				𝑦
				(
				𝑡
				)
			

		
	
, 
	
		
			

				∼
			

			
				𝑧
				(
				𝑡
				)
			

		
	
 denote the solution of any given perturbed problem of (1): 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				∼
			

			

				𝑦
			

			

				
			

			
				
				(
				𝑡
				)
				=
				𝑓
				𝑡
				,
			

			

				∼
			

			
				𝑦
				(
				𝑡
				)
				,
			

			

				∼
			

			
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
			

			

				∼
			

			
				𝑧
				
				,
				(
				𝑡
				−
				𝜏
				)
			

			

				∼
			

			
				𝑧
				
				(
				𝑡
				)
				=
				𝑔
				𝑡
				,
			

			

				∼
			

			
				𝑦
				(
				𝑡
				)
				,
			

			

				∼
			

			
				𝑦
				(
				𝑡
				−
				𝜏
				)
				,
			

			

				∼
			

			
				𝑧
				
				,
				(
				𝑡
				−
				𝜏
				)
				𝑡
				≥
				0
				,
			

		
	

					with the initial conditions 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				∼
			

			
				𝑦
				(
				𝑡
				)
				=
			

			

				∼
			

			
				𝜑
				(
				𝑡
				)
				,
			

			

				∼
			

			
				𝑧
				(
				𝑡
				)
				=
			

			

				∼
			

			
				𝜓
				(
				𝑡
				)
				,
				𝑡
				≤
				0
				,
			

		
	

					which satisfy the consistency relation 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				∼
			

			
				
				𝜓
				(
				0
				)
				=
				𝑔
				0
				,
			

			

				∼
			

			
				𝜑
				(
				0
				)
				,
			

			

				∼
			

			
				𝜑
				(
				−
				𝜏
				)
				,
			

			

				∼
			

			
				
				.
				𝜓
				(
				−
				𝜏
				)
			

		
	

Theorem 4.  Suppose the problem (1) belongs to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 and 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				<
				0
			

		
	
. Then one has 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑦
				(
				𝑡
				)
				−
			

			

				∼
			

			
				𝑦
				‖
				‖
				‖
				(
				𝑡
				)
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑧
				(
				𝑡
				)
				−
			

			

				∼
			

			
				𝑧
				‖
				‖
				‖
				(
				𝑡
				)
				=
				0
				,
			

		
	

						which characterizes the asymptotic stability property of the problem (1).
3. Stability Analysis of Runge-Kutta Methods for FDFEs
An 
	
		
			

				𝑠
			

		
	
-stage Runge-Kutta method for ordinary differential equations (ODEs) can be expressed as 
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑐
			

			
				
			
			

				𝐴
			

			
				
			
			
				
			
			

				𝑏
			

			

				𝑇
			

			
				=
				𝑐
			

			

				1
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				1
				2
			

			
				⋯
				𝑎
			

			
				1
				𝑠
			

			

				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			
				2
				1
			

			

				𝑎
			

			
				2
				2
			

			
				⋯
				𝑎
			

			
				2
				𝑠
			

			

				⋮
			

			
				
			
			
				𝑐
				⋯
				⋯
				⋯
				⋯
			

			

				𝑠
			

			
				
			
			

				𝑎
			

			
				𝑠
				1
			

			

				𝑎
			

			
				𝑠
				2
			

			
				⋯
				𝑎
			

			
				𝑠
				𝑠
			

			
				
			
			
				
			
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				⋯
				𝑏
			

			

				𝑠
			

			

				,
			

		
	

					where 
	
		
			
				𝐴
				=
				(
				𝑎
			

			
				𝑖
				𝑗
			

			
				)
				∈
				ℝ
			

			
				𝑠
				×
				𝑠
			

		
	
, 
	
		
			
				𝑏
				=
				(
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				…
				,
				𝑏
			

			

				𝑠
			

			

				)
			

			

				𝑇
			

			
				∈
				ℝ
			

			

				𝑠
			

		
	
, and 
	
		
			
				𝑐
				=
				(
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				…
				,
				𝑐
			

			

				𝑠
			

			

				)
			

			

				𝑇
			

			
				∈
				ℝ
			

			

				𝑠
			

		
	
. In this paper we always assume that 
	
		
			
				0
				≤
				𝑐
			

			

				𝑖
			

			
				≤
				1
			

		
	
 (
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
			

		
	
) and 
	
		
			

				∑
			

			
				𝑠
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑗
			

			
				=
				1
			

		
	
.
The adaptation of the Runge-Kutta method (17) for solving the problem (1) leads to 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				𝑦
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			
				𝑓
				
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑦
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

			
				𝑛
				+
				1
			

			
				=
				𝑦
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑗
			

			
				𝑓
				
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑧
			

			

				𝑛
			

			
				
				𝑡
				=
				𝑔
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			
				𝑛
				−
				𝑚
			

