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To perform accurate and synchronous detection of the soluble solid contents (SSC) in fresh jujubes at different stages of maturity,
hyperspectral imaging was used to establish robust models. /e combined data constituting four maturation stages were used to
build the grid-search least squares support vector machine (GS-LS-SVM) model. /e determination coefficient (Rp2), the root-
mean-square error (RMSEP), and the residual predictive deviation (RPD) of the prediction set for samples of the overall stages
were 0.98, 1.10%, and 7.85, respectively. Furthermore, a successive projections algorithm (SPA) was used to extract the char-
acteristic wavelengths of the combined data. An artificial bee colony (ABC) algorithm (for the prediction set, Rp2 � 0.98,
RMSEP� 1.19%, RPD� 7.25) was used to improve the SPA-LS-SVM model, which was better than the SPA-GS-LS-SVM model
(for the prediction set, Rp2 � 0.98, RMSEP� 1.24%, RPD� 6.96). Lastly, visualization of the SSC distribution map was performed
based on the SPA-ABC-LS-SVM model, which clearly showed that the SSC gradually increased during maturation. /e results
indicated that it was realistic to construct a detection model of the multimaturity stage. /is research also demonstrated that the
combination of hyperspectral imaging and the ABC had good application values in the testing of agricultural products.

1. Introduction

Jujubes are rich in many compounds, such as sugar, vita-
mins, amino acids, and minerals. Jujubes have high nutri-
tional andmedicinal value./e soluble solid content (SSC) is
a key parameter in the quality assessment of this fruit, and it
influences taste and is directly related to the purchasing
willingness of consumers. /e SSC is also an important
indicator of the physiological changes that occur in fruits
during ripening and for determining the harvest time [1, 2].
/erefore, the detection of the SSC in fresh jujubes during
maturation has an important value in terms of increasing the
added value and meeting the ever-increasing consumer
demand for this fruit. Near-infrared (NIR) spectroscopy
(12500–4000 cm−1) has the advantages of fast, non-
destructive, and no complicated preprocessing of samples.
NIR spectroscopy reflects the characteristics of molecular

frequency doubling and combined frequency absorption.
/e mid-infrared (MIR) spectroscopy (4000–400 cm−1) is
the main molecular vibration absorption region, which
contains large amount of information and good fingerprint
characteristics. MIR spectroscopy has better resolution to
single species than NIR spectroscopy. NIR also has short-
comings such as wide frequency band and serious in-
formation overlap. However, compared with MIR, NIR can
be easily and quickly completed by diffuse reflection fiber in
spectral acquisition, and has lower instrument cost. It was
widely used in the nondestructive testing of food fat, sugar,
and other qualities [3, 4]. Conventional NIR spectrometers
only acquire the spectral information at a specific point and
use it as representative information for the sample. Because
of the advantage of image-spectrum merging, hyperspectral
imaging (HSI) technology can be used to obtain the in-
formation from any point in a 3D space, which is impossible
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to achieve with a traditional spectrometer. However, the
instrument cost of HSI technology is higher. Compared with
the NIR spectrometer, the HSI is more accurate for posi-
tioning in the measurement of the sample and can obtain
more abundant information. /e content of components at
each pixel can be predicted by a multivariate model based on
HSI and converted to a physicochemical image. /e ob-
tained image shows the spatial distribution of the chemical
components in the test sample. HSI technology had been
widely applied to the quality detection in fruits [5, 6]. During
jujube maturation, the sugar content clearly changed and
was the primary factor used for assessing the maturity and
the change in quality [7–9]. /erefore, NIR hyperspectral
imaging techniques were used to establish accurate cali-
bration models and visualize the spatial distribution of SSC
within the sample and the changes in different maturity
stages.

