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Following investigations by Miles, the author has given a few proofs of a

conjecture of D.G. Kendall concerning random polygons determined by the
tessellation of a Euclidean plane by an homogeneous Poisson line process.
This proof seems to be rather elementary. Consider a Poisson line process
of intensity on the plane %2 determining the tessellation of the plane
into convex random polygons. Denote by K a random polygon contain-
ing the origin (so-called Crofton cell). If the area of K is known to equal
1, then the probability of the event {the contour of K lies between two
concentric circles with the ratio 1 + e of their ratio} tends to 1 as Aoc.
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1. Introductory Remarks

Investigations of Miles [5] are devoted to the solution of the following problem
suggested by Professor D.G. Kendall during WWII, and exposed in his Foreword to
Stoyan, Kendall and Mecke [6]. This is a Poisson line process on the Euclidean
plane. This line process determines the tessellation of the plane into convex random
polygons. D.G. Kendall conjectured that the shape of a random polygon is close to a

disk given that the area A of the polygon is large. This is equivalent to considering
A to be fixed (for example, A 1), and the intensity of the line process to be large.
Miles [5] uses some advanced approaches to this problem, but his proof is heuristic in
some respects.

In the paper [2], the asymptotic behavior of the distribution function of the area of
a Crofton cell was investigated; the result was expressed in terms of eigenvalues.

1The paper was written at the STORM Research Center, University of North
London.

Printed in the U.S.A. ()1999 by North Atlantic Science Publishing Company 301



302 IGOR N. KOVALENKO

The author has given a few proofs of the conjecture of D.G. Kendall. All these
proofs have some common ideas:

(i) A well-known inequality of Bonnesen [1] is used to majorate the probability
of having a Crofton cell significantly deviated from a disk, by the probabili-
ty of that the perimeter of such a Crofton cell is at least multiple (1 + 5) of
that of a disk of the same area.

(ii) Let % be a set of possible realizations of a random polygon Kw. A mapping
%--, is defined such that the image of % belongs to a set of a rather
simple structure. This enables us to derive a bound for the probability

It was conceived that a reasonable mapping should be adjusted to the following
measure of eccentricity of a polygon K" if a polygon K can be captured in a rectangle
no smaller than h x H where h is the width of K, then such a measure can be defined
as H/h (H > h).

In Kovalenko [3] it was suggested to map Kw to the maximal inscribed lattice poly-
gon, with the lattice cell size dependent on m:2m<_ H/h < 2m+ 1; moreover, the
directions of the reference system axes were dependent on the h x H rectangle. In an
unpublished paper, we simplified the approach, considering a square lattice with a

given orientation, though the size of a lattice cell was chosen as O(1/m) for an m
such that m2 <_ H/h < (m + 1)2. Moreover, an inscribed lattice segment, a "needle",
turned out to be sufficient for a proper bound rather than the maximal inscribed
lattice polygon. In Kovalenko [4] the idea of approximating a random polygon by an
inscribed polygon, with a bounded number of vertices included to the set of vertices
of the former polygon, was proposed. In this paper, this idea is also used, but the
approach is simplified to the extent such that the proof of the conjecture of D.G.
Kendall can be regarded as a rather elementary proof.

2. Main Results

Let w {(Pn, Pn)} be a two-dimensional Poisson point process with planar intensity
,/r in the half-band %+ x (0,2r). For each point (Pn,n) of this point process,
draw a line l, with polar coordinates (p,, n)" [This means that (Pn, n)is the point
of n closest to the origin.] We will also use the term "line (p,, n)"" The set of lines
{ln} is a Poissonian line process with intensity ,. This process determines the
tessellation of the plane %2 into convex random polygons. A random polygon con-
taining the origin is called a Croflon cell; it will be denoted by Kw. It is defined uni-
quely almost surely.

