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This paper exhibits a stochastic model which describes the evolution of a
material submitted to inspections. When an inspection takes place, a deci-
sion depending on the observed state of the material is taken. If the
material is in "not too bad" state, no service is rendered, only the date of
the next inspection is chosen. If the material is in a "bad" working state,
a service takes place. Roughly speaking, the failure rates of the material
are constant, the inspection and repair rates are general. We define the
average cost function corresponding to the utilization of this material and
we show how it can be computed. Then we determine the inspection rates
which give the optimal maintenance policy using a simulated annealing
algorithm. We observe experimentally that the best durations between in-
spections are deterministic ones.
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1. Model Introduction

In [4], P.A. Scarf discusses the opportunity of developing areas of maintenance model-
ing. Among special growth areas, he mentions the dynamic maintenance policies for
complex systems and remarks that, developing dynamic policies is significantly more

difficult than developing static policies.
Here we present such a model for systems that can be described by a finite number

of states. In [3], the authors are interested in the same kind of problem, but the evo-

lution of the systems they consider can be represented by the evolution of a real para-
meter.
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Our model can be roughly described as follows. Let us first suppose that no inspec-
tion is planned. The material we are studying degrades progressively until it reaches
a failure state, the transitions from working states to other working states or to fai-
lure states being constant. Let us now add inspections. When an inspection takes
place, if the material is observed in a state which is not too damaged, no service is
rendered and the date of the next inspection is chosen according to a distribution
which depends on the observed state. If the material is observed in a too damaged
state, a service is rendered. The repair, service and inspection rates are general (they
are not supposed to be constant).

Our aim is to compute an average cost corresponding to the utilization of the
material over an infinite period. In order to study the asymptotic system, we intro-
duce supplementary variables for obtaining a Markov process. We show that the
average cost can be expressed using the stationary distribution of this Markov pro-
cess. The computation of this stationary distribution leads to a system of differential
equations that are explicitly solved. The initial conditions of this system are solu-
tions to a linear system of equations.

Formulas show that usually cost depends on the average of repair and service
durations, but does not depend on the shape of their distribution functions. On the
other hand, cost does depend on the shape of the distribution functions of the
durations between inspections.
We give numerical examples., then we optimize the maintenance policy using a

simulated annealing algorithm. We observe experimentally that the best durations
between inspections are deterministic ones.

Let us now describe our model more explicitly.

1.1 The Initial Model

Let us consider a material (called "system" for the time being) for which the
evolution of time is described by a stochastic process with values in a finite space E.
The elements of E are denoted by Greek letters: r, (, , The subsets of working
and failure states are denoted by and P, respectively.

As time goes on, the material degrades progressively until it reaches a failure state

(this idea of degradation is not essential for what follows, but it allows one to easily
represent the evolution).

While the material is working, its evolution is Markovian. When the material
breaks down, it is repaired. The rate of repair depends on the time, on the failure
state r E 2 of the material, and on the state ( E tt in which ;he material will be at
the end of the repair. It is denoted by #(r,,x).

Let A be the matrix for which the nondiagonal elements are the transition rates
between the working states. Let A12 be the matrix of the transition rates between
the working states and failure states and A be the matrix for which the nondiagonal
elements are the transition rates from the working states: A (A1A12). The
diagonal entries of A and A are given by

A (r/, r/) A(r/, r/) E A(?, ).
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The sum of terms of each line of A is therefore zero.

Remark 1: Let us denote by A’ the matrix A to which we add a number card ()
lines full of zeros in order to have a square matrix. The matrix A’ is the generator
matrix of the Markov jump process described above for which, moreover, the failure
states are absorbent.