			
				,
				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				,
			

		
	

					where the integration step size 
	
		
			
				ℎ
				=
				𝜏
				/
				𝑚
			

		
	
, 
	
		
			

				𝑚
			

		
	
 is an arbitrarily given positive integer, 
	
		
			

				𝑡
			

			

				𝑛
			

			
				=
				𝑛
				ℎ
			

		
	
, 
	
		
			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑛
			

		
	
, and 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 denote approximations to 
	
		
			
				𝑦
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
, and 
	
		
			
				𝑧
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
, respectively, 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝜑
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝜓
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 for 
	
		
			
				𝑛
				≤
				0
			

		
	
, and 
	
		
			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

		
	
 is an approximation to 
	
		
			
				𝑧
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 which is obtained by using the following formula: 
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

			
				
				𝑡
				=
				𝑔
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				,
				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

		
	

					where 
	
		
			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				𝜑
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 and 
	
		
			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				𝜓
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 for 
	
		
			

				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				≤
				0
			

		
	
.
Similarly, applying the same method to the perturbed problem (13), we have 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			

				=
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			
				𝑓
				
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

			

				∼
			

			

				𝑦
			

			
				𝑛
				+
				1
			

			

				=
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑗
			

			
				𝑓
				
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				
				𝑡
				=
				𝑔
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			
				𝑛
				−
				𝑚
			

			

				,
			

			

				∼
			

			

				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				,
			

		
	

					where 
	
		
			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

		
	
, 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

		
	
, and 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

		
	
 denote approximations to 
	
		
			

				∼
			

			
				𝑦
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
, 
	
		
			

				∼
			

			
				𝑦
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
, and 
	
		
			

				∼
			

			
				𝑧
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
, respectively, 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

			

				=
			

			

				∼
			

			
				𝜑
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

			

				=
			

			

				∼
			

			
				𝜓
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 for 
	
		
			
				𝑛
				≤
				0
			

		
	
, and 
	
		
			

				∼
			

			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

		
	
 is an approximation to 
	
		
			

				∼
			

			
				𝑧
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 which is obtained by using the following formula: 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				∼
			

			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

			
				
				𝑡
				=
				𝑔
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

		
	

					where 
	
		
			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			

				=
			

			

				∼
			

			
				𝜑
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 and 
	
		
			

				∼
			

			

				𝑍
			

			
				𝑖
				(
				𝑛
				)
			

			

				=
			

			

				∼
			

			
				𝜓
				(
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				)
			

		
	
 for 
	
		
			

				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				≤
				0
			

		
	
.
Definition 5 (see [28]). Let 
	
		
			
				𝑘
				,
				𝑙
			

		
	
 be real constants with 
	
		
			
				𝑘
				>
				0
			

		
	
. A Runge-Kutta method (17) is said to be 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraically stable if there exists a diagonal nonnegative matrix 
	
		
			
				𝐷
				=
				d
				i
				a
				g
				(
				𝑑
			

			

				1
			

			
				,
				𝑑
			

			

				2
			

			
				,
				…
				,
				𝑑
			

			

				𝑠
			

			

				)
			

		
	
 such that 
	
		
			
				𝑀
				=
				[
				𝑀
			

			
				𝑖
				𝑗
			

			
				]
				∈
				ℝ
			

			
				(
				𝑠
				+
				1
				)
				×
				(
				𝑠
				+
				1
				)
			

		
	
 is nonnegative definite, where
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑀
				=
				𝑘
				−
				1
				−
				2
				𝑙
				𝑒
			

			

				𝑇
			

			
				𝐷
				𝑒
				𝑒
			

			

				𝑇
			

			
				𝐷
				−
				𝑏
			

			

				𝑇
			

			
				−
				2
				𝑙
				𝑒
			

			

				𝑇
			

			
				𝐷
				𝐴
				𝐷
				𝑒
				−
				𝑏
				−
				2
				𝑙
				𝐴
			

			

				𝑇
			

			
				𝐷
				𝑒
				𝐷
				𝐴
				+
				𝐴
			

			

				𝑇
			

			
				𝐷
				−
				𝑏
				𝑏
			

			

				𝑇
			

			
				−
				2
				𝑙
				𝐴
			

			

				𝑇
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				𝐷
				𝐴
			

		
	

						and 
	
		
			
				𝑒
				=
				(
				1
				,
				1
				,
				…
				,
				1
				)
			

			

				𝑇
			

			
				∈
				ℝ
			

			

				𝑠
			

		
	
. Particularly, the 
	
		
			
				(
				1
				,
				0
				)
			

		
	
-algebraically stable method is called algebraically stable for short.
Theorem 6.  Assume that the Runge-Kutta method (17) is 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraically stable with 
	
		
			
				0
				<
				𝑘
				≤
				1
			

		
	
. Then the numerical solutions 
	
		
			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 and 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

		
	
, obtained by applying the corresponding method (18) to the problems (1) and (13) which belong to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 with 
	