Let A(K) be the area of a polygon K and r(K) be the minimal positive value p
such that the contour of K can be enclosed between two concentric circles with the
ratio 1 + p of their radii. The function r(K) can be considered as a measure of "non-
circularity" of the polygon K. Our objective is to prove the following statement"

Theorem 1: Given an > O, the following relation holds true:

P{r(Kw) > A < A(Kw) < A(1 + h)}---0 as (1)

uniformly in h varying in a sufficiently small interval (O, ho).
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Note: Let {(Pn,n)} be a Poissonian line process of intensity /. Then {(cpn
is a process of the same kind, with intensity ./c, for a positive c. A Crofton cell, as

well as other random polygons, are transformed homothetically with dilation factor c.

The above implies a dependence of the left-hand side of Equation (1) on c and ,V
only. Without a loss of generality, A can be set to 1. Hence, Theorem 1 evidently
follows from the following statements:

Theorem 2: Given a value/3 > O, the following bound holds true:

P{1 < A(Kw) < 1 + h} > exp{ 2A(1 +/3)/V/}h (2)

where h > 0 is sufficiently small and . is sufficiently large.
Theorem 3: Given an > O, a value 3/> 0 can be chosen such that the following

bound holds true:

P{1 < A(Kw)< 1 + h, r(Kw) > e} < exp{- 2,(1 + (3)

for sufficiently small h > 0 and sufficiently large .
To derive Equation (1) from inequalities (2) and (3), it is sufficient to choose

with 0 </3 < 7 and consider the ratio of inequalities (3) and (2).

3. Proof of Theorem 2

Consider a regular N-gon K determined by lines (p0,) with 1 <i< N, satisfying
the following conditions:

(i) K is situated strictly inside the circle C(O,(1+/3)/V where C(O,R)
hereinafter denotes the circle of the radius R, with the center at the origin;
and

(ii) A(K) 1.
[The latter is possible for sufficiently large N.]

One can choose a # > 0 such that the property (i) still holds true for a polygon K
determined by lines (Pi,i), 1 < < N, and, moreover, K is an N-gon, as long as

Ipi-pl. _<#, _<#- -<_i<N._ Denote K, asu. u"Kx’y owhere x=

(Pl,"" PN-1;991"",99N) and y PN, and let x- (p0,... p ,I,’",N)" From a

geometric argument, the area A(z, y) of the polygon Kz, u is a continuous function of
pO )<1 and(x,y) as long as # is small enough. One can observe that A(x, -#

A(xU, pO+ #)> 1. Due to the continuity of the function A(x,y) we have A(x,p-
#) < 1 and A(x, po + #) > 1 + r for x G, a neighborhood of x, and r being a posi-
tive constant. We have:

0 < OA(x,y)/Oy < c0: 2(1+ (4)

as x E G, Y- YI < #, since this derivative is just the length of a side of Kx, u" By
a continuity argument, values y’= y’(x) and y"= y"(x) can be chosen such that

A(x,y’) 1 and A(x,y")= 1 +h, provided that x E G and h < r. The Lagrange
Theorem yields the bound y"-y’> h/co, due to inequality (4).

Consider the following event for the point process {(Pn,n)}:
(i) for N points (Pl,Pl),"’,(PN,N) the relations X G, y’(X)< Y < y"(X)

hold, where random variables X and Y are defined as follows:
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X (Pl,’", PN- 1;I,’",N), Y PN, and
(ii) Pn > (1 +/3)/V for all the rest n.

Evidently, conditions (i) and (ii)imply the bound 1 < A(go < 1 +h. The
2A(1 +probability of the defined event exceeds the value (/r)NIGIh e /co

2A(1 + n)lv/7hwhich, in its turn, exceeds the value e for sufficiently large A, where

dpl...dpN ld991...dTN.