During the quality detection of jujube fruits by spectrum,
the external qualities (such as bruises, insect infestations,
and crack features) and internal qualities (such as SSC and
hardness) were researched [10–14], and the resulting models
were primarily established by individual maturity stage.
However, the fruit ripening process was influenced by
differences in external factors, such as light, nutrients,
temperature, flowering time, and environmental conditions
in different fruit-bearing branches [15–17]. /e harvested
fruit is the product of all the maturity stages. In addition, one
of the important issues in this measurement is model ro-
bustness during spectral detection. /e predictive ability of
the established calibration model was affected by different
instruments and different production systems [18, 19].
During the identification of external defects (bruises, insect
infestations, and cracks), the detection abilities of 2 in-
struments were compared by Wu et al. [20]. Mireei and
Sadeghi [21] reported that a better result for classifying
bunch withering disorder was obtained for the late harvest
dates than those from the combined data and normal
harvested dates. However, synchronous detection of SSC at
different maturity stages was rarely studied. Moreover,
improving the robustness of a prediction model and in-
vestigating the distribution characteristics of the SSC in
samples from different maturity stages were not extensively
researched.

/e least squares support vector machine (LS-SVM) has
been successfully applied to the spectral detection of fruit
quality. However, the generalization ability of the LS-SVM
model is largely determined by the regularization parameter
“c” and the bandwidth of the Gaussian radial basis kernel
“σ.” At present, metaheuristic algorithms have been applied
to the optimization of single/multiobjectives, such as genetic
algorithms [22], particle swarm optimization algorithms
[23], and ant colony algorithms [24]. Compared with the
above methods, the artificial bee colony (ABC) only used the
fitness function as the basis of evolution, and it involved a
simple operation, low control parameters, strong robustness,
and the ability to easily get rid of the local optimal solution
and attained a relatively better solution quality [25–27]. An
ABC was used for solving the optimal solution in numerical
problems. During the optimization of the NIR detection

model for fruit, different preprocessing methods, different
selection algorithms with sensitive bands, and different
stoichiometry algorithms were primarily used as the starting
point. However, the predicted results were seldom analyzed
by optimizing the parameters of the modeling method.

/erefore, the objective of this research was to improve
the predicted accuracy of SSC detection in fresh jujubes at
different maturity stages and to clarify the distribution and
variation in the SSC by combining spectral and spatial in-
formation. /e specific objectives of the study were as fol-
lows: (1) to evaluate changes in the SSC and spectral
characteristics at different maturity stages of the “Huping”
jujube; (2) to investigate the SSC prediction ability for
samples from different maturity stages; (3) to use SPA for
data reduction, optimize LS-SVM using ABC, compare and
analyze the predicted accuracy combined with the grid-
search LS-SVM, and develop an accurate detection model of
SSC; (4) to establish the visual distribution map of SSC at
different maturity levels and explain the distribution and
variation in the SSC.

2. Materials and Methods

2.1. Sample Preparation. 160 fresh jujubes (cv. “Huping
zao”) were collected, respectively, at immature, white-
mature, crisp-mature, and full-mature stages in 2017 from
Xiaobai orchard, which is located in Taigu, China. All the
samples were packed in airtight polyethylene bags and
transported to the laboratory on the same day as the
sampling. /e workflow of the sample selection is shown in
Figure 1. To avoid the effects of surface contamination on the
fruit, the fresh jujubes were washed. Furthermore, all the
samples were placed under laboratory conditions for 4 hours
to air-dry them and restore them to an indoor temperature
and humidity environment. /e samples were then
screened. /e color, size, and shape of the fruits were
consistent to reduce the impact of individual differences on
the testing results between samples from the same maturity
stage, and heterocarpous and damaged fruits were removed.
/e final sample size for each maturity became 150 samples.
Finally, the selected samples were numbered. /irty samples
in each mature stage were randomly selected and used as
independent verification sets. /e remaining samples were
divided into calibration sets (90 samples) and prediction sets
(30 samples) for each mature stage by Kennard–Stone (KS)
algorithm [28]. /erefore, 600 samples were used for the
experiment in this study, with 360 samples for the cali-
bration set, 120 samples for the prediction set, and 120
samples for the independent verification set.

