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Angelicae Sinensis Radix is a widely used traditional Chinese medicine and spice in China. 0e purpose of this study was to
develop a methodology for geographical classification of Angelicae Sinensis Radix and determine the contents of ferulic
acid and Z-ligustilide in the samples using near-infrared spectroscopy. A qualitative model was established to identify the
geographical origin of Angelicae Sinensis Radix using Fourier transform near-infrared (FT-NIR) spectroscopy. Support
vector machine (SVM) algorithms were used for the establishment of a qualitative model. 0e optimum SVM model had a
recognition rate of 100% for the calibration set and 83.72% for the prediction set. In addition, a quantitative model was
established to predict the content of ferulic acid and Z-ligustilide using FT-NIR. Partial least squares regression (PLSR)
algorithms were used for the establishment of a quantitative model. Synergy interval-PLS (Si-PLS) was used to screen the
characteristic spectral interval to obtain the best PLSR model. 0e coefficient of determination for calibration (R2C) for the
best PLSR models established with the optimal spectral preprocessing method and selected important spectral regions for
the quantitative determination of ferulic acid and Z-ligustilide was 0.9659 and 0.9611, respectively, while the coefficient of
determination for prediction (R2P) was 0.9118 and 0.9206, respectively. 0e values of the ratio of prediction to deviation
(RPD) of the two final optimized PLSR models were greater than 2. 0e results suggested that NIR spectroscopy combined
with SVM and PLSR algorithms could be exploited in the discrimination of Angelicae Sinensis Radix from different
geographical locations for quality assurance and monitoring. 0is study might serve as a reference for quality evaluation of
agricultural, pharmaceutical, and food products.

1. Introduction

Angelica sinensis (Oliv.) Diels is a perennial plant that is
widely found in China, Korea, and Japan. 0e dried root of
A. sinensis (Oliv.) Diels (Angelicae Sinensis Radix (ASR),
Danggui in Chinese) has a long history of use in China. It
was used not only as a spice or therapeutic food (cooked with
meat and taken as soup) but also as traditional Chinese

medicine (TCM) for replenishing and invigorating blood,
relieving pain, and moistening the intestines [1]. ASR is
often cooked with lamb, for instance, Danggui Shengjiang
Yangrou Tang. 0is recipe was first recorded in Jin Gui Yao
Lue written by Zhang Zhongjing [2]. ASR is currently
available as a food/dietary supplement in North America
and Europe and is known by the standardized generic name
Dong quai [3]. Recently, pharmacological studies have
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revealed that ASR has several bioactivities, including anti-
arrhythmic and anti-atherosclerotic, as well as preventing
myocardial infarction events, and protecting the heart [4–7].
Additionally, ASR is predominantly renowned for its out-
standing effects in the treatment of various gynecological
conditions that are generally difficult to treat with con-
ventional therapies; hence, it is also known as “female
ginseng” [8].

Modern research has shown that the geographical
origin of agricultural products has a direct impact on the
quality and safety of agricultural products [9, 10]. Reli-
able information regarding geographical origin is con-
sidered the most critical factor for consumers when
purchasing agricultural products [11]. Hence, traceability
of the geographical origin of food products is one of the
emerging and critical issues in the agricultural sector.
ASR is mainly distributed in Gansu, Qinghai, Yunnan,
and other provinces in China. Its quality is quite different
across different geographical origins. For instance, ASR
produced in Minxian County, Gansu Province, China,
has the best quality and clinical effects as “daodi herb,”
according to traditional experience [12]. In the inter-
national and domestic markets, “mingui” was sold at
higher prices than the ASR from other geographical
origins. Currently, “mingui” is facing an adulteration
problem similar to other premium-priced foodstuffs due
to its growing demand [13]. Deceitful activities, such as
selling ASR from other geographical origins with lower
quality and price as mingui, are conducted by dishonest
businesspersons to increase their profit margin. 0ere-
fore, to control and secure the quality of danggui, as well
as trace its geographical origin, the analysis of ASR has
become almost indispensable and mandatory.

