Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance

Jinyu Li, 1 Wei Liang, 2 and Shuyuan He 3

1 School of Sciences, China University of Mining and Technology, Xuzhou 221116, China
2 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Correspondence should be addressed to Jinyu Li; ljycumt@163.com

Received 31 March 2014; Accepted 24 August 2014; Published 2 September 2014

Academic Editor: Charalampos Tsitouras

Copyright © 2014 Jinyu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes a profile empirical likelihood for the partial parameters in ARMA(\(p, q\)) models with infinite variance. We introduce a smoothed empirical log-likelihood ratio statistic. Also, the paper proves a nonparametric version of Wilks’s theorem. Furthermore, we conduct a simulation to illustrate the performance of the proposed method.

1. Introduction

Consider the stationary ARMA(\(p, q\)) time series \(\{y_t\}\) generated by

\[
y_t = \varphi_1 y_{t-1} + \cdots + \varphi_p y_{t-p} + \varepsilon_t + \vartheta_1 \varepsilon_{t-1} + \cdots + \vartheta_q \varepsilon_{t-q},
\]

where the innovation process \(\{\varepsilon_t\}\) is a sequence of i.i.d. random variables. When \(E(\varepsilon_t^2) = \infty\), model (1) is an infinite variance autoregressive moving average (IVARMA) model, which defines a heavy-tailed process \(\{y_t\}\). For model (1), statistical inference has been explored in many studies (see, e.g., [1, 2]). Recently, for example, Pan et al. [3] and Zhu and Ling [4] proposed a weighted least absolute deviations estimator (WLAD) for model (1) and obtained the asymptotic normality.

However, in the building of ARMA models, we are usually only interested in statistical inference for partial parameters. For example, in the sparse coefficient (a part of zero coefficients) ARMA models, it is necessary to determine which coefficient is zero. For model (1), one traditional method is to construct confidence regions for the partial parameters of interest by normal approximation as in [3]. However, since the limit distribution depends on the unknown nuisance parameters and density function of the errors, estimating the asymptotic variance is not a trivial task. Based on these, this paper tries to put forward a new method for the estimation of partial parameters of ARMA models. We propose an empirical likelihood method, which was introduced by Owen [5, 6]. Based on the estimating equations of WLAD, a smoothed profile empirical likelihood ratio statistic is derived, and a nonparametric version of Wilks’s theorem is proved. Therefore, we can construct confidence regions for the partial parameters of interest. Also, simulations suggest that, for relative small sample cases, the empirical likelihood confidence regions are more accurate than those confidence regions constructed by the normal approximation based on the WLAD proposed by Pan et al. [3].

As an effective nonparametric inference method, the empirical likelihood method produces confidence regions whose shape and orientation are determined entirely by the data and therefore avoids secondary estimation. In the past two decades, the empirical likelihood method has been extended to many applications [7]. There are also many studies of empirical likelihood method for autoregressive models. Monti [8] considered the empirical likelihood in the frequency domain; Chuang and Chan [9] developed the empirical likelihood for unstable autoregressive models with innovations being a martingale difference sequence with finite variance; Chan et al. [10] applied the empirical
likelihood to near unit root AR(1) model with infinite variance errors; Li et al. [11, 12], respectively, used the empirical likelihood to infinite variance AR(p) models and model (1).

The rest of the paper is organized as follows. In Section 2, we propose the profile empirical likelihood for the parameters of interest and show the main result. Section 3 provides the proofs of the main results. Some simulations are conducted in Section 4 to illustrate our approach. Conclusions are given in Section 5.

2. Methodology and Main Results

First, the parameter space is denoted by \(\Theta \subset \mathbb{R}^{p+q} \), which contains the true value \(\theta_0 \) of the parameter \(\theta \) as an inner point. For \(\theta = (\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q) \), put

\[
\varepsilon_t(\theta) = \begin{cases}
\sum_{i=1}^{p} \phi_i y_{t-i} - \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} (\theta), & \text{if } t > 0, \\
0, & \text{if } t \leq 0,
\end{cases}
\]

(2)

where \(y_t \equiv 0 \) for all \(t \leq 0 \), and note that \(\varepsilon_t(\theta_0) \neq \varepsilon_t \), because of this truncation.

We define the objective function as

\[
S_n(\theta) = \sum_{t=1}^{n} \hat{w}_t |\varepsilon_t(\theta)|,
\]

(3)

where \(u \geq \max(p, q) \) and the weight function \(\hat{w}_t = 1/(1 + \sum_{k=1}^{n-t} |\varepsilon_{t-k}|) \), depending on a constant \(\alpha > 2 \). The WLADE, denoted by \(\hat{\theta} \), is a lacal minimizer of \(S_n(\theta) \) in a neighborhood of \(\theta_0 \) [3]. Denote \(A_{ij}(\theta) = (A_{11}(\theta), \ldots, A_{1p+q}(\theta))' \), where \(A_{ij}(\theta) = -\partial \varepsilon_i(\theta)/\partial \theta_j \). By (8.11.9) of Brockwell and Davis [13], it holds for \(t > \max(p, q) \) that

\[
A_{ij}(\theta) + \sum_{j=1}^{q} \theta_j A_{i-j,j}(\theta) = y_{t-i}, \quad i = 1, \ldots, p,
\]

\[
A_{ij+p}(\theta) + \sum_{j=1}^{q} \theta_j A_{ij+p-j}(\theta) = \varepsilon_{t-i}, \quad i = 1, \ldots, q.
\]

(4)

Hence, \(\hat{\theta} \) satisfies estimating equation

\[
\frac{1}{n-u} \sum_{t=u+1}^{n} \hat{w}_t A_1(\hat{\theta}) \text{sgn} \varepsilon_t(\hat{\theta}) = 0,
\]