4. Some Constructions with Convex Polygons

Instead of the event {1 < A(Koa < 1 + h}, we consider first the event {1 < A(Kw) <
2} in our upper bounds. Thus it is convenient to consider a class % of (nonrandom)
convex polygons K such that:

(i) 0 K;
(ii) 1 < A(K) < 2;
(iii) r(g) > e, where e is a fixed positive number.
Let h(K) be the width of a convex polygon K. [Due to a common definition, the

width means the minimal distance between two parallel lines surrounding K.] Also
let H(K) be the minimal value H for which the K can be contained in an h(g) by H
rectangle. Evidently, h(K)< H(K). Also denote the perimeter of a polygon K by
S(K), and introduce classes %m- % N {g: m2 _< H(g)/h(g)< (m + 1)2}.

Then

where

q-
m:>l

q P{K %}, qm P{K %m}" (6)

Lemma 1: Every polygon K G %m is situated inside the disk C(O,8m). Moreover,
2m < S(K) < 16m.

Proof: Let K be a polygon, K E %m" Denote, for simplicity, A(K)- A, H(K)-
H, h(g) h, S(K) S. Evidently, 1 < A < Hh. Hence, 1 < (H/m2)H H2/m2;
H>m;thusS>2m.

By our assumption, K can be inscribed in an h H rectangle and it includes points
incident to each side of the rectangle; points w1 and w2 belong to h-sides, whereas w3
and w4 belong to H-sides; moreover, the segment [w3, w4] can be assumed being
parallel to h-sides. The triangles w w3 w4, and w2 w3 w4 are contained by K.
They have the common base [w3, w4] and altitudes H and H2 such that Hi+ H2
H. Hence, 2 > A > Hh/2 > H2/(2(m + 1)2) and, consequently, H < 2(m +-1). Since
O E K, one can observe that K is situated inside the circle of radius 2H < 4(m+
1)_<Sin. Hence, S<4H<16m.
Lemma 2: The inequality

qm < 214(m)4exp{ 2rrt,,/1v} (7)
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holds whenever A > 1/4.
Proof: Set h h(Kw), H H(Kw). Consider points Wl, w2 to be included in

and adjacent to opposite h-sides of the h x H rectangle including Kw.
Almost surely, only two events can occur:

(i) [Wl, W2] is a side of Kay; and
(if) it is a diagonal of

In case (i), the following event certainly occurs. Three random lines (Pk,k),
k 1,2,3 exist such that the first line is crossed by the other two inside the circle

C(O, 8m); moreover, the segment between the two crossings is longer than rn and it is
not crossed by an extra random line. The probability of the event (i) is less than the
value

(1/2)(21 x 8rn)ae- 2ma/r 211(mA)ae- 2rn)/r. (8)

In case (if) four random lines must exist such that no extra random line crosses the
segment between the intersections of the first and second lines and the third and
fourth lines. The conditions on the location of the four random lines and the distance
between the two intersections are the same as in case (i). As the result, we have the
bound

(3/4!)(2A x 8rn)4e- 2rn)/r 213(rnA)4e 2mi/r (9)

for the case (if). The sum of bounds (8) and (9) yields bound (7).

5. Two Geometric Lemmas

Lemma 3: Given e > O, a value 6 > 0 can be chosen such that the inequalities
A(K) > 1 and r(K) > e for any closed convex figure U imply the bound

s(K) > + e). (10)

Proof: Let A,S,R, and r denote the area, perimeter, and outer and inner radii of
a convex figure K, respectively. Recall the well-known inequality of Bonnesen [1]"

S2 -4rA _> r2(R r)2. (11)

Inequality (11) implies that if inequality (10)is not satisfied, then R---r < x//r
where 5’-25+52 Assume that 5’< 1/16. By the definition of outer and inner

radii, Cr C K C C/, where Cr, C/ are disks of the radii r, R respectively. A disk
Co of radius p- 2r-R can be formed such that Cp C Cr, Cp is concentric to CR.
[Since R > 1V/-, we have 2r- R R- 2(R- r) > (1 rx/)/V/- > 0.]
Furthermore:

Rip < R/(R-4v/-/r < 1/(1- 4V/) 1 + . (12)

Therefore, r(K)<_ e. Considering the logically opposite events, one observes that