It is difficult to distinguish food products or medicinal
materials from different geographical origins with the
naked eye. To date, various methods have been applied in
the traceability of food products, including near-infrared
spectroscopy (NIR), isotope ratio mass spectrometry
(IRMS), inductively coupled plasma mass spectrometry
(ICP-MS), high-performance liquid chromatography
(HPLC), liquid chromatography coupled with tandem
mass spectrometry (LC-MS/MS), among other analytical
methods [14–17]. Fourier transform near-infrared spec-
troscopy (FT-NIR), a novel quality control technology,
has been increasingly introduced as a fast and routinely
applied method in qualitative and quantitative analysis of
plant raw materials, because it affords simple sample
preparation and rapid simultaneous analysis of several
analytes in a large number of samples, as well as geo-
graphical origin classification [18, 19]. At present, near-
infrared (NIR) spectroscopy technology has been widely
used to trace geographical origins of seafood, wine, TCM,
etc. [20–22]. It has shown outstanding potentials in ag-
riculture, food, pharmacy, the environment, and many
other fields.

Ferulic acid and Z-ligustilide have been widely considered
as the main active components in ASR with various phar-
macological effects, including antithrombotic effects, antide-
pressant-like effects, and anti-atherosclerosis, neuroprotective,

anti-cancer, anti-inflammatory, and vasodilator effects
[23–27]. Ferulic acid and Z-ligustilide have also been com-
monly used as index ingredients to evaluate the quality of ASR
[28]. Although conventional detection methods such as
chromatography are sufficiently sensitive, they are often time-
consuming and labor-intensive and require expensive
equipment, involving elaborate organic solvent extraction.
0erefore, a rapid, cheap, environmentally friendly, and
comprehensive method is needed to quantitatively detect the
content of ferulic acid and Z-ligustilide in ASR to assess the
quality of ASR.

At present, there have been reports on the application
of NIR in the identification and content prediction of
ASR. Li et al. [29] established a qualitative model of ASR
by random forest (RF) to identify the geographical origins
of ASR and constructed a quantitative model of the
ethanol extract and ferulic acid of ASR using the genetic
algorithm optimization combined with multiple linear
regression (GA-MLR) method. However, the quantitative
model constructed by Li and colleagues was not reliable
and needed to be improved. Besides, they did not con-
struct the quantitative model of Z-ligustilide. Z-ligu-
stilide has a wide range of pharmacological properties,
including anticancer, anti-inflammatory, antioxidant,
neuroprotective activities, etc. [30]. Z-ligustilide is also
the main indicator of quality control of TCM compounds
containing ASR and essential oil of ASR [12]. In addition
to RF and GA-MLR, many other multivariate statistical
techniques can complement NIR spectrum analysis. For
example, a support vector machine (SVM) is a commonly
used algorithm for building qualitative models. It is a
useful tool for SVM to analyze the data that are not
regularly distributed or have an unknown distribution
[31]. SVM is also a useful classification technique when
few training data are available [32]. Geographical origin
traceability studies on teas and Panax notoginseng
showed that an SVM classifier was better than other
classifiers [33, 34]. A study by Xu et al. [35] showed that
NIR spectroscopy coupled with the SVM model had a
good effect on the identification of the origin of TCM.
Partial least squares regression (PLSR) is a classical and
widely used linear method for modeling spectral data.
Studies have shown that the prediction accuracies of PLS-
derived models tend to be higher than that of multiple
regression- (MR-) derived models [36, 37]. Our previous
study found that the PLSR model had excellent predictive
and extrapolation abilities [19, 38].

0erefore, the present study aimed to explore the
feasibility of the FT-NIR spectroscopy technique with
SVM in discrimination of the geographical origin of ASR.
Additionally, the capability of determining the content of
ferulic acid and Z-ligustilide in ASR using NIR spec-
troscopy coupled with PLSR calibration was also inves-
tigated. Eight preprocessing methods were compared to
select the favorable one, and then Synergy interval-PLS
(Si-PLS) was used to screen the characteristic spectral
interval to obtain the best PLSR model. 0is study might
serve as a reference for the rapid geographical origin,
identification, and quality control of ASR.
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2. Materials and Methods

2.1. Samples andReagents. Ninety-nine batches of ASR were
purchased from formal Chinese medicinal material markets
or medicinal material planting cooperatives in Qinghai,
Yunnan, and Gansu provinces of China. Twenty batches of
ASR were fromQinghai, twenty-five were fromYunnan, and
fifty-four were from Gansu. 0eir botanical origins were
authenticated as Angelica sinensis (Oliv.) Diels by Professor
Hui Yan. Voucher specimens were deposited at the Her-
barium of Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization. Dried
samples were pulverized to homogeneous powders (50
mesh) for HPLC and NIR analyses.