(5)

where \(\text{sgn}(x) = -1 \) for \(x < 0 \) and \(=1 \) for \(x \geq 0 \) (see [14]). Note that the above estimating equation is not differentiable at point \(\theta \) such that \(\varepsilon_t(\theta) = 0 \) for some \(t \). This causes some problems for our subsequent asymptotic analysis. To overcome this problem, we replace it with a smooth function. Define a probability density kernel \(k(\cdot) \) [15] such that \(\int_{-\infty}^{\infty} k(x)dx = 0, k \) for \(j = 1, 2, \) respectively, where \(k \neq 0 \). Let \(G_h(x) = \int_{x/h}^{\infty} k(u)du \) for \(h > 0 \). Then, a smoothed version of (5) is

\[
\frac{1}{n-u} \sum_{t=u+1}^{n} \hat{w}_t A_1(\hat{\theta}) G_h(\varepsilon_t(\hat{\theta})) = 0.
\]

(6)

Let \(m_h(\theta) = \hat{w}_t A_1(\hat{\theta}) G_h(\varepsilon_t(\hat{\theta})) \); a smoothed empirical log-likelihood ratio is defined as

\[
l_h(\theta) = -2 \sup \left\{ \sum_{t=u+1}^{n} \log (\frac{p_t}{p_{t-1}}) \mid \sum_{t=u+1}^{n} p_t m_h(\theta) = 0, p_t \geq 0, \sum_{t=u+1}^{n} p_t = 1 \right\}.
\]

(7)

Using the Lagrange multiplier, the optimal value of \(p_t \) is derived to be

\[
p_t(\theta) = \frac{1}{(n-u)(1 + \lambda(\theta)^{\tilde{m}_h(\theta))}. \]

(8)

where \(\lambda(\theta) \) is a \(p + q \)-dimensional vector of Lagrange multipliers satisfying

\[
\frac{1}{n-u} \sum_{t=u+1}^{n} \tilde{m}_h(\theta) = 0.
\]

(9)

This gives the smoothed empirical log-likelihood ratio statistic

\[
l_h(\theta) = 2 \sum_{t=u+1}^{n} \log (1 + \lambda(\theta)^{\tilde{m}_h(\theta)}).
\]

(10)

Let \(\theta = (\phi^2, \omega^2)' \), where \(\omega \in \mathbb{R}^m \) \((1 \leq m \leq p + q)\) is the parameter of interest and \(\phi \in \mathbb{R}^{p+q-m} \) is the nuisance parameter. Note that \(m = p + q \) means no nuisance parameters. Let \(\phi_0 \) and \(\omega_0 \) denote the true values of \(\phi \) and \(\omega \), respectively. The profile empirical likelihood is defined as

\[
l_p(\omega) = \min_{\phi} l_h(\phi, \omega).
\]

(11)

That is, \(l_p(\omega) = l_h(\phi_0(\omega), \omega) \), where \(\phi_0(\omega) = \text{arg min}_{\phi} l_h(\phi, \omega) \).

The following conditions are in order.

(A1) The characteristic polynomial \(\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p \) and \(\phi(z) = 1 + \theta_1 z + \cdots + \theta_q z^q \) have no common zeros, and all roots of \(\phi(z) \) and \(\theta(z) \) are outside the unit circle.

(A2) The innovation \(\varepsilon_t \) has zero median and a differentiable density \(f(x) \) satisfying the conditions \(f(0) > 0 \), \(\sup_{x \in \mathbb{R}} f(x) < B < \infty \), and \(\sup_{x \in \mathbb{R}} f'(x) < B \). Furthermore, \(E|\varepsilon_t|^\delta < \infty \) for some \(\delta > 0 \), and \(\alpha > \max(2, 2/\delta) \).

(A3) As \(n \to \infty \), \(u \to \infty \) and \(u/n \to 0 \).

(A4) The second derivative of \(K \) exists in \(R \) and \(K'(x) \) and \(K''(x) \) are bounded.

(A5) \(h = n^{\gamma} \) with \(1/4 < \gamma < 1/3 \).

First we show the existence and consistency of \(\phi(\omega_0) \).
Proposition 1. Let $d_n = 1/n^\beta$ with $\max{1/3, 3\gamma/2} < \beta < 1/2$. Assume (A1)–(A5) hold; then as $n \to \infty$, with probability 1, there exists a local minimizer ϕ of $I_p(\phi, \omega_0)$ which lies in the interior of the ball $B = \{\phi : \|\phi - \phi_0\| < d_n\}$. Moreover $\hat{\phi}$ and $\hat{\lambda} = \lambda(\phi, \omega_0)$ satisfy

\[Q_{1n}(\hat{\phi}, \hat{\lambda}) = 0, \quad Q_{2n}(\hat{\phi}, \hat{\lambda}) = 0, \quad \text{(12)} \]

where

\[Q_{1n}(\phi, \lambda) = \frac{1}{n-u} \sum_{t=u+1}^{n} m_{1h}(\phi, \omega_0) \left(\frac{\partial m_{1h}(\phi, \omega_0)}{\partial \phi^t} \right)^{\tau} \lambda. \quad \text{(13)} \]

The following theorem presents the asymptotic distribution of the profile empirical likelihood.

Theorem 2. Under conditions of Proposition 1, as $n \to \infty$, the random variable $I_p(\omega_0)$, with $\hat{\phi}$ given in Proposition 1, converges in distribution to χ^2_{α}.

If c is chosen such that $P(\chi^2_{\alpha} \leq c) = a$, then Theorem 2 implies that the asymptotic coverage probability of empirical likelihood confidence region $I_{nh} = \{\omega : I_p(\omega) \leq c\}$ will be a; that is, $P(\omega_0 \in I_{nh}) = P(I_p(\omega_0) \leq c) = a + o(1)$, as $n \to \infty$.

3. Proofs of the Main Results

In the following, $\|\cdot\|$ denotes the Euclidean norm for a vector or matrix and C denotes a positive constant which may be different at different places. For $t = 0, \pm 1, \pm 2, \ldots$, define

\[U_t = Ud_t \quad \text{and} \quad V_t = Vd_t. \]

Put $Q_t = \sum_{t=0}^{\infty} \rho_t U_{t-i} = \epsilon_i, \quad V_t = \sum_{j=0}^{\infty} \rho_j V_{t-j} = \epsilon_i. \quad \text{(14)}$

Then, Σ, Σ_1, and Ω are well-defined (finite) matrices. For simplicity, we denote (ϕ, ω_0) and (ϕ_0, ω_0) by ϕ and ϕ_0, respectively, in this section. The following notations will be used in the proofs. Let

\[Z_n(\phi) = \max_{i \leq n} \|m_{1h}(\phi)\|, \quad Q_{nh}(\phi) = \frac{1}{n-u} \sum_{t=u+1}^{n} m_{1h}(\phi), \quad S(\phi) = \frac{1}{n-u} \sum_{t=u+1}^{n} m_{1h}(\phi) m_{1h}(\phi)^{\tau}. \quad \text{(18)} \]

To prove Proposition 1, we first prove the following lemmas.