1.2 The Preventive Maintenance Model

The system is also submitted to inspections to carry out servicing called preventive
maintenance operations for the time being. Let (tt:t ati) be a partition of the set of
working states in two finite subsets. When an inspection takes place, if the material
is in the state r] belonging to att,:t no service is rendered and the length of time until
the next inspection is chosen according to a distribution dependent on r]. If during an

inspection, the material is in a state belonging to art,S, a service takes place and at
the end of this service, the material is in a state belonging to alga.
A label (r]) is associated with each r] E att,:t, and a rate A is associated with

each label i. This rate A is the hazard rate corresponding to the duration of the
period of time which elapses before a next inspection will take place. The p.d.f, of
the duration of this period is therefore:

The introduction of the function 1 is logically unnecessary, especially if we assume it
to be bijective (whereas no hypothesis is made on the function i-Ai) but it allows a

greater ease in reading the results. It allows to discriminate between what corre-

sponds to a current state of the system and what corresponds to an inspection label.
If at the initial time, the material is in state r] E t,t the next service will take

place after a length of time whose rate is Al(v ). Similarly, when the material comes

back to the state following a service or repair, the next service will take place after
a length of time whose rate i,s A(),.
A service, which takes place when the material is in a state tig, puts the

material in the state (r). The transition rate from state (r]) to state tt is

z).
We denote by $- {(): $} the set of states corresponding to service and

E1 EUt.
The objective of this article is to determine the average cost over an infinite period

given:
the cost of an inspection (cost of displacement),
the cost of parts,
the hourly cost of labor,
the cost of the immobilization of material, distinguishing between the pre-
dicted immobilization (due to service) and unpredicted immobilization due
to failure.

2. Stationary Distribution

Let us denote (I) the state of the system at time ((I) G El) I the value of the label
at time t. The label I is constant between two inspections. When an inspection
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does not lead to service, it takes the value i-/(/) of the label associated with the
state r in which the material finds itself when inspected. Lastly, it takes the value 0
during a service or repair. We assume that 0 {i- l()" E tt,]}. The set of values
taken by the labels is annoted ( {i t(r): r E .Ag} t2 {0}).

The process (opt, It) is not a Markov process. In order that it becomes a Markov
process, we add a supplementary variable X R+. If OPt G’At, X is the time
passed since the last inspection. If OPt G 2 (respectively, OPt g), Xt is the time
passed since the start of repair (respectively, service) in progress.
We assume that the functions A (i E ) and # are continuous and bounded.
The process (OPt, It, Xt) is a Markov process. By taking the same type of proof as

in [2], we can show that its infinitesimal generator L is given, for any function f
defined on E1 R+, taking values in , and having a continuous derivative with
respect to the third variable, by:

(Lf)((, j, x) 1 E A((, )[f(, j, x) f(, j, x)]t}

+1 E A((, )[f(, 0, 0) f((, j, x)]{

+1{CeCum} E #(, , x)[f(, l(), 0) f(, j, x)]

+ 1{ .Ag]}Aj(x)[f(,e(),O)- f(,j,x)]

Of+ 1{ .Ag}Aj(x)[f(((), 0, 0) f(, j, x)] + --x(( j, x).

We will show in the appendix that, under suitable conditions of irreducibility,
there exists a regeneration state r E z2 U g such that for any (r,i,x) E1 x L x +,
P_(’,,, z)(t’opt_" --fir)- 1. Consequently, for any non-negative bounded measurable
tunction f defined on E1 x +, the function tz(f(opt, Xt, It)) verifies a renewal
equation. Theorem 2 of [5] therefore allows us to show that IV(f(opt, Xt, It)
converges when t tends to infinity to f fdII, where II is the stationary distribution of
the process (OPt, It, Xt)" We will say that the process is ergodic.
We suppose hereafter that the process is ergodic.
We are going to look for a stationary measure which admits a density having a

continuous derivative. It means that we are looking for a measure II of the form

Hf --, E1Z 2.,E o f(’ i, x)r(, i, x)dx,

where functions xr(, i, x) have continuous derivatives. We will, by writing the
stationarity condition IIL 0, deduce the expression for r(?, i,x).