Standards of ferulic acid and Z-ligustilide (Batch No.
20180302-29 and 18113001, respectively; purity >98% for
both) were provided by the National Institutes for Food and
Drug Control (Beijing, China) and Nanjing Jin Yibai Bio-
logical Technology Co. Ltd. (Nanjing, China), respectively.
Methanol and acetonitrile were HPLC grade and purchased
from Merck (Darmstadt, Germany). Water was purified
using an ultrapure water instrument. All other solvents and
reagents were of analytical grade unless otherwise noted.

2.2. Acquisition of Near Infrared Spectra. FT-NIR spectra
were collected with a diffuse reflection module using an
Antaris™ II FT-NIR spectrophotometer (0ermo Fisher
Scientific Co., China) equipped with a rotating sample-cup
spinner, an extended InGaAs detector, and a tungsten
halogen lamp as the light source. Result Software (Antaris™
II System, 0ermo Fisher Scientific Co., China) was used in
FT-NIR data acquisition. 0e spectral data were recorded as
the average of 32 scans in the spectral range of 10,000-
4,000 cm−1 and the spectra were collected at a spectral
resolution of 8 cm−1, with air absorbance as the reference
standard at room temperature (25°C). To improve the ac-
curacy of the collected spectral data, the spectra of each
sample were recorded in triplicate and the average spectrum
was used for subsequent analysis.

2.3. Determination of ReferenceValues byHPLC. About 0.2 g
of the sample powder was weighed and extracted with 20mL
70% methanol in a 50mL glass-stoppered conical flask. All
mixtures were precisely weighed and then extracted by a
heating reflux apparatus for 30min. After the solution was
cooled, the mixture was weighed again, and the lost weight
was made up of 70% methanol. After centrifugation at
13,000 r/min for 10min, the supernatants were stored at 4°C
on a sample plate and filtered through 0.22 µm cellulose
membrane filters before HPLC analysis. 0e standard
substances of ferulic acid and Z-ligustilide were precisely
weighed and acetonitrile was added to prepare the standard
stock solution with a concentration of 1.3543 and 2.2011mg/
mL, respectively. Certain amounts of standard stock solu-
tions were mixed and diluted with acetonitrile to afford a
series of solutions at appropriate concentrations, which were
used to construct calibration curves. Prior to use, the mixed

standard solution was filtered using 0.22 µm cellulose
membrane filters before analysis and stored at 4°C.

0e validation of the analytical method was performed
by evaluating linearity, precision, repeatability, stability, and
recovery.0emixed standard solution was diluted to a series
of solutions with at least six appropriate concentrations in
duplicate to make calibration curves, and then a linear re-
gression was constructed by plotting the peak areas versus
the corresponding concentration of each analyte. Precision
was evaluated by analyzing the mixed standard solution six
times. To evaluate repeatability, six sample solutions were
independently prepared from the same batch of ASR
samples and analyzed in parallel. To evaluate the sample
stability, the sample solution aforementioned was stored at
25°C and, respectively, determined at various periods (0, 2, 4,
8, 12, and 24 h). All these variations were expressed as
relative standard deviation (RSD). Recovery was performed
by spiking known quantities of ferulic acid and Z-ligustilide
with high (150%), middle (100%), and low (50%) levels to a
certain amount of ASR samples that had been analyzed in
the repeatability test. 0en, the spiked samples were
extracted, processed, and quantified based on previously
described methods. Triplicate experiments were performed
at each level.

HPLC analysis was conducted on aWaters Alliance E2695
HPLC system (Waters, Milford, MA, USA) equipped with a
Waters 2998 PDA detector. Every sample was separated on a
Waters Symmetry C18 column (4.6mm× 250mm, 5 μm)
with column temperature at 30°C. 0e mobile phase system
consisting of acetonitrile (A) and 0.5% acetic acid aqueous
solution (B) was applied with a gradient elution of 5-45% A at
0–25min, 45–55% A at 25–35min, 55% A at 35–45min,
55–95% A at 45–55min, and 95% A at 55–60min. 0e de-
tection wavelength was 320 nm. 0e injection volume was
10 μL and the flow rate was set at 1.0mL/min.