Lemma 3. Under the conditions of Proposition 1, as $n \to \infty$,

\[(i) \quad Q_{nh}(\phi_0) = O\left(\frac{\log n}{n}\right) \quad \text{a.s.,} \]

\[(ii) \quad \frac{\partial Q_{nh}(\phi_0)}{\partial \phi} = -2 f(0) \Sigma_1 + o(1) \quad \text{a.s.} \]

Proof of Lemma 3. For part (i), we may write

\[\sqrt{n-u} Q_{nh}(\phi_0) \]

\[= \frac{1}{\sqrt{n-u}} \sum_{t=u+1}^{n} u_t Q_t G_h(\epsilon_i) \]

\[+ \frac{1}{\sqrt{n-u}} \sum_{t=u+1}^{n} w_t Q_t (G_h(\epsilon_i(\phi_0)) - G_h(\epsilon_i)) \]

\[+ \frac{1}{\sqrt{n-u}} \sum_{t=u+1}^{n} W_t (\tilde{\epsilon}_i - \epsilon_i) A_i(\phi_0) G_h(\epsilon_i(\phi_0)) \]

\[= : K_1 + K_2 + K_3. \]

For K_1, we have

\[\frac{K_1}{\sqrt{n-u}} = \frac{1}{n-u} \sum_{t=u+1}^{n} Z_t b_{nt} \quad \text{(20)} \]

\[+ \frac{1}{n-u} \sum_{t=u+1}^{n} Z_t O(h^2), \quad \text{(21)} \]

where $Z_t = u_t Q_t b_{nt} = G_h(\epsilon_i) - E(G_h(\epsilon_i))$. The second term of (21) is $O(\log n/n)$ a.s. by the ergodicity. Now turning to the first term, we suppose that Q_t is the first element U_{t-1} without loss of generality. Note that, for each $n \geq u + 1$, $\{Z_t b_{nt}, \mathcal{F}_t, u + 1 \leq t \leq n\}$ is a sequence of martingale
differences with $|Z_t b_n| \leq C$, where $\mathcal{S}_t = \sigma(\epsilon_s, s \leq t)$. For some $C_0 > 0$, by the ergodicity, we have

$$V_n^2 = \sum_{t=r+1}^n E\left\{ (Z_t b_n)^2 \mid \mathcal{S}_{t-1}\right\}$$

$$= \sum_{t=r+1}^n Z_t^2 E(b_n)^2$$

$$\leq C \sum_{t=r+1}^n Z_t^2 < C(E(Z_t^2) + C_0) \text{ a.s.}$$

Set $y = C(E(Z_t^2) + C_0)n$; by Theorem 1.2A in [16], for all $A > 0$, we have

$$P\left\{ \sum_{t=r+1}^n Z_t b_n > A \sqrt{n \log n} \right\}$$

$$= P\left\{ \sum_{t=r+1}^n Z_t b_n > A \sqrt{n \log n}, V_n^2 < y \text{ for some } n \right\}$$

$$\leq 2 \exp\left\{ -A^2 n \log n \right\} \left(y + CA \sqrt{n \log n} \right)$$

$$= 2 \exp\left\{ -A^2 n \log n \right\} \left(2C(E(Z_t^2) + C_0) + 2CA \sqrt{\log n/n} \right).$$

(23)

Choosing A such that $A^2 > 2C(E(Z_t^2) + C_0)$, by the Borel-Cantelli lemma, the first term of (21) is $O(\sqrt{\log n})$ a.s. Thus, K_2 is $O(\sqrt{\log n})$ a.s. For K_3, by Davis [2], it holds that $|\epsilon_t - \epsilon_t(\phi_0)| \leq \xi_t$, and $\|A_t(\phi_0) - Q_t\| \leq \xi_t$, where $\xi_t = C \sum_{j=0}^{t-1} r^j |y_{t-j}|$. For some $0 < r < 1$. Therefore,

$$\|K_3\| \leq \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n w_t \|Q_t\| |\epsilon_t - \epsilon_t(\phi_0)|$$

$$+ \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n w_t \|Q_t - A_t(\phi_0)\|$$

$$\leq \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n \xi_t + \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n \xi_t$$

$$= \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n r^j \sum_{j=0}^{t-1} |y_{t-j}|$$

$$+ \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n r^j \sum_{j=0}^{t-1} |y_{t-j}| \xrightarrow{a.s.} 0.$$

(24)

Thus, K_2 and K_3 are $O(\sqrt{\log n})$ a.s. For K_4, we have

$$\|K_4\|$$

$$\leq \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n |\epsilon_t - \epsilon_t(\phi_0)|$$

$$\leq \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n \sum_{k=0}^{t-1} k^{-\alpha} |y_{t-k}| \sum_{j=0}^{t-1} r^j |y_{j-t}|$$

$$\leq \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n \sum_{k=0}^{t-1} k^{-\alpha} \sum_{j=0}^{t-1} r^j |y_{j-t}|$$

$$= \frac{C}{h \sqrt{n - u}} \sum_{t=r+1}^n \sum_{k=0}^{t-1} k^{-\alpha} |y_{t-k}|$$