		
			
				(
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				)
				ℎ
				≤
				𝑙
			

		
	
, respectively, satisfy the global stability inequalities 
							
	
 		
 			
				(
				2
				3
				)
			
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				≤
				𝐶
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				‖
				‖
				‖
				𝑧
				𝜓
				(
				𝑡
				)
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				≤
				
				𝐶
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				1
				−
				𝛿
				+
				𝛿
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				𝜓
				(
				𝑡
				)
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 depends only on the method, 
	
		
			

				𝛽
			

			

				1
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

		
	
, 
	
		
			

				𝛾
			

			

				2
			

		
	
, 
	
		
			

				𝛿
			

		
	
, and 
	
		
			

				𝜏
			

		
	
.
Proof. Let
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑤
			

			

				𝑛
			

			
				=
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				,
				𝑊
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			

				−
			

			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			
				𝑄
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

			
				𝑖
				(
				𝑛
				)
			

			
				
				𝑡
				=
				𝑓
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				,
				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				
				
				𝑡
				−
				𝑓
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑖
				(
				𝑛
				−
				𝑚
				)
			

			
				
				,
				𝑆
				=
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				𝜓
				(
				𝑡
				)
			

		
	

						and 
	
		
			

				𝑞
			

			

				𝑗
			

			
				=
				⌊
				(
				𝑛
				+
				𝑐
			

			

				𝑗
			

			
				)
				/
				𝑚
				⌋
			

		
	
 (
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
				𝑛
				>
				0
			

		
	
), where 
	
		
			
				⌊
				⋅
				⌋
			

		
	
 denotes the integer part; then 
	
		
			

				𝑞
			

			

				𝑗
			

			
				𝜏
				≤
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				<
				(
				𝑞
			

			

				𝑗
			

			
				+
				1
				)
				𝜏
			

		
	
.It follows from (18) and (20) that 
							
	
 		
 			
				(
				2
				6
				)
			
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑊
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				𝑤
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			

				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				𝑤
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

			
				𝑛
				+
				1
			

			
				=
				𝑤
			

			

				𝑛
			

			
				+
				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑗
			

			

				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				𝑛
				=
				0
				,
				1
				,
				…
				.
			

		
	

						Thus, it is easily obtained that (see [28]) 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑤
				−
				𝑘
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				2
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				𝑊
				R
				e
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				−
				𝑙
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				
				=
				−
			

			
				𝑠
				+
				1
			

			

				
			

			
				𝑖
				=
				1
				𝑠
				+
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑀
			

			
				𝑖
				𝑗
			

			
				⟨
				𝜉
			

			

				𝑖
			

			
				,
				𝜉
			

			

				𝑗
			

			
				⟩
				,
			

		
	

						where 
	
		
			

				𝜉
			

			

				1
			

			
				=
				𝑤
			

			

				𝑛
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑖
			

			
				=
				ℎ
				𝑄
			

			
				(
				𝑛
				)
				𝑖
				−
				1
			

		
	
, 
	
		
			
				𝑖
				=
				2
				,
				3
				,
				…
				,
				𝑠
				+
				1
			

		
	
. In view of 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraic stability of the method and 
	
		
			
				0
				<
				𝑘
				≤
				1
			

		
	
, we get
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				R
				e
				⟨
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				−
				𝑙
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				⟩
				.
			

		
	

						By using conditions (9)–(11), we have 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				𝑊
				2
				R
				e
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				
				
				𝑊
				=
				2
				ℎ
				R
				e
			

			
				𝑗
				(
				𝑛
				)
			

			
				
				𝑡
				,
				𝑓
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				
				𝑡
				−
				𝑓
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				𝑊
				
				
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑊
				+
				2
				ℎ
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				×
				‖
				‖
				‖
				𝑓
				
				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				,
				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				
				𝑡
				−
				𝑓
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				)
			

			

				,
			

			

				∼
			

			

				𝑌
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			

				,
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				
				‖
				‖
				‖
				.
			

		
	

						When 
	
		
			

				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				−
				𝜏
				<
				0
			

		
	
, that is, 
	
		
			

				𝑞
			

			

				𝑗
			

			
				=
				0
			

		
	
, (30) leads to 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				𝑊
				2
				R
				e
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				
				‖
				‖
				𝑊
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑊
				+
				2
				ℎ
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝑆
				≤
				
				2
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				ℎ
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				
				𝛽
				+
				ℎ
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝑆
			

			

				2
			

			

				.
			