2.4. SpectralProcessing. Ninety-nine batches of ASR samples
from three different geographical origins were randomly
categorized into the calibration set and prediction set in a 2 :
1 ratio using the SPXY algorithm. Sixty-six samples were
used for the calibration set to develop the models and the
remaining 33 samples comprised the prediction set for
testing the performance of the established models. 0e raw
NIR spectra contain lots of chemical information of the
samples; however, background information and systematic
noise unrelated to the properties of the test sample exist at
the same time due to the influences of light scattering, path
length difference, sample particle size, and other factors
[39, 40]. 0erefore, it was necessary to use spectral pre-
treatment methods to remove the extraneous variables that
did not represent the actual target chemical compositions.
First, the raw FT-NIR spectra were preprocessed using
OMNIC software for averaging spectroscopy, normalization
of longitudinal coordinates. 0en, eight spectral pre-
processing methods, namely, multiplicative scatter correc-
tion (MSC), standard normal variate transformation (SNV),
first derivative (Savitzky–Golay algorithm with 11 points of
smoothing, 1D), second derivative (Savitzky–Golay
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algorithm with 11 points of smoothing, 2D), MSC+ 1D,
MSC+ 2D, SNV+ 1D, and SNV+ 2D, were compared to
optimize FT-NIR data. MSC can effectively eliminate
physical effects such as particle size and surface blaze, which
do not carry any chemical or physical information. 0is
method can correct differences in the baseline and the trend
and has the advantage that the transformed spectra are
similar to the original spectra [41]. SNV is also a pre-
processing approach that can remove multiplicative inter-
ferences of the scatter and particle size and is commonly
used in solid diffuse reflectance and slurry transmittance
spectra [42]. NIR diffuse reflectance spectra transposed by
SNV have no multicollinearity and are not confused by the
shape complexity encountered with the use of derivative
spectroscopy [43]. Derivatives (1D and 2D) can remove the
baseline drifts, separate broad and overlapping NIR bands,
effects of noise, improve the spectral difference, and preserve
the relative band-intensity information without significantly
increasing the spectral noise [44, 45].

2.5. Support Vector Machine (SVM). SVM is a non-linear
supervised classification model that can be used for pattern
classification and nonlinear regression [46]. 0e SVM-based
classification model is characterized by two parameters, C
(the penalty parameter) and g (the kernel width parameter),
which should be carefully selected to achieve good perfor-
mance [18]. In this study, the combination of parameters C
and g of the SVM model was calculated by the approach of
the grid search (GS) method with 10-fold cross-validation.

2.6. Partial Least Squares Regression (PLSR). PLSR is a
powerful statistical technique in constructing calibration
models with infrared (IR) spectral data that can be used to
explore the relationship between independent variables and
dependent variables based on the reduction of the dimen-
sionality of the data set [19]. 0e following parameters were
calculated to assess the success of data preprocessing and
model performance: coefficient of determination for cali-
bration (R2

C) and prediction (R2
P), root mean square error

of estimation (RMSEE), root mean square error of cross-
validation (RMSECV), root mean square error of prediction
(RMSEP), and the ratio of prediction to deviation (RPD).
0e coefficient of determination of R2

C and R2
P close to 1

indicates a good relationship between the predicted and
measured values in the calibration and prediction sets [19].
RMSECV, RMSEE, and RMSEP are usually used to, re-
spectively, evaluate the error of calibration and prediction
sets. RMSECV based on a 7-fold cross-validation procedure
was used to evaluate the modeling capacity of the PLSR
model using the calibration set. RPD reflects the overall
predictive ability of a PLSR model. In practical applications,
performance is considered good when the RPD value is
greater than 2 [47].

2.7. Software. 0e raw FT-NIR spectra were normalized by
OMNIC 8.0 (0ermo Fisher Scientific Inc., Waltham, MA,
USA). 0e spectral pretreatment and qualitative discrimi-
nation models of SVM were conducted using MATLAB

software (version R2017a, MathWorks, Natick, USA) in
Windows 8.1. SIMCA-P+ program (version 14.1, Umetrics,
Sweden) was used to establish the PLSR quantitative model.
ORIGIN 8.0 (Northampton, MA, USA) was used for
drawing.