For r/ t, let us define

q(r/) A(r/, r/)[ E A(r/, ),
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and for

We will say that the function f defined on E x x N
if it can be written"

+ belongs to the class T(r/, i)

f(,j,x) 1{ v}l{j i}g(x),

where g is a function defined on N+, with compact support and having a continuous
derivative.
Lemma 2: Let r tl, and let us suppose that the function xTr(ri, i,x) has

a continuous derivative. Equation IILf 0 is satisfied for any function f T(rl, i) if
and only if:

dr(rl, i,x) (q(r/) + Ai(x))r(rl, i,x) + E A(’rl)Tr(’i’x)’

Aj(x)r(rl, j, x)dx

Proofi Let f be in T(r/, i). We have:

Lf(,j,x)- -q(r/)l{, ,}l{j i}g(x)+l{ejtl, n}A(, r/) 1 {j=i)g(x)

+ 1{ e g}l(n e Ml,}/z(’ r/’ x)l{i- (n)}g(O) 1( n}l{j i}Ai(x)g(x)

1 Aj(x)g(0) + 1 1 g’+1((_,)1(,e} ((,)-i} ((=,} (j=i} (x).

Equation HLf- 0 is written as:

+ +
q(,) / (,, i, x)g(x)dx + A(<, ,) / (, i, x)g(x)dx0

J
o (6 o

+

+l{e]} {g(,)=i}
e ug o

j r(7, i, x)Ai(x)g(x)dx
0
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/1 1 }g(0) I r(, j, x)Aj(x)dx + I g’(x)r(], i, x)dx.{, tt,} {(,)
J 0 0

Integrating by parts, we obtain"

0 0

We transfer this last version into the former. As the equation obtained is true for
any function g with compact support and having a continuous derivative, it remains
only to write that the terms which are factors of g(x) (under integral) and those
which are factors of g(0) are equal to zero to obtain the claimed result.

By applying the same methodology with the functions f(,j,x)
1{ ,}l{j i}g(x), respectively for r E g and r E P, we obtain the following two

lemmas:
Lemma 3: Let r , and let us suppose that the function x---zr(rl, i,x) has a

continuous derivative. Equation IILf 0 is satisfied for any function f
and only if

r(, i, O) 1(7 0) E i Aj(x)Tr((,j,x)dx.
J o

Therefore, in this case, for 5 O, 7r(r, i, x) 0 and

f- (,, u)duE E i Aj(x)r(, j, x)dx.
c e l,g J o

Lemma 4: Let rl 2, and let us suppose that the function x-r(rl, i,x) has a
continuous derivative. Equation IILf 0 is satisfied for any function f T(r,i) if
and only if:

(, i, O) 1(i 0} E A(,

Therefore, in this case, for 5 O, 7r(, i, x) 0 and

(,,f )().

Proposition 5: Let us suppose that the functions x--zr(r,(),x) have continuous
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derivatives. Equation IILf 0 is satisfied for any r E 2, any and any func-
tion f T(r/, i) if and only if for any r J and dtt]:

f (e)()’(, (), 0)XAl(,
4-00 4-00

CeUSo jeo

Proof: Lemma 2 shows that the functions x---r(rl, i,x)(r dll,i ) are solutions
of the following differential system

Let

d-r(r/, i, x) (q(/) + Ai(x))Tr(r/, i, x) + E A(, r/)Tr(, i, x).

7r l(r], i, x) e f xA (u0 )%(,i,x).
We obtain"

d-Trl(r/,i,x) q(rI)Trl (rl, i, x -4- E A((, 7)Trl ((, i, x)

E A((,/])71"1(, i, X),

that is to say"

dl(’,i,x)- ATl rl(’,i,x),

the matrix A1T being the transpose of matrix A1. We deduce that"

71"

and therefore

r(7, i, x) e f 0xAi(u)duE ’(’ i, 0)eXAl(,/).

The fact that 7r(,i, 0)- 0 if dt or if i# () and the fact that is injective
proves the statement.
We must now determine the initial conditions.
Let us denote

for US,,

u(, ) f (, ,) f (’)d,
0
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v(, ) i
0

f A(5)(u)duexAl(, rl)dx,

w(. ,) f
0

f A(5)(u)duexAl(,

for E 13, E 3,

Q(, r#) E WA12(, )u(, q) + E v(, )u(o(), r#) + v(, q).