		
	

						On the other hand, when 
	
		
			

				𝑡
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑗
			

			
				ℎ
				−
				𝜏
				≥
				0
			

		
	
, that is, 
	
		
			

				𝑞
			

			

				𝑗
			

			
				≥
				1
			

		
	
, using conditions (9)–(11) and 
	
		
			
				𝛿
				<
				1
			

		
	
, (30) leads to 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				2
				R
				e
				⟨
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				⟩
				‖
				‖
				𝑊
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑊
				+
				2
				ℎ
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				×
				
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			
				‖
				‖
				‖
				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			

				−
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				‖
				
				‖
				‖
				𝑊
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑊
				+
				2
				ℎ
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				×
				
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				2
				𝑚
				)
			

			
				‖
				‖
				‖
				‖
				‖
				𝑍
				+
				𝛿
			

			
				𝑗
				(
				𝑛
				−
				2
				𝑚
				)
			

			

				−
			

			

				∼
			

			

				𝑍
			

			
				𝑗
				(
				𝑛
				−
				2
				𝑚
				)
			

			
				‖
				‖
				‖
				‖
				‖
				𝑊
				
				
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑊
				+
				2
				ℎ
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				×
				
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
				+
				𝛽
			

			

				2
			

			

				𝛾
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				𝑆
				+
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				𝑆
				
				‖
				‖
				𝑊
				≤
				2
				ℎ
				𝛼
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				
				‖
				‖
				𝑊
				+
				𝛿
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝑆
			

			

				2
			

			
				
				≤
				
				2
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				ℎ
				‖
				‖
				𝑊
				1
				−
				𝛿
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			

				.
			

		
	

						Here and below, we define 
	
		
			

				∑
			

			
				𝑡
				𝑘
				=
				𝑠
			

		
	
 equal to 0 for 
	
		
			
				𝑡
				<
				𝑠
			

		
	
. Combining (31) and (32) yields 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝑊
				2
				R
				e
			

			
				𝑗
				(
				𝑛
				)
			

			
				,
				ℎ
				𝑄
			

			
				𝑗
				(
				𝑛
				)
			

			
				
				≤
				
				2
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				ℎ
				‖
				‖
				𝑊
				1
				−
				𝛿
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			

				.
			

		
	

						Substituting (33) into (29) and using condition 
	
		
			
				(
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				)
				ℎ
				≤
				𝑙
			

		
	
, we obtain 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				
				
				2
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				
				‖
				‖
				𝑊
				1
				−
				𝛿
				ℎ
				−
				2
				𝑙
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			
				
				≤
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				−
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				ℎ
				‖
				‖
				𝑊
				1
				−
				𝛿
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			
				
				.
			

		
	

						By induction, (34) gives 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑤
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑠
				𝑘
				=
				0
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				−
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				‖
				‖
				𝑊
				1
				−
				𝛿
				×
				ℎ
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				⌊
				(
				𝑘
				+
				𝑐
			

			

				𝑗
			

			
				)
				/
				𝑚
				⌋
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				⌊
				(
				𝑘
				+
				𝑐
			

			

				𝑗
			

			
				)
				/
				𝑚
				⌋
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			
				
			
			
				𝛿
				𝛿
			

			
				⌊
				(
				𝑘
				+
				𝑐
			

			

				𝑗
			

			
				)
				/
				𝑚
				⌋
			

			
				
				≤
				‖
				‖
				𝑤
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				−
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				1
				−
				𝛿
				×
				ℎ
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			
				1
				𝑛
			

			

				
			

			
				𝑘
				=
				−
				𝑚
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				𝛽
				+
				ℎ
			

			

				2
			

			

				𝛾
			

			

				1
			

			
				
			
			
				1
				−
				𝛿
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				−
				𝑚
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				𝛽
				+
				ℎ
			

			

				2
			

			

				𝛾
			

			

				2
			

			
				
			
			
				1
				−
				𝛿
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				−
				𝑚
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				2
			

			
				
				+
				𝛿
				𝜏
				𝑆
			

			

				2
			

			
				
			
			
				
				≤
				‖
				‖
				𝑤
				𝛿
				(
				1
				−
				𝛿
				)
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				−
				
				𝛽
				
				
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				ℎ
				1
				−
				𝛿
				+
				ℎ
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				ℎ
				
				1
				−
				𝛿
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				
				𝛽
				+
				𝜏
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				1
				−
				𝛿
				m
				a
				x
			

			
				−
				𝑚
				≤
				𝑘
				≤
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				2
			

			
				
				+
				𝛿
				𝜏
				𝑆
			

			

				2
			

			
				
			
			
				
				≤
				‖
				‖
				𝑤
				𝛿
				(
				1
				−
				𝛿
				)
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				+
				𝛽
				1
				−
				𝛿
			

			

				2
			

			
				
				𝛾
			

			

				2
			

			
				
				+
				𝛿
			

			
				
			
			
				
				𝛿
				(
				1
				−
				𝛿
				)
				𝜏
				𝑆
			

			

				2
			

			

				.
			