2.2. Hyperspectral Image Acquisition and Calibration. In the
experiment, the “Gaia Sorter” hyperspectral sorting in-
strument (Zolix Instruments Co., Ltd., Beijing, China) with a
wavelength range of 900–1700 nm was used to collect the
NIR spectra and images. /e instrument is composed of an
Image-λ-N17E spectral camera with an InGaAs detector, an
illumination unit with four 35W bromine tungsten halogen
lamps, a dark chamber, a mobile platform, and a computer
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(Lenovo (Beijing) Co., Ltd., Beijing, China) with SpecView
software. To avoid image distortion and information
oversaturation, the time of exposure was 0.13 s, the distance
between the sample and the lens was 220mm, and the
moving speed of the mobile platform was 7.0mm/s. /e
black and white correction was performed using the fol-
lowing equation before collecting the spectrum [20], where R
is the corrected image, Ir is the original image, Id is the image
of the blackboard correction, and Iw is the image of the
whiteboard correction:

R �
Ir − Id

Iw − Id
. (1)

2.3. Measurement of Soluble Solid Contents. /e real SSC of
each jujube was determined by handheld refractometer
(Chengdu Haochuang Photoelectric Instrument Co., Ltd.,
Chengdu, China) with temperature compensation, and the
results were expressed in %. /e SSC at the equatorial
position of each sample was determined.

2.4. Chemometric Methods

2.4.1. Successive Projections Algorithm. /e successive
projections algorithm (SPA) is a simple and efficient algo-
rithm for characteristic wavelength extraction, and it not
only eliminates the problem of multicollinearity between
characteristic wavelengths but can also prevent the repeated
extraction of overlapping variants [10, 29].

2.4.2. Artificial Bee Colony and Least Squares Support Vector
Machines. /e LS-SVM [10, 30] is an improved algorithm of

support vector machines, performs linear decomposition,
and constructs the optimal linear function by mapping the
nonlinear vectors in the original space to high dimensional
space, reducing the computational complexity. Based on the
intelligent foraging behavior of honeybees, a swarm in-
telligence algorithm named ABC algorithm was proposed
and used for the intelligent search and optimization of
parameters by Karaboga [31]. In the paper, the RBF was used
as the kernel function. /e traditional grid-search (GS)
based on leave-one-out cross-validation and an ABC were
used to find the best parameters, respectively. According to
the relevant research [32, 33] and previous studies, the
search range of c and σ2 was set to [1, 5000]. /e optimizing
and modeling steps using the ABC were as follows:

(1) A data reduction was performed by SPA, and then the
selected variables were input into the ABC-LS-SVM.

(2) Initialize parameter: the swarm size was 60. /e
number of food sources (SN) was 30, which was
equal to the number of employed bees. /e maxi-
mum number of searches for honey (limit) was 120.
/e maximum number of iterations was 30. /e
dimension of the solution vector (c and σ2) was 2.

(3) Food sources (xij) were initialized randomly, where
xij is the jth element of xi and xi is the position of the
ith food source. /e fitness of the ith food source
(fiti) was calculated using the following equation:

fiti �

1
1 + fobj 

, fobj ≥ 0,

1 + abs fobj , otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

/e optimized objective function (fobj) was the mean
squared error (MSE) of the prediction set. /e smaller the
MSE was, the better the solution was. /e MSE was cal-
culated using the following equation:

MSE � 
yt −y( 

2

n
, (3)

where n is the number of fruit samples used in the
calculation, y is the measured value of the SSC, and yt
is the calculated value of the SSC.

(4) In the vicinity of the xi, employed bees searched and
created a new food source. /e new solution would be
saved if the fitness value of the new solution was better
than that of the original solution. Instead, the new
solution was abandoned. /e probability of each so-
lution (Pi) was calculated using the following equation:

Pi �
0.9∗ fiti
max Fiti( 

+ 0.1, (4)

where max (Fiti) is the maximum value in i fitness
values. Each onlooker bee chose the food source
according to the probability, calculated the fitness
value, and saved the current optimal solution.
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Figure 1: Workflow showing the selection of the samples.
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(5) If the current food source was accessed more than
the upper limit, then the current food source would
be abandoned, employed bees would turn into scout
bees, and scout bees would randomize their own
location and start to search. Otherwise, the optimal
solution that was generated was output by this ABC
algorithm.

(6) /e ABC algorithm was run 10 times, the results of
multiple runs were saved, and the robustness of the
program was analyzed. /e optimal solutions of c

and σ2 were determined, and then the ABC-LS-SVM
prediction model was established.