Proposition 6: Let us suppose that the functions x-(q,i,x) have continuous
derivatives and that Equation IILf-O is satisfied for any q EZl, G and
f T(, i). Th. fo a.u J:

(, (), O) , (, (), O)Q(, ).

Proof: Proposition 5 gives

A()(x)-(, (), x)dx,

and

i Ae(e)().(,.e().)d
0

J At()(x)e
0

fgAg()()du xA1 (. v)(. (). O)d.

(, (), 0)v(, ).

It gives also, for

f gAlT(,)(u)duw(’, (’), o)eXAl(’, )dx
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From Lemma 4, we deduce, for ( E ,
f (, u)duE A(, )r()

Consequently:

--e f (, u)duE A(, )E r(" (’), 0)W(’, )

e f- (’ u)duE r(’, (’), 0)WA12(’ ).

, (, (), o) Jo" (’ ’) f- (’ )dUwA2(, )dx

#(, ,(), O) E WA2(’ )U(, ).

Similarly, we obtain from Lemma 3 and Proposition 5, for ( E g,

v() =
(’, (,), 0)

f A’(’)(u)dUexAl(’, )dx

Therefore,

--e

(,,(,),0) v(,, ) f ,(,,, x)

() =
f x- )dUdx



330 CHRISTIANE COCOZZA-THIVENT

So the statement is proved. V!
Let us call 1 the graph on Al induced by A1, i.e., the graph 1 possesses an arrow

from E dtt to r/E Al iff AI(, r/) > 0.
Let us define the following graph t on Al3 by putting an arrow from G At] to

r/G Ah:] iff one of the following three conditions is satisfied:
(1) there exists a path from to in the graph 1;
(2) there exists ’ At and P such that

-there exists a path from to ’ in the graph 1,
A(’, ) A12(’, ) > 0,

-the Lebesgue measure of (x" #(, r/,x) > 0} is positive;
(3) there exists E dtt such that

-there exists a path from to in the graph 1,
-the Lebesgue measure of {x" #((), rl, x) > 0} is positive.

Lemma 7: The matrix Q is Markovian. Moreover, if the graph is irreducible,
then the matrix Q is irreducible.

Proof: The entries of the matrixes A12, U,V,W are non-negative, so Q(,r/)>_ 0
for any and /in
On the other hand, for

f _f-op (, u)dUdx 1.

Therefore, for .AbI],

Moreover,

Q(, r/) WA12(c, (:) + V(, ).

WA2(,) W(, rl)A(rl, )

Integrating by parts the integral defining V, we obtain"

so
V(, q) 1 {o } --F (WA1)(, q),

WA12( () - (1{ } V(, ()) 1 V(, ().
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We conclude that

For proving the irreducibility of Q from the irreducibility of q, we notice that the
existence of an arrow from to r] in the graph :] implies Q(, r]) > 0. Indeed if the
arrow from to r/in the graph :] is du%t)

1condition (1)then, for any x,e (,r]) > 0 and therefore V(,I)) O,
condition (2) then there exists ’E dtt such that, for any x, e1(,’) > 0
and therefore W((,’)> 0, there exists E P such that A12(’, > 0 and

> 0. So

WAi2(, I)U(I, r]) W(, )A12(i, I)U(I,

_> W(, ’)A12(’, )U(, r/) > O.

condition (3) then there exists GYtt such that V(,)>0 and
U((), r]) > 0, therefore

V(, I)U((I), r])

_
V(, )U((’), r]) > 0.