		
	

						Therefore, there is a real constant 
	
		
			

				𝐶
			

		
	
 depending only on the method, 
	
		
			

				𝛽
			

			

				1
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

		
	
, 
	
		
			

				𝛾
			

			

				2
			

		
	
, 
	
		
			

				𝛿
			

		
	
, and 
	
		
			

				𝜏
			

		
	
 such that the inequality (23) holds. On the other hand, using condition (11) and 
	
		
			
				𝛿
				<
				1
			

		
	
, we have 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				‖
				‖
				‖
				𝑔
				
				𝑡
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			
				𝑛
				−
				𝑚
			

			
				,
				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				
				𝑡
				−
				𝑔
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			
				𝑛
				−
				𝑚
			

			

				,
			

			

				∼
			

			

				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				‖
				‖
				‖
				≤
				𝛾
			

			

				1
			

			
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑤
			

			
				𝑛
				−
				𝑚
			

			
				‖
				‖
				‖
				‖
				‖
				𝑧
				+
				𝛿
			

			
				𝑛
				−
				𝑚
			

			

				−
			

			

				∼
			

			

				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				‖
				‖
				‖
				≤
				
				𝐶
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				1
				−
				𝛿
				+
				𝛿
				×
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜓
				𝜑
				(
				𝑡
				)
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				𝜓
				(
				𝑡
				)
			

		
	

						and this completes the proof of Theorem 6.
Particularly, for the algebraically stable Runge-Kutta method, we have the following.
Corollary 7.  Assume that the Runge-Kutta method (17) is algebraically stable. Then the numerical solutions 
	
		
			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 and 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

		
	
, obtained by applying the corresponding method (18) to the problems (1) and (13) which belong to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 with 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				≤
				0
			

		
	
, respectively, satisfy the global stability inequalities 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				≤
				𝐶
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				‖
				‖
				‖
				𝑧
				𝜓
				(
				𝑡
				)
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				≤
				
				𝐶
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				1
				−
				𝛿
				+
				𝛿
				m
				a
				x
			

			
				−
				𝜏
				≤
				𝑡
				≤
				0
			

			
				
				‖
				‖
				𝜑
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				,
				‖
				‖
				𝜑
				(
				𝑡
				)
				𝜓
				(
				𝑡
				)
				−
			

			

				∼
			

			
				‖
				‖
				
				,
				𝜓
				(
				𝑡
				)
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 depends only on the method, 
	
		
			

				𝛽
			

			

				1
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

		
	
, 
	
		
			

				𝛾
			

			

				2
			

		
	
, 
	
		
			

				𝛿
			

		
	
, and 
	
		
			

				𝜏
			

		
	
.
Remark 8. It is well known that the formulae Gauss, Radau IA, Radau IIA, and Lobatto IIIC (for ODEs) are all algebraically stable. Therefore, in terms of Corollary 7, the corresponding methods are globally stable for solving the nonlinear FDFEs of the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 which satisfy the condition 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				≤
				0
			

		
	
.
In the following, we further discuss the asymptotic stability of the Runge-Kutta method.
Theorem 9.  Assume that the Runge-Kutta method (17) is 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraically stable with 
	
		
			
				0
				<
				𝑘
				≤
				1
			

		
	
, 
	
		
			
				𝐷
				>
				0
			

		
	
 (i.e., the matrix 
	
		
			

				𝐷
			

		
	
 is positive definite), 
	
		
			
				d
				e
				t
				𝐴
				≠
				0
			

		
	
, and 
	
		
			
				|
				1
				−
				𝑏
			

			

				𝑇
			

			

				𝐴
			

			
				−
				1
			

			
				𝑒
				|
				<
				1
			

		
	
. Then the numerical solutions 
	
		
			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 and 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

		
	
, obtained by applying the corresponding method (18) to the problems (1) and (13) which belong to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 with 
	
		
			
				(
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				)
				ℎ
				<
				𝑙
			

		
	
, respectively, satisfy 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				.
			

		
	

						The relations (38) characterize the asymptotic stability property of the method.
Proof. Let 
	
		
			
				𝜎
				=
				(
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				)
				ℎ
				−
				𝑙
			

		
	
; thus 
	
		
			
				𝜎
				<
				0
			

		
	
. In terms of the proof of Theorem 6, we have 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑑
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				𝛽
				
				
				2
				𝜎
				−
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				
				ℎ
				
				×
				‖
				‖
				𝑊
				1
				−
				𝛿
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				1
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛿
			

			
				𝑖
				−
				1
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛾
			

			
				2
				𝑞
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				2
			

			

				𝛿
			

			
				𝑖
				−
				2
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				−
				𝑖
				𝑚
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				ℎ
				𝛽
			

			

				2
			

			

				𝛿
			

			

				𝑞
			

			

				𝑗
			

			
				−
				1
			

			
				
				𝛾
			

			

				2
			

			
				
				𝑆
				+
				𝛿
			

			

				2
			

			
				
				.
			