3. Results and Discussions

3.1. NIR Spectral Features. 0e raw NIR spectra of 99 ASR
samples are shown in Figure 1. 0e FT-NIR spectra reflect
valuable chemical information of the major secondary
metabolites of ASR [48, 49]. As shown in Figure 2, com-
paring the FT-NIR spectra of ASR from the three different
geographical origins, the mean spectra from Qinghai,
Yunnan, and Gansu were overlapping, and the peak in-
formation such as the peak height and peak intensity was
similar in the map. 0ey showed multiple common ab-
sorption bonds, including those at 8350, 6961, 6736, 6323,
5917, 5788, 5712, 4813, and 4313 cm−1. 0e peak around
8350 cm−1 was induced by the second overtone of C-H
stretching, and the bands in the region of 6000-7000 cm−1

were assigned to the first overtone of the O-H and N-H
stretching [33]. 0e bands in the region of 5500-6000 cm−1

belong to the first overtone of C-H stretching vibrations [19].
Broad band at 5172 cm−1 was mainly induced by the
combination of O-H and C-O stretching, and the peaks
around 4813 cm−1 were attributed to the combination of
O-H bending and C-O stretching. Figure 3 shows the spectra
pretreated with the eight reprocessing methods.

3.2. SupportVectorMachineModel. 0emain idea of SVM is
to map input vectors to high-dimensional space and con-
struct a maximal classification hyperplane that allows linear
separation in the higher dimensional feature space, when the
linear boundary in the low dimension input space is not
enough to separate the different groups [50, 51]. In SVM,
transformation into higher dimensional space can be real-
ized through a kernel function. 0ere are five possible
choices for the kernel function options, including linear,
polynomial, radial basis function (RBF), sigmoid, and
precomputed, and the selection of kernel functions is of
great importance in the performance of SVM [31, 35].
Previous studies have shown that SVM based on RBF kernel
has excellent classification performance; thus, RBF kernel
was selected as the kernel function of SVM classification in
our study [31, 52]. 0e parameters to be optimized in the
RBF kernel include the penalty parameter C and the kernel
function parameter g. 0e RBF kernel parameter g defines
the width of the kernel, which reduces the computational
complexity of the training procedure and gives a good
performance under general smoothness assumptions [33].
0e regularization parameter C controls the trade-off be-
tweenminimizing themodel complexity andminimizing the
training error.

0e efficiency of SVM depends on the optimization of
the regularization parameter C and RBF kernel parameter g

[18]. In this study, the combination of parameters C and g of
the SVM model was calculated using GS method approach
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Figure 1: Raw NIR spectra of 99 ASR samples.

8350

6961

6736

5172

578859176323

43134813

10000 9000 8000 7000 6000 5000 4000

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
ba

nc
e

Wavenumber (cm–1)

Qinghai
Yunnan
Gansu

Figure 2: Average raw NIR spectra of ASR samples from three different geographical origins.
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with 10-fold cross-validation. When the highest classifica-
tion accuracy was achieved, the best C and g were selected.
0e results of the optimization of the spectral pretreatment
methods are shown in Table 1. 0e results show that the
multiplicative scatter correction combined with the first
derivative has the best performance for the SVM model. As
shown in Figure 4, the 3D plot shows the different classi-
fication accuracy of the SVMmodel influenced by the values

of Log2 C and Log2 g under 10-fold cross-validation, with
the values of Log2 C ranging from −5 to 20, and those of
Log2 g ranging from −20 to −5; the process of searching
starts with a granularity of 0.5. 0e best parameter for cross
verification was achieved when parameters C� 45.2548 and
g� 0.00048828, with the highest cross validation (CV) ac-
curacy value of 76.9231%. Subsequently, the calibration set
was used for training of the SVM model and the prediction
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Figure 3: Spectra of different spectral preprocessing methods. (a) Multiplicative scatter correction (MSC). (b) Standard normal variate
transformation (SNV). (c) First derivative (Savitzky–Golay algorithm with 11 points of smoothing, 1D). (d) Second derivative (Savitz-
ky–Golay algorithm with 11 points of smoothing, 2D). (e) MSC+ 1D. (f ) MSC+ 2D. (g) SNV+ 1D. (h) SNV+ 2D.
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set was used to verify the accuracy of the established model
using the optimal parameters C and g. 0e recognition rates
for calibration and prediction sets were 100% and 83.72%,
respectively. 0e results indicated that the performance of
SVM model was able to identify the geographical origin of
ASR.