(25)

because we have the facts that $\|A_t(\phi_0)\| \leq C \sum_{j=0}^{t} r^j |y_{t-j}|$ (see [2]) and $(t + 1)^{\alpha} \leq 2^{\alpha} (t)^{\alpha/2}$ for $t > 0, \alpha > 0$. Thus, K_3 is also $O(\sqrt{\log n})$ a.s. Therefore part (i) holds. For the proof of part (ii), we may write

$$\frac{\partial Q_{\phi_0}(\phi_0)}{\partial \phi^t}$$

$$= -\frac{1}{(n-u)h} \sum_{t=r+1}^n \tilde{w}_t A_t(\phi_0) A_t^t(\phi_0)$$

$$\times \left[K\left(\frac{\epsilon_t(\phi_0)}{h} \right) + K\left(-\frac{\epsilon_t(\phi_0)}{h} \right) \right]$$

$$+ \frac{1}{(n-u)h} \sum_{t=r+1}^n \tilde{w}_t \frac{\partial A_t(\phi_0)}{\partial \phi^t} G_h(\epsilon_t(\phi_0))$$

$$= D_1 + D_2,$$

where $A_t(\phi) = -\partial \epsilon_t(\phi)/\partial \phi$. For D_1, we may write

$$D_1 = -\frac{1}{(n-u)h} \sum_{t=r+1}^n \tilde{w}_t Q_t \tilde{Q}_t^t K\left(\frac{\epsilon_t}{h} \right) + K\left(-\frac{\epsilon_t}{h} \right)$$

$$- \frac{1}{(n-u)h} \sum_{t=r+1}^n \tilde{w}_t A_t(\phi_0) A_t^t(\phi_0)$$

$$\times \left[K\left(\frac{\epsilon_t(\phi_0)}{h} \right) + K\left(-\frac{\epsilon_t(\phi_0)}{h} \right) \right]$$

$$- u_t Q_t Q_t^t K\left(\frac{\epsilon_t}{h} \right) + K\left(-\frac{\epsilon_t}{h} \right)$$

$$= D_{11} + D_{12}.$$

(26)
Note that

\[D_{11} = - \frac{1}{(n-u)h} \sum_{t=u+1}^{n} T_{t} \xi_{et} - \frac{1}{(n-u)h} \]

\[\times \sum_{t=u+1}^{n} w_{t} Q_{t} \xi_{et}^{2} E \left(K \left(\frac{\xi_{t}}{h} \right) \right) \]

\[= - \frac{1}{(n-u)h} \sum_{t=u+1}^{n} T_{t} \xi_{et} \]

\[- \left[\frac{1}{n-u} \sum_{t=u+1}^{n} w_{t} Q_{t} \xi_{et}^{2} \right] (2f(0) + o(h)) , \]

where \(T_{t} = w_{t} Q_{t} \xi_{et} \) and \(\xi_{et} = K(\epsilon_{t}/h) + K(-\epsilon_{t}/h) - E[K(\epsilon_{t}/h)] \). The second term of (28) is \(-2f(0)\Sigma_{1}\) a.s. by the ergodicity. We will prove that the first term is \(o(1) \) a.s. We suppose that \(Q_{t} \) is the first element \(U_{t-1} \) without loss of generality. Note that, for each \(n \geq u + 1 \), \(|T_{t} \xi_{et}|, \xi_{et}, u + 1 \leq t \leq n \) is a sequence of martingale differences with \(|T_{t} \xi_{et}| \leq C \), and

\[V_{n}^{2} = \sum_{t=u+1}^{n} E \{ (T_{t} \xi_{et})^{2} | \mathcal{F}_{t-1} \} \]

\[= \sum_{t=u+1}^{n} T_{t}^{2} E(\xi_{et})^{2} < nC \left(f(0)C_{0}h + O(h^{2}) \right) \text{ a.s.,} \]

where \(C_{0} > 0 \) is a constant. Set \(y = nC(f(0)C_{0}h + O(h^{2})) \); by Theorem 1.2A in [16], for all \(\epsilon > 0 \), we have

\[P \left\{ \sum_{t=u+1}^{n} T_{t} \xi_{et} > (nh)\epsilon \right\} \]

\[= P \left\{ \sum_{t=u+1}^{n} T_{t} \xi_{et} > (nh)\epsilon, V_{n}^{2} < y \text{ for some } n \right\} \]

\[\leq 2 \exp \left\{ \frac{-(nh)^{2}\epsilon^{2}}{2(y + Cnhe\epsilon)} \right\} \]

\[= 2 \exp \left\{ \frac{-(nh)^{2}\epsilon^{2}}{2C(f(0)C_{0}h + O(h)) + 2C\epsilon} \right\} . \]

The result follows from the Borel-Cantelli lemma. Thus \(D_{11} = -2f(0)\Sigma_{1} + o(1) \) a.s. Similar to \(K_{2} \) and \(K_{3} \), we have

\[\|D_{12}\| \]

\[\leq \frac{1}{(n-u)h} \sum_{t=u+1}^{n} w_{t} \|Q_{t} - A_{t}(\phi_{0})\| \|Q_{t}\| \]

\[+ \|A_{t}(\phi_{0})\| \|Q_{t}\| A_{t}(\phi_{0})\| \]

\[+ \left[K \left(\frac{\xi_{t}(\phi_{0})}{h} \right) \right] + K \left(-\frac{\xi_{t}(\phi_{0})}{h} \right) \}

+ \frac{1}{(n-u)h} \sum_{t=u+1}^{n} w_{t} \|A_{t}(\phi_{0})\| \|Q_{t}\| \]

\[\times \left[K \left(\frac{\xi_{t}(\phi_{0})}{h} \right) + K \left(-\frac{\xi_{t}(\phi_{0})}{h} \right) \right] \]

\[+ \frac{1}{(n-u)h} \sum_{t=u+1}^{n} w_{t} \|Q_{t}\| \|Q_{t}\| \]

\[\times \left[K \left(\frac{\xi_{t}(\phi_{0})}{h} \right) + K \left(-\frac{\xi_{t}(\phi_{0})}{h} \right) \right] \]

\[\leq \frac{C}{(n-u)h} \sum_{t=u+1}^{n} w_{t} \left(\|Q_{t} - A_{t}(\phi_{0})\| \|Q_{t}\| \right) \]

\[+ \|A_{t}(\phi_{0})\| \|Q_{t} - A_{t}(\phi_{0})\| \]

\[+ \frac{C}{(n-u)h} \sum_{t=u+1}^{n} w_{t} \left(\|Q_{t}\| \|Q_{t}\| \right) \]

\[\leq \frac{C}{(n-u)h} \sum_{t=u+1}^{n} \xi_{t} + \frac{C}{(n-u)h} \sum_{t=u+1}^{n} \sum_{k=1}^{\infty} k^{-\alpha} \left| y_{t-k} \right| \]

\[+ \frac{C}{(n-u)h^{2}} \sum_{t=u+1}^{n} \xi_{t} \xrightarrow{a.s.} 0. \]
where B is the backshift operator. For $t = 0, \pm 1, \pm 2, \ldots$, define

$$\theta_0 (B) X_{t(i,j)} = 0, \quad i, j = 1, \ldots, p,$$

$$\theta_0 (B) X_{t(i,p+j)} = -Q_{t-j}, \quad i = 1, \ldots, p, \quad j = 1, \ldots, q.$$