Proposition 8: Let us suppose that the graph is irreducible. Then the system of
equations

z() z()Q(, ), e

has a solution zo such that Zo(rl) > 0 for all r e J, and -, E Mt). z(rl) > O. More-
over, any solution z of this systersatisfies z(rl)-- CZo(?) where c zsa constant.

roof: The matrix Q is aperiodic since, for any G Ytt:] and any x E +,
eXl(, ) > 0 and therefore Q(, ) >_ Y(, ) > 0. Then the proposition is an applica-
tion of the Perron-Frobenius Theorem.

The following proposition resumes the formulas obtained by writing them in
matrix form as far as possible.

Proposition 9: Let us suppose that the graph is irreducible and that the station-

ary measure II has a density r such that the functions x--r(l, i,x) have continuus de-
rivatives. Let zo be a nontrivial solution of the system

z(,) e

Then, for any and

f A()(u)du xA
(, v),
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and therefore for any l E :

For r
()-C(ZoW)().

A(, o)r(),

consequently, if rn(rl) is the mean sojourn time in the state

For q :

and therefore:

r(q) m(rl) E A(, q)r() cm(rl)(zoWA12)(rl).

(,) (zoV)(),

()=

() c() (zoV)(),

m(rl) being the mean sojourn time in the state r G .
Proof: This proposition is directly obtained from Lemma 3 and 4 and

Propositions 5, 6 and 8.
Let us note that, for r/ t2 ;, (r/, x)- (r/,x)is the hazard rate of

the duration in the state r/. Therefore, tl#

is the mean sojourn time in the state r/.
Remark 10: Proposition 9 shows that"

()v , A(,)()

71"(7"])v C(ZoV)() .().
()

Theorem 11: The measure II- (r(rl, i,x)) described in Proposition 9 is a station-
ary measure.

Proof: It suffices to prove that measure II given in Proposition 9 verifies the
condition IILf-O for any qEE1, i and any function fGT(O,i). Lemmas 2, 3
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and 4 show that it suffices to verify that
for

ddx-(, (), ) (q() + A()(x))(, (), x) + A(, )(, (), ),

,(,,,) (, )d. + Ae()(x)(,. (). )d

for ]g, iGZ,

d-d(, i, x) (r], x)r(r/, i, x),

(r],i,O)- 1(i-o} E E / A()(x)(,(),x)dx,
()

for,i,

(,, , ) (,, )(,, , ),
r(o, i, O) 1{i o} E A(,

d xA. eXA1A1, and zoQ zoThis verification is easily done using 3e

3. Calculating Average Cost

We suppose that the following are known:

C" the cost of an inspection (displacement cost),
Cp(): the cost of replacement pieces for maintenance corresponding to
the state r] g,
CH(r]): the hourly labor cost for maintenance corresponding to the state

CIp: the hourly cost of the predicted immobilization of material (that
which is due to the maintenance),
Cp(r]): the cost of replacement pieces for repair corresponding to the
failure state 2, including displacement costs,
CH(r/): the hourly cost of labor for the repair corresponding to the failure
state r E P,
CINP: the hourly cost of an unpredicted immobilization of the material
(due to the repair).

Now let us note N(t) the number of inspections carried out in the time interval
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[O,t], Nu,(t) the number of jumps of the process ((I)s) from r to during the time
interval [0, t] and C(t) the cost of using the material during this period.

It is clear that

C(t) C]N](t) + E Cp([)E N.,(t) + E CHs(q) / 1{u .}du

The asymptotic average cost required is:

C -t__. +oolim}E(C(t)).
General results for semi-regenerative processes ([11) prove that, if is a regenera-

tion point of the process ((I)t) then the average number of visits to before t, denoted

nv((t) satisfies

lim lim
t---*oo t t m()’

where m() is the mean sojourn time in the state . This result can be applied in our
model for q U .

Below, we are going to rediscover this result using martingale techniques. To cal-
culate the average number of jumps from q to , we apply the following lemma:
Lemma 12:

+
}(Nn,(t)) t:. / (Lf)(,i,x)r(,i,x)dx,

0
where

f({, i, x) 1( }.