{A(K) > 1,r(K)> e}={S(K)> 2V/-(1 + 5)}, where and 5 are related according to
the Equation (12).
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Lemma 4: Given 7’> O, a number can be chosen such that the following
property holds. For an arbitrary convex polygon K, another convex polygon L exists
such that:

(i) L is at most -gon;
(ii) each vertex of L is a vertex of K;

and
(iii) S(L) > (1-7’)S(K).
Proof: Denote vertices of K by (p, ), where 1 _< _< N, 0 < i <’" < v < 2r.
Set i(k) argmax{pcos(- 2rk///)}, 0 < k <//- 1, where//>_ 3, and define L as

the convex hull of points (P(k), (k_))"
Evidently, L is at most //-gon. It can be observed that K\L is a union of convex

polygons Dj possessing the following properties:
(i) The contour of each Dj consists of side Sj of polygon L, and some sides

of the polygon K;
(ii) Dj is captured in a triangle//1 //2 //3, say, where [//1//2]- Sj and the angle

opposite to it equals 7r-

It can be easily shown that

Sjl -- (I//1//31 d- I//2//31)cos(Tr///)_ E IJ/ [cOs(Tr///)"

Summing up the above inequalities in j, we arrive at the inequality

S(L) >

Therefore, the lemma statement
inequality cos(r///) > 1 7’.

holds true given that number // satisfies the

6. A Bound for ql

Assume that K 1" By Lemmas 3 and 4,

S(L) > S(K)(1- 7’)> 2X/-(1 + 5)(1- 7’).

The number j of sides of K adjacent to vertices of L is at most 2//. Given these j
lines, the polygon L can be chosen in at most 2j + 1 ways. [Indeed, two events can
occur"

(i) none of these lines contains a side of L,
(ii) there are some.

In case (i), there are two ways of coupling the lines to obtain vertices of L. In case

(ii), it is sufficient to choose a non-empty subset of lines: as those containing the
sides of L. There are 2 + (2j- 1)< 23 + 1 ways altogether]. If L is chosen, then the

probability of no crossing of L by an extra random line equals e-,kS(L)/r. Finally,
by Lemma 1, Pi < 8 for all j random lines. As a result, a bound can be obtained as
follows"

2 (32")Jcxp{ 2(1 + 5)(1 7’)/V}.ql < "!
j=3 3"
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Choose 7’= 86/17, where 6 < 1/16. Then the bound

( + )/vfg
ql<e

takes place for sufficiently large A.

(13)

7. Proof of Theorem 3

It is sufficient to pass from integral to local bounds.
We have

qm- qmn
n>3

where qmn is the contribution of n-gons to qm" In turn,

(14)

where S is the perimeter and the domain R Rmn is defined by the condition that
the lines (Pi, 9i) form a convex n-gon K E %m" It is convenient to introduce a scale
parameter x Pl and a "shape parameter" z (P2/Pl,’", Pn/Pl; 1,’", Tn)" Denote
by S(z,x) the perimeter of the n-gon coded as (z,x) and by a(z,x) the positive square
root of its area. Equation (15) implies the formula

qmn /f(z)dz/ xn- lexp{ -.kWo(z, x)/Tr}dx,
U <x<V/

(16)

where f(z)dz is an elementary probability, (z) is the root of the equation
a(z, ) 1, and U is a 2n- 1-dimensional domain.

Evidently, the following similarity conditions hold true:

and
a(z,x)=x/{ (17)

S(z,x)=sx/ (18)

with s S(z, ).
The right-hand side of Equation (16) is related to the event {1 < A(K,,) < 2}. As

for event {1 < A(K,,)< 1 +h}, we have a similar integral with x varying in the

interval <x<v/l+h<(l+h/2) instead of <x<V/; see Equation (17).
We have

+h/2

xn 1 e Asx/(r)dx 1 e Asr/(r)(/)

( -,s(--1- h/2)/r)xn le "xsx/((r)dx/ 1 e (19)
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By Lemma 1, 2m < s < 16m; hence inequality (19) implies the bound