(33)

$$\theta_0 (B) X_{t(i,j+p)} = -Q_{t-j+p} - Q_{t-i+j+p}, \quad i, j = 1, \ldots, q.$$

where Q_{ij} is the ith component of Q. Put $X_1 = (X_{t(i,j)})$; similar to [13], we have that $\|\partial A_i (\phi_0) / \partial \phi^j\| \leq C \sum_{j=1}^{r^1} r^1|y_{t-j}|$, and $X_1 - \partial A_i (\phi_0) / \partial \phi^j \leq \xi_t$. Then, we may write

$$D_2 = \frac{1}{n} \sum_{t=1}^{n} u \left[\omega_1 X_1 G_1 (\epsilon_t) \right] + \frac{1}{n} \sum_{t=1}^{n} \left[\omega_1 \frac{\partial A_1 (\phi_0)}{\partial \phi^j} G_1 (\epsilon_t (\phi_0)) - \omega_1 X_1 G_1 (\epsilon_t) \right]$$

$$= D_{21} + D_{22}.$$

(34)

Similar to D_{11} and D_{12}, we have that D_{21} and D_{22} are $o(1)$ a.s. This completes the proof. □

Lemma 4. Under the conditions of Proposition 1, as $n \to \infty$,

(i) $Z_n (\phi) = o \left(n^{1/2} \right)$ a.s.,

(ii) $S (\phi) = \Omega + o (1)$ a.s.

hold uniformly in B.

Proof of Lemma 4. For part (i), from [2], we have that $\|\partial A_i (\phi) / \partial \phi^j\| \leq C \sum_{j=1}^{r^1} r^1|y_{t-j}|$ and $A_i (\phi) \leq C \sum_{j=1}^{r^1} r^1|y_{t-j}|$ uniformly hold in the ball B for sufficiently large n. Then, for each $\phi \in B$, we have

$$\|m_{n_1} (\phi)\| \leq \omega_1 \|A_1 (\phi)\|$$

$$\leq C \sum_{j=1}^{r^1-1} r^1|y_{t-j}| \leq \frac{C}{1 + \sum_{k=1}^{r^1-1} k^{-\alpha}} |y_{t-k}| \leq \frac{C}{1 + \sum_{k=1}^{r^1-1} k^{-\alpha}} |y_{t-k}|$$

$$\leq C \sum_{k=1}^{\infty} r^1 k^{-\alpha} < \infty.$$

(36)

Thus, part (i) holds. For part (ii), similar to the proof of Lemma 3, we have that $S(\phi_0) = \Omega + o(1)$ a.s. For each $\phi \in B$, by Taylor expansion, we have

$$S (\phi) - S (\phi_0)$$

$$= \frac{1}{n} \sum_{t=1}^{n} m_{n_1} (\phi_0) \left\{ \frac{\partial m_{n_1} (\phi^*)}{\partial \phi^j} (\phi - \phi_0) \right\} \tau + \frac{1}{n} \sum_{t=1}^{n} \left\{ \frac{\partial m_{n_1} (\phi^*)}{\partial \phi^j} (\phi - \phi_0) \right\} m_{n_1} (\phi_0)$$

$$+ \frac{1}{n} \sum_{t=1}^{n} \left\{ \frac{\partial m_{n_1} (\phi^*)}{\partial \phi^j} (\phi - \phi_0) \right\} m_{n_1} (\phi_0)$$

$$\times \frac{\partial m_{n_1} (\phi^*)}{\partial \phi^j} (\phi - \phi_0) \right\} \tau$$

$$=: T_1 + T_2 + T_3,$$

(37)

where ϕ^* lies between ϕ_0 and ϕ. For T_1, we have

$$\|T_1\| \leq \frac{1}{n} \sum_{t=1}^{n} \omega_1 \|A_1 (\phi_0)\| \|\partial A_1 (\phi^*) / \partial \phi^j\|$$

$$\times \|A_{n_1} (\phi^*)\| \|\phi - \phi_0\|$$

$$+ \frac{1}{n} \sum_{t=1}^{n} \omega_1 \|A_1 (\phi_0)\| \|\partial A_1 (\phi^*) / \partial \phi^j\|$$

$$\times \|A_{n_1} (\phi^*)\| \|\phi - \phi_0\|$$

$$\leq C \frac{n}{n-u} \sum_{t=1}^{n} \left(\sum_{j=1}^{r^1} r^1 f^j \right)^2$$

$$+ \frac{C n}{n-u} \sum_{t=1}^{n} \left(\sum_{j=1}^{r^1} r^1 f^j \right)^3 \overset{a.s.}{\to} 0.$$

(38)

Similarly, we have $T_2 \overset{a.s.}{\to} 0$ and $T_3 \overset{a.s.}{\to} 0$. This completes the proof. □