3.3. Predicting the Content of Ferulic Acid and Z-Ligustilide
Based on FT-NIR Using PLSR Algorithm. 0e results of the
SVM classificationmodel showed that NIR could distinguish
the geographical origin of ASR, with a recognition rate of
83.72%. 0e information contained in the NIR spectra can
be used not only to identify the geographical origins but also
for rapid quantitative analysis of the components in ASR. To
further explore the application of NIR in the rapid quan-
titative detection of ASR, the contents of ferulic acid and
Z-ligustilide in ASR were estimated using NIR spectroscopy
combined with the PLSR calibration model.

3.3.1. High-Performance Liquid Chromatography Analysis.
For quantitative considerations, the proposedHPLCmethod
was validated by evaluating linearity, precision, repeatability,
stability, and recovery. 0e results of method validation for
HPLC analysis of ferulic acid and Z-ligustilide are shown in

Table 2. 0e calibration curves of ferulic acid and Z-ligu-
stilide exhibited good linear regression with correlation
coefficient values (r2) of 0.9999, for both, and the concen-
tration ranges between 0.5417–54.1728 μg/mL and 3.7418-
374.1836 μg/mL, respectively. 0e RSD values for precision,
repeatability, and storage stability were all not more than
3.0%.0e recoveries were 99.10% and 97.00% for ferulic acid
and Z-ligustilide, respectively, which showed that the
method was accurate enough. Taken together, these results
indicated that the developed HPLC method was sensitive,
repeatable, and accurate for quantitative analysis. Table 3
shows the results of HPLC content determination. 0e
reference value of ferulic acid ranged from 0.4790 to
2.7307mg/g and 0.4730 to 1.5626mg/g in the calibration set
and prediction set, respectively. 0e reference value of
Z-ligustilide ranged from 2.2710 to 19.6627mg/g and 3.4730
to 18.6352mg/g in the calibration set and prediction set,
respectively. 0e content of ferulic acid and Z-ligustilide had
a wide range of distribution and good representation, which
can meet the requirements of modeling.

3.3.2. Spectral Pretreatment Method Selection. PLSR algo-
rithm was applied to the calibration data set to establish
independent models for ferulic acid and Z-ligustilide by
relating NIR spectra with reference values analyzed by the

Table 1: 0e influence of pretreatment on SVM model.

Pretreatment C g Accuracy of calibration (%) Accuracy of prediction (%)
RAW 198668 0.00000289 87.69 76.74
MSC 1048580 0.00000166 92.31 81.40
SNV 1048580 0.00000095 90.77 79.07
1D 27.8576 0.00074010 100 79.07
2D 256 0.00001526 89.23 72.09
MSC+1D 9.18959 0.00128858 98.46 81.40
MSC+ 2D 16.0000 0.00024414 90.77 62.79
SNV+ 1D 5.27803 0.00128858 92.31 72.09
SNV+ 2D 48.5029 0.00024414 100 81.40
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Figure 4: 0e optimization results for parameters C and g by GS methods with a 10-fold cross-validation.
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HPLC method, and the influences of the eight pretreatment
methods were compared

Eight different pretreatments (MSC, SNV, 1D, 2D,
MSC+ 1D, MSC+ 2D, SNV+ 1D, and SNV+ 2D) were
compared and NIR models based on preprocessed spectra
resulted in better prediction than those based on the raw
spectra (Table 4).

0e best performance of the PLSR model for the
quantitation of ferulic acid and Z-ligustilide was obtained
based on the preprocessing of 1D. Regarding ferulic acid, an
optimal quantification model was developed after the pre-
treatment of 1D, with latent variables (LV) of 6 and R2

C and
R2

P of 0.9567 and 0.8580 and RMSEE, RMSECV, and
RMSEP of 0.1098, 0.2552, and 0.2658mg/g, respectively. 0e
PLSR quantitative model of Z-ligustilide was established
after the pretreatment of 1D, with LV of 7 and R2

C and R2
P of

0.9611 and 0.8708 and RMSEE, RMSECV, and RMSEP of
0.9611, 2.7046, and 2.7142mg/g, respectively. Additionally,
the RPD values of PLSR models for the determination of
ferulic acid and Z-ligustilide were 1.7568 and 1.7392, re-
spectively. 0e RPD value of the quantitative model con-
structed after spectral preprocessing was higher than that of
the quantitative model based on the original spectrum
without preprocessing. Overall, these results showed that the
spectral pretreatment method selected in this study im-
proved the performance of the PLSR model for the quan-
titative analysis of ferulic acid and Z-ligustilide.