Proof: The classic results on Markov process show that for dny E E1, the process

M(, defined by

M(t) l{v } l{v } / (Lf)(,,,I,,X,)du
0

is a martingale. It is therefore the same for

/ l(u_ ,}dM((u)- N,,((t)-/ l(u=,}(Lf()(q, Iu, Xu)du.
0 0

By taking the expectation, we obtain
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0

The distribution of ((u, Iu, Xu) converging towards H, the result comes from here.
We can deduce the following results without difficulty"

for tie dt, E E, r,

E(N,(t))/-A(, )(),
for r] E 2Ug, EE, r - ,

Z(Nv,(t)) ---,1

(, Y, (,) )C(ZoV)(v).
Remark 13: The first result and Remark 10 show that, for

1 r()E E(Nv,(t))tL---E A(,)() m()"

The third result above and Remark 10 show that, for g,
7()E( C(ZoV)(,)-T N, t- m({)"

(,)=
These results have been announced above.

However, these results do not allow us to calculate the average number of inspec-
tions. To do this, we must add into the process a supplementary variable which
counts the number of inspections. The generator of the process completed in this way
is written"

(Lf)(, j, x, n) 1{ .Ate} E A((, [)[f([, j, x, n) f((, j, x, n)]

+ 1{ e .;tt} E A((, [)[/(, O, O, n) f((, j, x, n)]

/1

/1

+1

{ E guS} E #(’ ’ x)[f(, g(), 0, n) f(, j, x, n)]

{ .At}Aj(x)[f((, .((), O, n -+- 1) f((, j, x, n)]

(,e Jtl}AJ(x)[f(p()’O’O’n + 1)- f(,j,x,n)]
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+x(,J,x,n).
By using the martingale method described earlier (proof of Lemma 12), we obtain

A()(x)r(, (),x)dx E C(ZoV)()"

The above results and Remark 10 give:
Theorem 14: The average operating cost over the infinite horizon is:

1___c
t+

-cC]E (zoV)(rl)+g(CPg(rl)e
rn( ) +

)+ m(r]) + CH(r]) + CINP

lmark 15: We note that in usual cases, this asymptotic cost depends on the
average duration of repairs only and not on the forms of the distributions.
Pmark 16: By using the ergodic theorem for regenerative processes, we can show

that C(t)/t converges almost surely towards C.

4. Numerical Results

4.1 Calculating Cost

We assume that the lengths of time between inspections have a gamma distribution.
The parameters of the distribution corresponding to the label are denoted by a and
/i; its p.d.f, is therefore

-1 -x/1 x efi(x) F(ci)7

Let F denote the distribution function of f and let F 1- Fi.
The only difficulty is to calculate W:

W(i, j) f e

0

f Ai(u)duexAl(i, j)dx

xA
’i(x)e (i j)dx.

0
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We suppose that the A matrix is diagonizable therefore, we note P a matrix such
that matrix P-1AlP is diagonal. Let (d(r)) 1 < r < m be the eigenvalues of A1. We
obtain"

and

m

(exA1)(i,j)- P(i,r)exd(r)p-l(r,J),
r=l

m

W(i, j) P(i, r)P (r, j)F( d(r) ),
r--1

where F is the Laplace transform of Fi. We have

1 1 1> 0,
(1 +

and the expression for W(i, j) can be deduced immediately.

4.2 Optimization

We first choose the initial model and the set of working states which do not lead
to maintenance, i.e., those which are labeled. Let m1 be its cardinal. We also
suppose that the costs of inspection, maintenance and so on, defined in the beginning
of paragraph 3, are fixed. We will determine the parameters (ci, i)1 _<i_< m which
minimize the cost C.