Proof of Proposition 1. For $\phi \in B$, by Taylor expansion,

$$Q_{nH} (\phi) = Q_{nH} (\phi_0) + \frac{\partial Q_{nH} (\phi_0)}{\partial \phi^j} (\phi - \phi_0)$$

$$+ \frac{1}{2} \sum_{j=1}^{p^{1/2} - q^{1/2}} \frac{\partial^2 Q_{nH} (\phi_0)}{\partial \phi^j \partial \phi^k} (\phi - \phi_0) (\phi - \phi_0)$$

$$+ \frac{1}{6} \sum_{k,l,j} \frac{\partial^3 Q_{nH} (\phi_0)}{\partial \phi^j \partial \phi^k \partial \phi^l}$$

$$\times (\phi - \phi_0) (\phi - \phi_0) \left(\phi_k - \phi_k \right),$$

(39)

where ϕ_k lies between ϕ_0 and ϕ. Note that the final term on the right side of (39) can be written as

$$\frac{1}{6} \sum_{j,k,l} \left[\frac{\partial^3 m_{n_1} (\phi^*)}{\partial \phi^j \partial \phi^k \partial \phi^l} \right]$$

$$\times \left(\frac{h^2}{n} \sum_{t=1}^{n} \frac{\partial^3 m_{n_1} (\phi^*)}{\partial \phi^j \partial \phi^k \partial \phi^l} \right)$$

$$+ \frac{h^2}{n} \sum_{t=1}^{n} \frac{\partial^3 m_{n_1} (\phi^*)}{\partial \phi^j \partial \phi^k \partial \phi^l}.$$

(40)
which is $o(\delta_n)$ a.s., where $\delta_n = \| \phi - \phi_0 \|$, because $d_n^2/h^3 = 1/n^{\beta - 3\gamma} \rightarrow 0$ and
\[
\left\| \frac{h^3}{n-u} \sum_{t=1}^n \frac{\partial^3 m(h)(\phi)}{\partial \phi^3} \right\| \leq C. \tag{41}
\]

The third term on the right side of (39) can be written as
\[
\frac{1}{2} \sum_{j,k=1}^{p,q,m} \left[\left(\phi_j - \phi_0 \right)^T \left(\phi_k - \phi_0 \right) \right] \tag{42}
\]
\[
\times \left\{ \frac{h}{n-u} \sum_{t=1}^n \frac{\partial^2 m(h)(\phi_0)}{\partial \phi_j \partial \phi_k} \right\},
\]
which is also $o(\delta_n)$ a.s., because $d_n^2/h^3 = 1/\sqrt{n^2 \beta - 3\gamma} \rightarrow 0$, and
\[
\frac{h}{n-u} \sum_{t=1}^n \frac{\partial^2 m(h)(\phi_0)}{\partial \phi_j \partial \phi_k} = o(1) \quad \text{a.s.}, \tag{43}
\]
by a similar proof of Lemma 3. Therefore,
\[
Q_{nh}(\phi) = Q_{nh}(\phi_0) + \frac{\partial Q_{nh}(\phi_0)}{\partial \phi}(\phi - \phi_0) + o(\delta_n) \quad \text{a.s.}, \tag{44}
\]
uniformly about $\phi \in B$. Denote $\phi = \phi_0 + \mu d_n$, for $\phi \in \{ \phi : \| \phi - \phi_0 \| = d_n \}$, where $\| \mu \| = 1$. Now, we give a lower bound for $l_h(\phi)$ on the surface of the ball. Similar to [6], by Lemmas 3 and 4, we have
\[
l_h(\phi) = (n-u) Q_{nh}(\phi) S(\phi)^{-1} Q_{nh}(\phi) + o \left(\frac{n^{4/3 - 3\beta}}{n} \right) \quad \text{a.s.}
\]
\[
= (n-u) \left[O \left(\frac{\log n}{n} \right) \right. \tag{45}
\]
\[
\left. + (-2 f(0)) \Sigma_1 \mu d_n + o(d_n) \right]^T \Omega^{-1}
\]
\[
\times \left[O \left(\frac{\log n}{n} \right) + (-2 f(0)) \Sigma_1 \mu d_n + o(d_n) \right]
\]
\[
+ o \left(\frac{n^{4/3 - 3\beta}}{n} \right) \quad \text{a.s.}
\]
\[
\geq (c - \epsilon) n^{-1 - 2\beta} \quad \text{a.s.}
\]
where $c - \epsilon > 0$ and c is the smallest eigenvalue of $4 f^2(0) \Sigma_1 \Omega^{-1} \Sigma_1$. Similarly,
\[
l_h(\phi_0) = (n-u) Q_{nh}(\phi_0) S(\phi_0)^{-1} Q_{nh}(\phi_0) + o(1) \quad \text{a.s.} \tag{46}
\]
\[
= O \left(\log n \right) \quad \text{a.s.}
\]

Since $l_h(\phi)$ is a continuous function about ϕ as ϕ belongs to the ball B, $l_h(\phi)$ attains its minimum value at some point $\bar{\phi}$ in the interior of this ball, and $\bar{\phi}$ satisfies $\partial l_h(\bar{\phi})/\partial \phi = 0$, it follows that (12) holds. This completes the proof. \hfill \Box

Proof of Theorem 2. Similar to the proof of Theorem 2 of Qin and Lawless [17], we have
\[
\left(\bar{\phi} - \phi_0 \right) = S_n^{-1} \left(-Q_{nh}(\phi_0) + o_p \left(n^{-1/2} \right) \right), \tag{47}
\]
where
\[
S_n = \left(\begin{array}{cc}
\frac{\partial Q_{nh}(\phi_0)}{\partial \lambda} & \frac{\partial Q_{nh}(\phi_0)}{\partial \phi} \\
\frac{\partial Q_{nh}(\phi_0)}{\partial \phi} & 0
\end{array} \right)_{\lambda \rightarrow \lambda_0}
\]
\[
\Rightarrow \left(\begin{array}{c}
-\frac{\lambda}{\sqrt{n-u Q_{nh}(\phi_0)}} \\
-2 f(0) \Sigma_1
\end{array} \right) \tag{48}
\]

By the standard arguments in the proof of empirical likelihood (see [6]), we have
\[
l_p(\omega_0) = - (n-u) \left(Q_{nh}(\phi_0) \right)^T S_n^{-1} \left(Q_{nh}(\phi_0) \right)^T + o_p(1)
\]
\[
= \left(\Omega^{-1/2} \sqrt{n-u Q_{nh}(\phi_0)} \right)^T
\]
\[
\times \left(I - 4 f^2(0) \Sigma_1 \Omega^{-1} \Sigma_1 \right)^{-1/2}
\]
\[
\times \left(\Omega^{-1/2} \sqrt{n-u Q_{nh}(\phi_0)} \right) + o_p(1), \tag{49}
\]
where $\Delta = 4 f^2(0) \Sigma_1 \Omega^{-1} \Sigma_1$. Since $\sqrt{n-u Q_{nh}(\phi_0)} \overset{d}{\rightarrow} N(0, \Omega)$ and
\[
\text{tr} \left\{ 4 f^2(0) \Sigma_1 \Omega^{-1} \Sigma_1 \right\} = p + q - m, \tag{50}
\]
it follows that $l_p(\omega_0) \overset{d}{\rightarrow} \chi^2_m$. \hfill \Box