		
	

						By induction, (39) gives 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			
				𝑛
				+
				1
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑤
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				
				
				2
				𝜎
				−
				𝛽
			

			

				2
			

			
				ℎ
				
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑘
				)
			

			
				‖
				‖
			

			

				2
			

			
				+
				
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			

				
			

			
				
			
			
				+
				𝛽
				1
				−
				𝛿
			

			

				2
			

			
				
				𝛾
			

			

				2
			

			
				
				+
				𝛿
			

			
				
			
			
				
				𝛿
				(
				1
				−
				𝛿
				)
				𝜏
				𝑆
			

			

				2
			

			
				
				.
			

		
	

						Since 
	
		
			
				(
				2
				𝜎
				−
				𝛽
			

			

				2
			

			
				ℎ
				)
				<
				0
			

		
	
 and 
	
		
			
				𝐷
				>
				0
			

		
	
, we easily obtain that 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				‖
				‖
				=
				0
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑠
				.
			

		
	

						On the other hand, while 
	
		
			
				d
				e
				t
				𝐴
				≠
				0
			

		
	
, denote 
	
		
			
				𝐺
				=
				[
				𝑔
			

			
				𝑖
				𝑗
			

			
				]
				=
				𝐴
			

			
				−
				1
			

		
	
; thus (26) yields 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑄
			

			
				𝑖
				(
				𝑛
				)
			

			
				=
				1
			

			
				
			
			

				ℎ
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑔
			

			
				𝑖
				𝑗
			

			
				
				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			
				−
				𝑤
			

			

				𝑛
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				.
			

		
	

						Substituting (42) into (27) leads to 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑤
			

			
				𝑛
				+
				1
			

			
				=
				
				1
				−
				𝑏
			

			

				𝑇
			

			

				𝐴
			

			
				−
				1
			

			
				𝑒
				
				𝑤
			

			

				𝑛
			

			

				+
			

			

				𝑠
			

			

				
			

			
				𝑠
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			

				𝑔
			

			
				𝑖
				𝑗
			

			

				𝑊
			

			
				𝑗
				(
				𝑛
				)
			

			

				.
			

		
	

						Noting that 
	
		
			
				|
				1
				−
				𝑏
			

			

				𝑇
			

			

				𝐴
			

			
				−
				1
			

			
				𝑒
				|
				<
				1
			

		
	
 and (41), we easily obtain 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
				=
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				.
			

		
	

						Furthermore, using condition (11), we have 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				‖
				‖
				‖
				𝑔
				
				𝑡
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			
				𝑛
				−
				𝑚
			

			
				,
				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				
				𝑡
				−
				𝑔
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			

				,
			

			

				∼
			

			

				𝑦
			

			
				𝑛
				−
				𝑚
			

			

				,
			

			

				∼
			

			

				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				
				‖
				‖
				‖
				≤
				𝛾
			

			

				1
			

			
				‖
				‖
				𝑤
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛾
			

			

				2
			

			
				‖
				‖
				𝑤
			

			
				𝑛
				−
				𝑚
			

			
				‖
				‖
				‖
				‖
				‖
				𝑧
				+
				𝛿
			

			
				𝑛
				−
				𝑚
			

			

				−
			

			

				∼
			

			

				𝑧
			

			
				𝑛
				−
				𝑚
			

			
				‖
				‖
				‖
				.
			

		
	

						Considering that 
	
		
			
				𝛿
				<
				1
			

		
	
 and (44), (45) leads to 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				,
			

		
	

						and this completes the proof of Theorem 9.
Particularly, for the algebraically stable Runge-Kutta method, we have the following.
Corollary 10.  Assume that the Runge-Kutta method (17) is algebraically stable with 
	
		
			
				𝐷
				>
				0
			

		
	
, 
	
		
			
				d
				e
				t
				𝐴
				≠
				0
			

		
	
, and 
	
		
			
				|
				1
				−
				𝑏
			

			

				𝑇
			

			

				𝐴
			

			
				−
				1
			

			
				𝑒
				|
				<
				1
			

		
	
. Then the numerical solutions 
	
		
			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 and 
	
		
			

				∼
			

			

				𝑦
			

			

				𝑛
			

		
	
, 
	
		
			

				∼
			

			

				𝑧
			

			

				𝑛
			

		
	
, obtained by applying the corresponding method (18) to the problems (1) and (13) which belong to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 with 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				<
				0
			

		
	
, respectively, satisfy 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				‖
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				=
				0
				.
			