For this, we use a simulated annealing algorithm based on a Metropolis algorithm.
We start by resetting the parameters of the gamma distributions using their expecta-
tions and their standard deviations, i.e., we define:

Let us suppose that these values (mi,Ti)1 <i< ml
are those obtained from the

iteration n- 1 and that the associated cost is . q’he iteration n of the algorithm is
carried out in the following way (according to three real parameters a, b, q, which are

strictly positive, initially fixed and therefore do not depend on n):
choose the label (for which the distribution is to be changed eventually)
with the uniform distribution on {1,..., m1},
choose the value m’(i) following the normal distribution with average re(i)
and variance a2,
choose r following the lognormal distribution described as: the distribution
of log cr is normal with average log r and variance b2,
calculate the new cost C by replacing (mi,ri) with (rn,r) without modify-
ing the others (mj, rj). (The calculation of this new cost means we must re-

turn to the initial set of parameters),
keep the new values (rn}, r})with probability

max(e On(C’- C), 1 ),

where On qlogn.
After that, we can find the best set tt by taking successively all different sets and

performing the above optimization on each set.
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4.3 Examples

4.3.1 Example 1

The initial model is a k out of n system. It corresponds to n identical components
with a constant failure rate, in active redundancy (warm standby). The system
works if and only if at least k components are working. After repairs or services (i.e.,
corrective or preventive maintenance), the system comes back to the nominal state
corresponding to n working components.
We suppose that:

k=2,. A=I,
the average length of a repair equals 1/50,
the average length of a maintenance period equals (i + 1)/1000, if there are

exactly components broken when the maintenance is carried out,
the cost of an inspection equals 1,
the cost of replacement pieces for the maintenance corresponding to a state
where there are exactly broken components is equal to i,
the hourly cost for labor for maintenance is equal to 1,
the hourly cost of a predicted immobilization equals 0.5,
the cost of displacement for repair, added to the cost of replacement pieces
equals 20,
the hourly labor cost for a repair equals 25,
the hourly cost of an unpredicted immobilization costs 75.

1 broken components. TheThe set tt,:t is formed of states having at most m1
results obtained according to n and m1 are in Table 1.

m1

3
4
5
6
7
8
9

1 2 3 4 5 6 7

16.151
10.139 12.260
8.458 8.871 10.693
7.926 7.995 8.381 9.889
7.809 7.813 7.874 8.176 9.435
7.864 7.863 7.872 7.901 8.126 9.170
7.997 7.996 7.992 7.975 7.984 8.149 9.000

Table 1

We see that the minimum cost is obtained with 7 components, and only the
nominal working state giving inspection is being unassociated with maintenance.
These results are obviously highly dependent on the initial costs imposed. In the
chosen example, the costs associated with unpredicted immobilization and repairs
(following a system failure) are high compared to the other costs. This explains the
fact that risks should not be taken and preventive maintenance should be carried out
as soon as an inspection detects a broken component, at the very least when there are
not too many broken components (7 or less). However, we do not have an intuitive
explanation justifying the fact that the minimum cost is obtained with 7 components.

The most remarkable phenomenon that we have observed is that, in each case, the
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minimum is obtained for values of r almost zero (about 10 .7 or smaller, the
influence of the cost when these values are even smaller being null). This shows that
the optimal strategy consists of associating a non-random inspection length to each
state of atlo:t. We think that it is a very important result in practice and easy to use,
but we do not know how to justify this phenomenon mathematically.

The different optimal lengths found in the different cases are shown in Table 2.
It should be noted that the cost function seems "quite flat" next to its minimum.

Different values can give the same minimum cost. For example in the case n- 7,
rn1 5, the following lengths between inspection give a cost of 9.435:

0.787 0.667 0.529 0.334 0.186.

As the n and m1 numbers are fixed, the optimization algorithm requires the
adjustment of some of the constants. In the example presented, we have taken
a 0.1 and b 1. The setting of the constant q is more difficult. If it is too low, the
algorithm takes too long to converge; if it is too high, the algorithm risks being
trapped in a local minimum of cost function. The influence of this q constant is
shown on the graphs on the following pages. Here the 7 component case is treated,
the cardinal of .A:t being equal to 4. Respectively, the q constant is taken to be equal
to 10 and 10000, with the initial values of the parameters being identical. The initial
values of the parameters correspond to lengths between inspections following exponen-
tial distributions with intuitively reasonable averages.