+ h12 x/

i n / -Asx/()dx(l o(1X le ,ksx/((r) < (8/Tr)h)m xn- le + )) (20)

Integrating both sides of Equation (20) in z, with a weight function f(z) and
summing up over n > 3 one obtains the bound

P{K e %m, 1 < A(K1) < 1 + h} < (8/r)hAmqm(1 + o(1)). (21)

From Lemma 2 and bound in Equation (13), we obtain the bound

P{Ko E %, 1 < A(K) < 1 + h}

< -(2 + 5)A/v/r
-b 214)4E m5e 2Xm/r)(1 + o(1))

m--2

for sufficiently small h and large A. Having chosen a value 7 > 0, such that the
inequality 7 < (5/2)A ((2/V/-) -1) is satisfied, one yields the statement of Theorem
3.

8. Densities for a Finite

The derived Equation (1) expresses the essence of the conjecture of D.G. Kendall.
Nevertheless, it would be also desirable to get a corresponding equation for densities:

PIr(Kw) > A(Ko)- A}--,0 as AV/----oc. (22)

Evidently, the existence of densities

lim(1/Ah)P{A < A(K)< A(1 + h)} as h0 (23)

and

lim(1/Ah)P{r(K) > s,A < A(K) < A(1 + h)} as h--0 (24)

would be sufficient for deriving Equation (22) from Theorem 1, as Equation (1)
means the existence of the double limit of the considered ratio as h--,0 and ,c.
As limits (23) and (24) are assumed to exist, one may set h-0 and then ,Xoe;
as the result, one obtains Equation (22).

To avoid trivial cumbersomeness, we will investigate the existence of the limit

lim(1/h)P{(shape of Ko E L, 1 < a(Ko < 1 + h} as h---0 (25)

for every , > 0 assuming that L m > ln > 3Lmn, where each Lmn is an

arbitrary Borel set of shapes z-(Zl,...,Zn_l;l ,n) relating to the n-gons with
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m2 <_ H(h’)/h(h’) < (rn + 1)2; a(K)- A1/2(K).
To prove the existence of the conditional probability P{r(Kw)> a(Kw)= 1), it

is sufficient to choose two versions of Lmn:
(i) {K is an n-gon: r(K) > ;m2 _< H(K)/h(K)< (m + 1)2} and
(ii) {g is an n-gon" m2 < H(K)/h(K)< (m + 1)2}.
The transition from the condition {a(gw)= 1} to the condition {a(Kw)= a} is

trivial, due to the similarity property mentioned just after the formulation of
Theorem 1. Finally, the transformation A(Koo -a2(Kw) yields the existence of
corresponding densities for A(Kw).

Therefore, it would be sufficient to establish the existence of limit (25). Consider
A as a positive constant. Analogously to Equation (15), we arrive at relation

Area(h): (1/h)P{(shape of Kw) C Lmn, 1 < a(Kw) < 1 + h)

l+h
1 n- e s(z)x/rdx"

Lmn

(26)

Similar to Equation (19), taking also into account that 2X/ < s < 16m, we obtain

l+h

1/h xn- le- )sx/rdx
1

< cm J xn- le- sx/rdx,
1

(27)

for a constant c, and, as the limit, the inequality

As/r / X
n- le- ldx. (28)e < cm

1

Integrating inequalities (27) and (28) with weight function (As(z)/r)n over the region
Lm,, we have

and
Amn(h < cmqmn (29)

where
Amn(0 < cmqmn (30)

Lmn
Hence, due to bound (7),

the series A(h)"- Em,,/x,(h)is uniformly convergent in the interval
0 < h < h0 for positive ho,
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(ii) the series A(0): E m, nAmn(O) is convergent,
(i.)
Statements (i), (ii) and (iii) imply the existence of the right-hand derivative of

function P{(shape of K,)E L, a(K,) < x} at the point x 1. The existence of the
left-hand side derivative can be proved in a quite similar manner. Furthermore, it is
easy to verify that the both are identical. As the consequence of the above, equation
(22) holds true.
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