4. Simulation Studies

We generated data from a simple ARMA(1, 1) model $y_t = \phi y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$, with $N(0,1)$, t_2, and Cauchy innovation distribution. We set $\mu = 20$, $\alpha = 3$, and the true value $(\phi_1, \theta_1) = (0.4, 0.7)$ or $(-0.5, 0.7)$, where ϕ_1 is the parameter of interest. The sample size $n = 50, 100, 150, 200$, and 2,000 replications are conducted in all cases. We smooth the estimating equations using kernel
\[
K(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-x^2/2\sigma^2}, \tag{51}
\]
Table 1: The coverage probability of confidence intervals when $\varepsilon_t \sim N(0, 1)$.

<table>
<thead>
<tr>
<th>n</th>
<th>EL(0.27)</th>
<th>EL(0.30)</th>
<th>EL(0.32)</th>
<th>NA(0.25)</th>
<th>NA(0.20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8818</td>
<td>0.8820</td>
<td>0.8822</td>
<td>0.8193</td>
<td>0.7875</td>
</tr>
<tr>
<td>100</td>
<td>0.8898</td>
<td>0.8996</td>
<td>0.8979</td>
<td>0.8655</td>
<td>0.8431</td>
</tr>
<tr>
<td>150</td>
<td>0.8926</td>
<td>0.8927</td>
<td>0.8932</td>
<td>0.8692</td>
<td>0.8395</td>
</tr>
<tr>
<td>200</td>
<td>0.8983</td>
<td>0.8983</td>
<td>0.8986</td>
<td>0.8666</td>
<td>0.8363</td>
</tr>
</tbody>
</table>

where $\sigma = 0.1$, which is the so-called Gaussian kernel. The coverage probabilities of smoothed empirical likelihood confidence regions I_{EL} with the bandwidth $h = 1/n^2$ are denoted by EL(y), where $y = 0.27, 0.30, 0.32$, respectively.

As another benchmark of the simulation experiments, we consider the confidence regions based on the asymptotic normal distribution of WLADE proposed by [3]. To construct the confidence regions, we need to estimate $f(0)$, Σ, and Ω. We can estimate $f(0)$ by

$$
\hat{f}(0) = \frac{1}{\bar{x}_n b_n (n-u)} \sum_{t=u+1}^{n} \hat{w}_t \hat{K} \left\{ \frac{\varepsilon_t(\hat{\theta})}{b_n} \right\},
$$

where $\hat{K}(x) = \exp(-x)/(1+\exp(-x))^2$ is a kernel function on R and $b_n = 1/n^2$ is a bandwidth, $\bar{x}_n = (n-u)^{-1} \sum_{t=u+1}^{n} \hat{w}_t$. Σ and Ω can be estimated, respectively, by

$$
\hat{\Sigma} = \frac{1}{n-u} \sum_{t=u+1}^{n} \hat{w}_t \hat{Q}_t \hat{Q}_t^T,
$$

$$
\hat{\Omega} = \frac{1}{n-u} \sum_{t=u+1}^{n} \hat{w}_t^2 \hat{Q}_t \hat{Q}_t^T,
$$

where \hat{Q}_t is defined in the same manner as Q_t, $\hat{\theta}_0$ is replaced by $\hat{\theta}$, and ε_t is replaced by $\varepsilon_t(\hat{\theta})$; see (14). Based on this, we can construct a NA confidence region (i.e., based on the normal approximation of WLADE). The coverage probabilities of confidence regions I_{NA} based on the bandwidth $b_n = 1/n^2$ are denoted by NA(ν), with $\nu = 0.25, 0.20$, respectively. Tables 1, 2, and 3 show the probabilities of the confidence intervals of φ_1 at confidence levels 0.9 and 0.95, respectively.

The simulation results can be summarized as follows. The coverage probabilities of NA(ν) are much smaller than the nominal levels and very sensitive to the choice of bandwidth b_n and ε_t. On the other hand, the coverage probabilities of EL(y) are much better and less sensitive to the choice of bandwidth h and ε_t. As the sample size n increases, the coverage probabilities for both increase to the nominal levels, as one might expect.

5. Conclusions

This paper explores a profile empirical likelihood method to construct confidence regions for the partial parameters of interest in IVARMA models. We started with the foundation of estimating equations of WLADE; then from there, we derived smoothed empirical likelihood. Moreover, we have proved that the resulting statistics has asymptotic standard chi-squared distribution. Hence there is no need to estimate any additional quantity such as the asymptotic variance. The simulations indeed show that the proposed method has a good finite sample behavior, which experimentally confirms our method.

Conflict of Interests

The authors declare that they have no conflict of interests.
Table 2: The coverage probability of confidence intervals when $\varepsilon_t \sim t_2$.