		
	

Remark 11. It is well known that the formulae Radau IA, Radau IIA, and Lobatto IIIC (for ODEs) are algebraically stable with 
	
		
			
				𝐷
				>
				0
			

		
	
, 
	
		
			
				d
				e
				t
				𝐴
				≠
				0
			

		
	
 and 
	
		
			
				|
				1
				−
				𝑏
			

			

				𝑇
			

			

				𝐴
			

			
				−
				1
			

			
				𝑒
				|
				<
				1
			

		
	
. Therefore, in terms of Corollary 10, the corresponding methods are asymptotically stable for solving the nonlinear FDFEs of the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 which satisfy the condition 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				<
				0
			

		
	
.
Remark 12. In the paper [25], it is proved that an A-stable one-leg method is globally stable and a strongly A-stable one-leg method is asymptotically stable for FDFEs. However, any A-stable one-leg method has order at most two. In the present paper, the stability results are based on 
	
		
			
				(
				𝑘
				,
				𝑙
				)
			

		
	
-algebraic stability of Runge-Kutta methods, which, in general, can be of high order.
4. Numerical Experiments
Consider the following initial value problem: 
						
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝜕
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				=
				𝜕
				𝜕
				𝑡
			

			

				2
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝑢
				
				+
				s
				i
				n
				𝑢
				(
				𝑥
				,
				𝑡
				−
				𝜋
				)
				c
				o
				s
				𝑣
				(
				𝑥
				,
				𝑡
				−
				𝜋
				)
				,
				0
				<
				𝑥
				<
				1
				,
				𝑡
				≥
				0
				,
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
				s
				i
				n
				𝑢
				(
				𝑥
				,
				𝑡
				)
				s
				i
				n
				𝑢
				(
				𝑥
				,
				𝑡
				−
				𝜋
				)
				+
				0
				.
				2
				𝑣
				(
				𝑥
				,
				𝑡
				−
				𝜋
				)
				,
				(
				𝑥
				,
				𝑡
				)
				=
				𝑥
				−
				𝑥
			

			

				2
			

			
				
				
				𝑥
				s
				i
				n
				𝑡
				,
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				2
			

			
				
				−
				𝑥
				s
				i
				n
				𝑡
				,
				0
				<
				𝑥
				<
				1
				,
				𝑡
				≤
				0
				,
				𝑢
				(
				0
				,
				𝑡
				)
				=
				𝑢
				(
				1
				,
				𝑡
				)
				=
				0
				,
				𝑣
				(
				0
				,
				𝑡
				)
				=
				𝑣
				(
				1
				,
				𝑡
				)
				=
				0
				.
			

		
	

					After application of the numerical method of lines, we obtain the following FDFEs: 
						
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑢
			

			
				
				𝑖
			

			
				1
				(
				𝑡
				)
				=
			

			
				
			
			
				Δ
				𝑥
			

			

				2
			

			
				
				𝑢
			

			
				𝑖
				−
				1
			

			
				(
				𝑡
				)
				−
				2
				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				+
				𝑢
			

			
				𝑖
				+
				1
			

			
				
				(
				𝑡
				)
				+
				s
				i
				n
				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				−
				𝜋
				)
				c
				o
				s
				𝑣
			

			

				𝑖
			

			
				𝑣
				(
				𝑡
				−
				𝜋
				)
				,
				𝑡
				≥
				0
				,
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				s
				i
				n
				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				s
				i
				n
				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				−
				𝜋
				)
				+
				0
				.
				2
				𝑣
			

			

				𝑖
			

			
				𝑢
				(
				𝑡
				−
				𝜋
				)
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				−
				1
				,
			

			

				𝑖
			

			
				𝑣
				(
				𝑡
				)
				=
				𝑖
				Δ
				𝑥
				(
				1
				−
				𝑖
				Δ
				𝑥
				)
				s
				i
				n
				𝑡
				,
			

			

				𝑖
			

			
				𝑢
				(
				𝑡
				)
				=
				𝑖
				Δ
				𝑥
				(
				𝑖
				Δ
				𝑥
				−
				1
				)
				s
				i
				n
				𝑡
				,
				𝑡
				≤
				0
				,
			

			

				0
			

			
				(
				𝑡
				)
				=
				𝑢
			

			

				𝑁
			

			
				(
				𝑡
				)
				≡
				0
				,
				𝑣
			

			

				0
			

			
				(
				𝑡
				)
				=
				𝑣
			

			

				𝑁
			

			
				(
				𝑡
				)
				≡
				0
				,
			

		
	

					where 
	
		
			
				Δ
				𝑥
			

		
	
 is the spatial step, 
	
		
			

				𝑁
			

		
	
 is a natural number such that 
	
		
			
				𝑁
				Δ
				𝑥
				=
				1
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑖
			

			
				=
				𝑖
				Δ
				𝑥
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				−
				1
			

		
	
, and 
	
		
			

				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑢
				(
				𝑥
			

			

				𝑖
			

			
				,
				𝑡
				)
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑣
				(
				𝑥
			

			

				𝑖
			

			
				,
				𝑡
				)
			

		
	
. Then, the problem (49) belongs to the class 
	
		
			
				𝐷
				(
				𝛼
				,
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			
				,
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				𝛿
				)
			

		
	
 with 
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝛼
				=
				−
				4
				𝑁
			

			

				2
			

			
				s
				i
				n
			

			

				2
			

			

				𝜋
			

			
				
			
			
				2
				𝑁
				,
				𝛽
			

			