3.3.3. Screening of the Spectral Range and Establishment of
Optimal PLSR Models. To reduce the redundancy and
collinearity caused by unrelated variables and further im-
prove the prediction ability and robustness of the calibration
model, Si-PLS was used to screen characteristic spectral
interval combinations from the full spectra based on the
optimal spectral pretreatment method

0e main advantage of this method is that it uses a
graphical display to select better subintervals and compare
the prediction performance between local models and the
full-spectrum model [53]. In this study, the preprocessed
full-spectrum region (10,000-4,000 cm−1) was first divided
into 20 equidistant intervals, and two of each spectral

interval were combined to explore their synergistic effects.
0e segment and largest LV were set to 5 and 15, respec-
tively. All combinations were determined by cross-valida-
tion and that with minimum RMSEP was considered the
best. 0en, the selected important spectral regions were used
for recalibration to optimize the performance of initial PLSR
models, which were established based on the entire wave-
number span.

0e selected characteristic wavenumber ranges and
linear regression plots of the measured against predicted
values for the best PLSR models developed by selecting
spectral intervals in determining the ferulic acid and
Z-ligustilide contents are shown in Figure 5 and the
parameters of the final optimized PLSR model are sum-
marized in Table 5. For ferulic acid, optimal combinations
of spectral intervals selected were [14 16 17 19], which
corresponded to 6090.1-5793.11, 5488.42-5191.43,
5187.58-4890.59, and 4589.75-4296.62 cm−1, respectively
(Figures 5(a) and 5(b)). Regarding Z-ligustilide, optimal
combinations of spectral intervals selected were [16 19 20],
which corresponded to 5488.42-5191.43, 4589.75-4296.62,
and 4292.77-3999.64 cm−1, respectively (Figures 5(c) and
5(d)). 0e common feature of the selected spectral interval
combinations for ferulic acid and Z-ligustilide was that
they all included the wavenumber ranges of 5488.42-
5191.43 cm−1and 4589.75-4296.62 cm−1. 0e scatter plot
that displays the correlation between the reference
measurement and the FT-NIR prediction in the calibra-
tion and prediction sets is shown in Figures 5(c) and 5(d).
Under the same spectral preprocessing method, the best
PLSR models established with selected important spectral
regions for the quantitative determination of ferulic acid
and Z-ligustilide had higher R2

P (0.9118 and 0.9206, re-
spectively) and RPD (2.1924 and 2.4544, respectively)
values and lower RMSEP than those generated with the
full spectral range, indicating that these models were more
reliable. All the RPD values of the final optimized model
that was obtained after preprocessing optimization and
spectral range screening were greater than 2, indicating
that the two established quantitative models had good
prediction stability.

Table 2: 0e results of methodology validation for HPLC analysis.

Analytes Calibration curvesa r2 Linear range
(μg/mL)

Precision (RSD,
%, n� 6)

Repeatability
(RSD, %,
n� 6)

Stability (RSD,
%, n� 8)

Recovery (mean,
%, n� 9)

Ferulic
acid y� 51125.819x – 11166.578 0.9999 0.5417–54.1728 0.23 1.36 0.58 99.10

Z-
ligustilide y� 23458.696x – 25427.266 0.9999 3.7418–374.1836 0.23 1.54 0.80 97.00

ay is the value of peak area, and x is the value of the reference compound’s concentration (μg/mL).

Table 3: Contents of ferulic acid and Z-ligustilide determined by HPLC.

Analytes
Total set Calibration set Prediction set

n Range (mg/g) Mean SD n Range (mg/g) Mean SD n Range (mg/g) Mean SD
Ferulic acid 99 0.4730–2.7307 1.0900 0.4669 33 0.4790–2.7307 1.1344 0.5243 33 0.4730–1.5626 1.0014 0.3117
Z-ligustilide 99 2.2710–19.6627 9.9453 4.7207 33 2.2710–19.6627 9.5029 4.5500 33 3.4730–18.6352 10.8301 4.9985
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Table 4: Parameters of PLSR models for the determination of ferulic acid and Z-ligustilide in ASR using FT-NIR based on different
pretreated methods.