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{EL}(0.27)$</th>
<th>$\text{EL}(0.30)$</th>
<th>$\text{EL}(0.32)$</th>
<th>$\text{NA}(0.25)$</th>
<th>$\text{NA}(0.20)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8774</td>
<td>0.8776</td>
<td>0.8779</td>
<td>0.7627</td>
<td>0.7290</td>
</tr>
<tr>
<td>100</td>
<td>0.8850</td>
<td>0.8849</td>
<td>0.8856</td>
<td>0.8323</td>
<td>0.7995</td>
</tr>
<tr>
<td>150</td>
<td>0.8919</td>
<td>0.8917</td>
<td>0.8924</td>
<td>0.8467</td>
<td>0.8157</td>
</tr>
<tr>
<td>200</td>
<td>0.8935</td>
<td>0.8932</td>
<td>0.8932</td>
<td>0.8510</td>
<td>0.8229</td>
</tr>
</tbody>
</table>

$\alpha = 0.9$ $\varphi_1 = 0.4$

<table>
<thead>
<tr>
<th>n</th>
<th>0.8902</th>
<th>0.8902</th>
<th>0.8899</th>
<th>0.7295</th>
<th>0.7055</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8942</td>
<td>0.8944</td>
<td>0.8950</td>
<td>0.8151</td>
<td>0.7836</td>
</tr>
<tr>
<td>100</td>
<td>0.8946</td>
<td>0.8941</td>
<td>0.8937</td>
<td>0.8473</td>
<td>0.8204</td>
</tr>
<tr>
<td>150</td>
<td>0.8965</td>
<td>0.8963</td>
<td>0.8961</td>
<td>0.8641</td>
<td>0.8392</td>
</tr>
</tbody>
</table>

$\alpha = 0.9$ $\varphi_1 = -0.5$

<table>
<thead>
<tr>
<th>n</th>
<th>0.9331</th>
<th>0.9327</th>
<th>0.9327</th>
<th>0.8163</th>
<th>0.7854</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.9412</td>
<td>0.9412</td>
<td>0.9413</td>
<td>0.8834</td>
<td>0.8542</td>
</tr>
<tr>
<td>100</td>
<td>0.9447</td>
<td>0.9446</td>
<td>0.9447</td>
<td>0.8965</td>
<td>0.8718</td>
</tr>
<tr>
<td>150</td>
<td>0.9456</td>
<td>0.9458</td>
<td>0.9459</td>
<td>0.9001</td>
<td>0.8762</td>
</tr>
</tbody>
</table>

$\alpha = 0.95$ $\varphi_1 = 0.4$

<table>
<thead>
<tr>
<th>n</th>
<th>0.9421</th>
<th>0.9418</th>
<th>0.9418</th>
<th>0.7963</th>
<th>0.7658</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.9455</td>
<td>0.9462</td>
<td>0.9460</td>
<td>0.8695</td>
<td>0.8430</td>
</tr>
<tr>
<td>100</td>
<td>0.9444</td>
<td>0.9442</td>
<td>0.9440</td>
<td>0.8910</td>
<td>0.8695</td>
</tr>
<tr>
<td>150</td>
<td>0.9464</td>
<td>0.9463</td>
<td>0.9464</td>
<td>0.9072</td>
<td>0.8863</td>
</tr>
</tbody>
</table>

$\alpha = 0.95$ $\varphi_1 = -0.5$

Table 3: The coverage probability of confidence intervals when $\varepsilon_t \sim \text{Cauchy}$.

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{EL}(0.27)$</th>
<th>$\text{EL}(0.30)$</th>
<th>$\text{EL}(0.32)$</th>
<th>$\text{NA}(0.25)$</th>
<th>$\text{NA}(0.20)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8360</td>
<td>0.8358</td>
<td>0.8361</td>
<td>0.6345</td>
<td>0.6018</td>
</tr>
<tr>
<td>100</td>
<td>0.8708</td>
<td>0.8708</td>
<td>0.8702</td>
<td>0.7286</td>
<td>0.6942</td>
</tr>
<tr>
<td>150</td>
<td>0.8811</td>
<td>0.8819</td>
<td>0.8823</td>
<td>0.7614</td>
<td>0.7270</td>
</tr>
<tr>
<td>200</td>
<td>0.8870</td>
<td>0.8864</td>
<td>0.8868</td>
<td>0.7800</td>
<td>0.7467</td>
</tr>
</tbody>
</table>

$\alpha = 0.9$ $\varphi_1 = 0.4$

<table>
<thead>
<tr>
<th>n</th>
<th>0.8673</th>
<th>0.8679</th>
<th>0.8678</th>
<th>0.5818</th>
<th>0.5502</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8869</td>
<td>0.8870</td>
<td>0.8874</td>
<td>0.6756</td>
<td>0.6440</td>
</tr>
<tr>
<td>100</td>
<td>0.8972</td>
<td>0.8974</td>
<td>0.8974</td>
<td>0.7232</td>
<td>0.6867</td>
</tr>
<tr>
<td>150</td>
<td>0.8956</td>
<td>0.8955</td>
<td>0.8953</td>
<td>0.7510</td>
<td>0.7156</td>
</tr>
</tbody>
</table>

$\alpha = 0.9$ $\varphi_1 = -0.5$

<table>
<thead>
<tr>
<th>n</th>
<th>0.8992</th>
<th>0.8994</th>
<th>0.8996</th>
<th>0.6888</th>
<th>0.6557</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.9263</td>
<td>0.9261</td>
<td>0.9263</td>
<td>0.7870</td>
<td>0.7530</td>
</tr>
<tr>
<td>100</td>
<td>0.9362</td>
<td>0.9366</td>
<td>0.9367</td>
<td>0.8176</td>
<td>0.7857</td>
</tr>
<tr>
<td>150</td>
<td>0.9402</td>
<td>0.9398</td>
<td>0.9399</td>
<td>0.8350</td>
<td>0.8044</td>
</tr>
</tbody>
</table>

$\alpha = 0.95$ $\varphi_1 = 0.4$

<table>
<thead>
<tr>
<th>n</th>
<th>0.9235</th>
<th>0.9239</th>
<th>0.9240</th>
<th>0.6378</th>
<th>0.6065</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.9422</td>
<td>0.9420</td>
<td>0.9420</td>
<td>0.7342</td>
<td>0.7030</td>
</tr>
<tr>
<td>100</td>
<td>0.9474</td>
<td>0.9479</td>
<td>0.9481</td>
<td>0.7820</td>
<td>0.7530</td>
</tr>
<tr>
<td>150</td>
<td>0.9467</td>
<td>0.9471</td>
<td>0.9470</td>
<td>0.8057</td>
<td>0.7778</td>
</tr>
</tbody>
</table>

$\alpha = 0.95$ $\varphi_1 = -0.5$

Acknowledgments

Li's research is partially supported by the Fundamental Research Funds for the Central Universities (no. 2013XK03). He's work is partially supported by the National Natural Science Foundation of China (nos. 11171230 and 11231010).

References

Submit your manuscripts at http://www.hindawi.com