2.4.3. Evaluation of Model Performance. /e calibration and
predictive ability of the model were assessed using the de-
termination coefficient of the calibration set (Rc2), the de-
termination coefficient of prediction (Rp2), the root-mean-
square error of calibration set (RMSEC), the root-mean-
square error of prediction (RMSEP), and the residual pre-
dictive deviation (RPD), bias, and slope.

2.4.4. Chemical Imaging Processing. To observe the changes
in the soluble solids in the sample, visual maps of the SSC
distribution were needed./e specific steps for establishing a
visual distribution map were as follows: First, the spectral
and spatial information from each pixel were extracted in
hyperspectral images of fresh jujubes. /en, based on the
best calibration model, the SSC of each pixel could be
predicted using the obtained spectral information. Last,
combining the spatial information of each pixel in the
sample, a 2-dimensional image was rebuilt using the pre-
dicted value of the SSC. In this study, the color parameter
0–60 indicated that the SSC was 0%–60%.

3. Results and Discussion

3.1. Analysis of Quality Parameters. /e statistical values of
the SSC in the jujubes are shown in Table 1. At the immature
and white-mature stages, the SSC was lower. /e SSC sig-
nificantly increased in the crisp-mature stage, and the
growth rate (37.53%) was the fastest. /e mean value of the
SSC reached 35.94% at the full-mature stage. During the
growth of the fresh jujubes, the SSC gradually increased, and
the difference in the SSC was significant at different maturity
stages, especially as the fruits ripened. Similar results were
found by Park and Kim [8] andMoradinezhad et al. [7]./is
result was primarily caused by the accumulation of
monosaccharides and disaccharides (increased glucose and
fructose contents) during the maturation process [8, 9]. On
the whole, the calibration set has a wider range of SSC
distributions than the predicted set.

3.2. Analysis of Spectra. /e spectral information of the
15∗ 30 pixel area at the equatorial position of the sample was
extracted using ENVI (ITT Visual Information Solutions,
Boulder, CO, USA)./emean value was calculated and used
as the spectral information for each sample. /e average

spectral curve is presented in Figure 2. /e spectra in the
950–1675 nm range were selected for the following analysis,
owing to the large amount of noise in the 900–950 nm and
1675–1700 nm ranges. /e spectra of the four mature stages
were consistent. An obvious absorption peak at 980 nm was
caused by stretching the O-H vibration in the water mol-
ecules. /ere was an obvious combination frequency ab-
sorption peak of water molecules at approximately 1224 nm.
/ere was an obvious absorption peak near 1450 nm, which
was related to the presence of O-H stretching first overtone
[34, 35]. Travers et al. [36] reported that 1450 nm was related
to the prediction of SSC rather than dry matter, and there
was a C-H stretching vibration near 1600 nm and 1700 nm.
In the 1377–1672 nm range, the reflectivity of the fruit was
obviously different during the four maturation stages, and a
gradual declining trend was presented, which might be
related to the changes in the SSC.

3.3. Predicting the SSC at Different Ripening Stages Using the
Full Spectral Range. To study the prediction performance of
the model for samples from different maturity stages, samples
from the calibration set at the four maturation stages were
combined, and the combined full-band spectral information
was used as input of the GS-LS-SVM model. /e optimal
values of the parameters (c and σ2) and the prediction results
are shown in Table 2. Good predicted results were obtained
for samples from 4 single maturity stages (Rp2 � 0.81–0.85,
RMSEP� 0.64%–1.50%, RPD� 2.03∼2.31). /e Rp2, RMSEP,
and RPD for samples of the overall stages were 0.98, 1.10%,
and 7.85, respectively. /erefore, the performance of the
calibration model was robust and accurate, and it was
practical to build the detection model in the multimaturity
stage.