				1
			

			
				=
				𝛽
			

			

				2
			

			
				=
				𝛾
			

			

				1
			

			
				=
				𝛾
			

			

				2
			

			
				=
				1
				,
				𝛿
				=
				0
				.
				2
				,
			

		
	

					where the inner product is standard inner product. We take 
	
		
			
				Δ
				𝑥
				=
				0
				.
				0
				1
			

		
	
 (i.e., 
	
		
			
				𝑁
				=
				1
				0
				0
			

		
	
) for the numerical method of lines; thus the condition 
	
		
			
				𝛼
				+
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			
				(
				𝛾
			

			

				1
			

			
				+
				𝛾
			

			

				2
			

			
				)
				/
				(
				1
				−
				𝛿
				)
				≤
				0
			

		
	
 (
	
		
			
				<
				0
			

		
	
) is satisfied, which means the analytical solution of the problem (49) is stable and asymptotically stable.
As an example, we consider the 2-stage Radau IIA method: 
						
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				𝑐
			

			
				
			
			

				𝐴
			

			
				
			
			
				
			
			

				𝑏
			

			

				𝑇
			

			
				=
				1
				/
				3
			

			
				
			
			
				1
				5
				/
				1
				2
				−
				1
				/
				1
				2
			

			
				
			
			
				3
				/
				4
				1
				/
				4
			

			
				
			
			
				
			
			
				,
				3
				/
				4
				1
				/
				4
			

		
	

					for solving the problem (49) and its perturbed problem, where the initial conditions of the perturbed problem are 
						
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				∼
			

			

				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				5
				𝑖
				Δ
				𝑥
				(
				1
				−
				𝑖
				Δ
				𝑥
				)
				s
				i
				n
				𝑡
				,
			

			

				∼
			

			

				𝑣
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				5
				𝑖
				Δ
				𝑥
				(
				𝑖
				Δ
				𝑥
				−
				1
				)
				s
				i
				n
				𝑡
				,
				𝑡
				≤
				0
				.
			

		
	

According to the results of Corollaries 7 and 10, the corresponding method (for FDFEs) will be stable and asymptotically stable. We denote the numerical solutions of problem (49) and its perturbed problem 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑛
			

		
	
 and 
	
		
			

				∼
			

			

				𝑢
			

			

				𝑛
			

		
	
, 
	
		
			

				∼
			

			

				𝑣
			

			

				𝑛
			

		
	
, respectively, where 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑣
			

			

				𝑛
			

		
	
 are approximations to 
	
		
			
				[
				𝑢
			

			

				1
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				,
				𝑢
			

			

				2
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				,
				…
				,
				𝑢
			

			
				𝑁
				−
				1
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				]
			

			

				𝑇
			

		
	
 and 
	
		
			
				[
				𝑣
			

			

				1
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				,
				𝑣
			

			

				2
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				,
				…
				,
				𝑣
			

			
				𝑁
				−
				1
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				]
			

			

				𝑇
			

		
	
, respectively. The values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 and 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑣
			

			

				𝑛
			

			

				‖
			

		
	
 are listed in Figure 1 (where the abscissa denotes variable 
	
		
			

				𝑡
			

		
	
).
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(b)
Figure 1: Values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 (a) and values 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑣
			

			

				𝑛
			

			

				‖
			

		
	
 (b) with 
	
		
			
				ℎ
				=
				𝜋
				/
				1
				0
				0
			

		
	
.


As a comparison, we consider the explicit 3-stage Runge-Kutta method 
						
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑐
			

			
				
			
			

				𝐴
			

			
				
			
			
				
			
			

				𝑏
			

			

				𝑇
			

			
				=
				0
			

			
				
			
			
				0
				0
				0
				1
				/
				2
			

			
				
			
			
				1
				1
				/
				2
				0
				0
			

			
				
			
			
				−
				1
				2
				0
			

			
				
			
			
				
			
			
				,
				1
				/
				6
				4
				/
				6
				1
				/
				6
			

		
	

					for solving the problem (49) and its perturbed problem, and list the values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 and 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑣
			

			

				𝑛
			

			

				‖
			

		
	
 in Figure 2.
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(b)
Figure 2: Values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 (a) and values 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑣
			

			

				𝑛
			

			

				‖
			

		
	
 (b) with 
	
		
			
				ℎ
				=
				𝜋
				/
				1
				0
				0
			

		
	
.


From Figure 1, one can see that the values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 and 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑣
			

			

				𝑛
			

			

				‖
			

		
	
 are bounded and tend to zero. This coincides with the results of Corollaries 7 and 10. However, for the explicit 3-stage Runge-Kutta method (53), which is not algebraically stable, the situation is inverse as one can see that the values 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			

				∼
			

			

				𝑢
			

			

				𝑛
			

			

				‖
			

		
	
 are divergent as 
	
		
			
				𝑛
				→
				+
				∞
			

		
	
.
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