Compounds Pretreatment LVa. R2
c RMSEE RMSECV R2

p RMSEP RPD

Ferulic acid

RAW 6 0.6495 0.3124 0.4736 0.5580 0.3190 1.4639
MSC 7 0.6591 0.3105 0.3833 0.6080 0.2774 1.6833
SNV 7 0.6755 0.3029 0.3764 0.6382 0.2549 1.8320
1D 6 0.9567 0.1098 0.2552 0.8580 0.2658 1.7568
2D 4 0.9688 0.0918 0.2611 0.8628 0.2714 1.7204

MSC+ 1D 6 0.9583 0.1078 0.2673 0.8396 0.2935 1.5909
MSC+ 2D 4 0.9645 0.0980 0.2642 0.8416 0.2956 1.5798
SNV+ 1D 6 0.9579 0.1083 0.2669 0.8441 0.2866 1.6292
SNV+ 2D 4 0.9651 0.0971 0.2642 0.8448 0.2918 1.6001

Z-ligustilide

RAW 8 0.6167 3.1807 3.9700 0.6261 2.8685 1.6457
MSC 7 0.6378 3.0677 3.5058 0.6610 2.6056 1.8118
SNV 7 0.6182 3.1495 3.5172 0.6332 2.7987 1.6868
1D 7 0.9644 0.9611 2.7046 0.8708 2.7142 1.7392
2D 3 0.8678 1.7979 2.8056 0.7428 3.4784 1.3572

MSC+ 1D 7 0.9617 0.9977 2.8443 0.8637 2.7813 1.6973
MSC+ 2D 3 0.8576 1.8660 2.8725 0.7361 3.4780 1.3573
SNV+ 1D 7 0.9616 0.9994 2.8398 0.8634 2.7841 1.6956
SNV+ 2D 3 0.8571 1.8692 2.8687 0.7360 3.4759 1.3581

a LV� latent variable.
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Figure 5: Measured versus predicted plot (b and d) for the concentrations of ferulic acid and Z-ligustilide by the best PLSRmodels obtained
with the optimal spectral interval combinations (a and c). Ferulic acid (a and b), Z-ligustilide (c and d).
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4. Conclusion

0e current study investigated the feasibility of tracing the
geographical origin using FT-NIR coupled with chemo-
metric techniques. 0e results showed that the SVM clas-
sification model of NIR could distinguish the geographical
origins of ASR with acceptable precision and accuracy, and a
recognition rate of 83.72%. 0is suggested that the NIR
spectroscopy combined with the SVM algorithm could be
used as a promising technique to identify Chinese herbal
medicines from different places. However, the prediction
accuracy was lower than 2.7% of the RF model in the lit-
erature [29], implying that the RF is more suitable for the
problem of multiclassification than the SVM. Ferulic acid
and Z-ligustilide are vital indicators of the quality level of
ASR. To further explore the application of NIR in the rapid
quality assessment of ASR, the two best PLSRmodels for fast
quantification of ferulic acid and Z-ligustilide were estab-
lished using optimal spectral pretreatment methods and the
most important spectral interval. 0e final optimal PLSR
model exhibited good prediction performance; R2

P for the
ferulic acid quantitation model and Z-ligustilide quantita-
tion model was 0.9118 and 0.9206, respectively. 0e results
showed that PLSR is more suitable for the construction of
quantitative models than GA-MLR [29]. In brief, the index
component coupled with the FT-NIR strategy was a simple
and reliable method for rapid quantitative analysis and
quality assessment of ASR.

Generally, it could be concluded that, compared with the
conventional tedious and time-consuming wet chemistry
method, NIR spectroscopy combined with SVM and PLSR
algorithms can be exploited in the discrimination of ASR
from different geographical locations for quality assurance,
quality control, and monitoring. 0is study may serve as a
basis for further geographical trace and quality assessment of
ASR and provide a useful way of thinking and offering a
reference for quality analysis of agricultural, pharmaceutical,
and food products.
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