3.4. Predicting the SSC Using Important Wavelengths and
ABC-LS-SVM. Based on the combined data from the four
maturity stages in the range of 950–1675 nm, the SPA was
used for data reduction because of the information re-
dundancy over the full spectral range. Twenty-four char-
acteristic wavelengths (1584, 1599, 1170, 1352, 1243, 1501,
1157, 1141, 1075, 1511, 1441, 1011, 1618, 1390, 1406, 1542,
1482, 1431, 1644, 1612, 1577, 976, 957, and 953 nm; those
wavelengths are listed in descending order of importance)
were selected by the SPA when the root-mean-square error
was 2.018%. 1169.4–1314.5 nm (3 v) and 1199.3–1348.2 nm
(3 v) were associated with the C-H stretch vibration,
1620–1800 nm was related to the 1st frequency of the C-H
stretch vibration, 1397.4–1507.0 nm (2 v) and 1436.7–
1571.4 nm (2 v) were related to the O-H stretch vibration,
there was a stretching vibration of C�O near 1507.2–
1739.1 nm (4 v), and 967.2–1095.2 nm (3 v) was related to the
O-H stretch vibration [37–39]. /erefore, 24 characteristic
wavelengths were correlated with the C-H, C�O, and O-H
stretch vibration.

Based on the characteristic wavelengths selected by SPA,
an ABC algorithmwas used to search for optimal parameters
in the hyperparameter space of LS-SVMmodel. /e curve of
MSE in the iterative process is shown in Figure 3. In 10 ABC
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runs, the minimum values of MSE were all around 1.42%2,
the obtained optimal parameter values and the number of
iterations at the time of convergence were respectively
similar, which indicated that the method had good ro-
bustness. In the third run, the MSE converged to 1.42%2 at
the 11th iteration; the optimal values of c and σ2 were,
respectively, 5.00×104 and 49.52.

/e GS-LS-SVM and ABC-LS-SVM were used to build
models, respectively./e results are displayed in Table 3./e
Rp2, RMSEP, and RPD for the prediction set using GS-LS-
SVM model were 0.98, 1.24%, and 6.96, respectively.

According to the results of prediction set, modeling accuracy
and stability have been effectively improved by the ABC-LS-
SVM method (Rp2 � 0.98, RMSEP� 1.19%, RPD� 7.25).
/en, an independent verification set was used for the
verification of models. Compared with the GS-LS-SVM
model (Rp2 � 0.97, RMSEP� 1.48%, RPD� 6.09), the
ABC-LS-SVM model got better predictions results
(Rp2 � 0.98, RMSEP� 1.37%, RPD� 6.58). ABC’s prediction
effect on prediction set and verification set was significantly
better than grid-search method, and ABC-LS-SVM had
better fitting accuracy and generalization ability than GS-LS-
SVM. Consequently, ABC can be used to improve the
predicted performance based on LS-SVM, and it has a
certain engineering application value.

During the maturation process, the internal components
and contents changed, and the SSC in each pixel of the
samples was difficult to determine by conventional chemical
methods. Based on 24 characteristic wavelengths selected by
SPA, the spectral information corresponding to 24 char-
acteristic wavelengths in each pixel of the samples was
extracted and used as the input of the ABC-LS-SVM model,
and the SSC of each pixel was predicted. /e visual distri-
bution of the SSC in the four maturity stages is established in
Figure 4, with a colored bar displaying different colors from
blue (low value) to red (high value). /e color of the im-
mature fresh jujube was primarily blue, and individual pixels
are shown in yellow, which indicated that the SSC was low.
/e color of the full-mature fresh jujube was primarily
yellow-red, the individual pixels were blue and cyan, the SSC
was high, and the maximum value was 50.23%. With the
advancement of the maturation process, the density of the
yellow color gradually increased, which indicated that the
SSC increased. /e distribution of SSC at different locations
in each sample was asymmetric and nonuniform. /ese
phenomena were primarily attributed to the different

Table 1: Statistics for the SSC (%) at different ripening stages of “Huping” jujubes.

Ripeness stage Data set Max. (%) Min. (%) Mean (%) Standard deviations (%)

Immature stage

Total samples 17.8 9.1 13.61 2.55
Calibration set 17.8 9.1 13.89 2.53
Prediction set 17.2 10.4 14.05 1.98
Verification set 17.4 9.2 12.35 2.78

White-mature stage

Total samples 22.9 16.0 19.85 1.35
Calibration set 22.9 16.0 19.88 1.26
Prediction set 22.4 16.7 19.71 1.30
Verification set 22.4 16.1 19.93 1.66

Crisp-mature stage

Total samples 37.6 18.8 27.30 3.96
Calibration set 37.6 18.8 27.49 4.30
Prediction set 36.2 20.2 26.96 3.46
Verification set 35.8 21.7 27.10 3.41

Full-mature stage

Total samples 44.0 24.2 35.94 3.33
Calibration set 44.0 28.3 36.20 3.14
Prediction set 41.9 31.0 36.04 2.74
Verification set 41.2 24.2 35.05 4.25

Overall stage

Total samples 44.0 9.1 24.18 8.86
Calibration set 44.0 9.1 24.37 8.90
Prediction set 41.9 10.4 24.19 8.63
Verification set 41.2 9.2 23.61 9.01
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Figure 2: Average spectral curves of the samples.
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variation speeds for chemical compounds in fresh jujubes.
/erefore, the visual map of the distribution was useful for
analyzing the distribution and transformation of the SSC
during the maturation process of fresh jujubes.

4. Conclusions

To evaluate the internal quality accurately and robustly, the
detection models of the SSC in fresh jujubes at different
maturity stages (immature, white-mature, crisp-mature,
and full-mature stage) were established using hyper-
spectral imaging technology. /e GS-LS-SVM model made
with combined data constituting the four maturity
stages obtained accurate prediction results (Rp2 � 0.98,
RMSEP � 1.10%, RPD � 7.85). It was realistic to construct
the detection model using multimaturity stages. Twenty-
four characteristic wavelengths of the combined data from
the four maturity stages were extracted by SPA, and the
SPA-ABC-LS-SVM model yielded more accurate results
(Rp2, RMSEP, and RPD for the prediction set were 0.98,
1.19%, and 7.25, respectively; Rp2, RMSEP, and RPD for the
independent verification set were 0.98, 1.37%, and 6.58,
respectively) than the SPA-GS-LS-SVM model (Rp2,
RMSEP, and RPD for the prediction set were 0.98, 1.24%,
and 6.96, respectively; Rp2, RMSEP, and RPD for the in-
dependent verification set were 0.97, 1.48%, and 6.09, re-
spectively). /e method for optimizing the LS-SVM

Table 2: Results of the GS-LS-SVM models for the prediction of SSC in different maturation stages of jujube samples over the full spectral
range.

Prediction set c σ2 Rc2 RMSEC (%) Rp2 RMSEP (%) Slope Bias RPD
Immature

1.21∗ 104 1.21∗ 103 0.95 1.35

0.85 0.86 1.03 0.14 2.30
White-mature 0.83 0.64 1.08 0.06 2.03
Crisp-mature 0.84 1.50 0.79 0.60 2.31
Full-mature 0.81 1.21 0.82 −0.33 2.26
Overall 0.98 1.10 0.97 −0.08 7.85
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Figure 3: Changing trend of the MSE in the ABC-LS-SVM model searching for optimal parameters.

Table 3: Results of GS-LS-SVM and ABC-LS-SVM models for the prediction of SSC using important wavelengths.

Modeling algorithms Data set c σ2 Rc2 RMSEC (%) Rp2 RMSEP (%) Slope Bias RPD

GS-LS-SVM Prediction set 2.70∗104 188.59 0.95 1.47 0.98 1.24 0.98 0.07 6.96
Verification set 0.97 1.48 0.98 −0.18 6.09

ABC-LS-SVM Prediction set 5.00∗104 49.52 0.98 1.33 0.98 1.19 0.98 −0.07 7.25
Verification set 0.98 1.37 1.01 0.12 6.58
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Figure 4: Examples of visualization in an SSC distribution map of
the 4 maturity stages.
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parameters using ABC could improve the predicted ac-
curacy in the SSC assessment. /e SSC of each pixel in the
samples was predicted, and the visualization of the SSC
distribution map was accomplished based on the SPA-
ABC-LS-SVM model. During fruit maturation, the SSC
gradually increased, but the growth rate was different and
the distribution of SSC at different locations in each sample
was asymmetric and nonuniform. /is study provides a
theoretical basis and method for the grading and quality
sorting of fresh jujubes.
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