In practice, we started by putting a relatively low value of q (between 10 and 100)
through the algorithm using different initial points. This allowed us to quickly
determine good approximations of m and r giving minimum cost. We then refined
the method by using these approximations as initial values and by taking higher
values for the q constant (between 10,000 and 100,000).

In fact, it turns out that with a reasonable starting point such as exponential distri-

bution, the average of which is half the MTTF of the initial process (the initial state

being that in consideration), and a q value of 10,000, we obtain, in general, a precise
value for the minimum. More precisely, the values obtained for m and r vary little
between different applications of the algorithm. On the other hand, the values for c

and i are considerably different. This can be explained in the following way: the
variances can be considered to be null and the m values are significant, whereas, in
practice, as the values of i (as those of ri) are very low, their exact value is

insignificant, and their fluctuations bring on those of c mi//i.
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m1

0.174
0.264

0.375

0.493

0.612

0.745

0.878

0.341
0.165
0.403
0.255

0.498
0.374

0.617
0.502

0.741
O.648

O.878
0.791

0.492
0.340
0.168
0.540
0.414
0.258

0.634
0.507
0.384

0.727
0.541
0.523

0.873
0.788
0.688

0.636
0.500
0.351
0.172
0.659
0.555
0.417
0.264

0.754
0.495
0.559
0.373

0.873
0.781
0.668
0.548

0.772
0.638
0.507
0.356
0.178
0.790
0.724
0.569
0.443
0.262

0.867
0.784
0.673
0.543
0.419

0.899
0.811
0.682
0.522
0.347
0.187
0.908
0.812
0.707
0.576
0.460
0.286

1.036
0.912
0.811
0.688
0.547
0.381
0.195

Table 2
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4.3.2 Example 2

In the first example, the initial process was a birth and death process. This
hypothesis is not at all necessary to make the proposed method work, as the second
example will show. After corrective or preventive maintenance, the system comes
back to the nominal state corresponding to state 1.
We take into consideration, an initial system with six states: four working states

(states 1 to 4) and two failure states (states 5 and 6). The transition from the
working states (meaning the strictly positive terms of the A matrix) are:

A(1,2)=2, A(1,4)=l,

A(2, 3) 2, A(3, 5) 1.5,

A(4, 5) 0.5, A(4, 6) 1.

The average repair lengths are 1/25 for state 5 and 1/50 for state 6.
The average maintenance lengths associated with states 2, 3 and 4 are 1/1000,

2/1000, and 2/1000, respectively. The costs of replacement pieces are 1, 3, and 2,
respectively, and the hourly cost of labor for all is 1.

The cost of an inspection is 1, that of a predicted immobilization (due to a

maintenance) is 0.5 and that of an unpredicted immobilization (due to a repair) is 75.
The cost of replacement pieces for repairs plus displacement costs for states 5 and

6 are 20 and 30, respectively. The hourly cost of labor for these repairs is 75.
The results obtained are summarized in the following table (in each case, the m

values have been presented vertically, index being in ascending order):

t {1} {1,2} {1,2,3} {1,4} {1,2,4}
mmmum cost 11.79 12.238 17.038 17.363 16.647

0.275m
values

0.294
0.251

0.308
5.432
4.176

0.886
13.925

0.631
11.397
0.305

Once again, the minimum is obtained with a single state of inspection (att,t equals
{1}), the reasons seemingly being the same as in the first example (high values relat-
ing to the various costs associated with repair).
We also find the same phenomenon in regard to the variances as in Example 1.

Again, we can consider that they are null.
More surprising and new, some high values exist between inspections associated

with states 2 and 4. However, we note that these values do not have a great
influence on the cost. For example, in the case where l:- {1,2,3}, the cost of
17.038 can also be obtained with:

m1 0.308, m2 11.398, m3 8.2443,

or with

m 0.308, m2 13.214, rn3 10.946.
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In the case dtt] {1,4}, the cost of 17.363 was also found using the algorithm with

m1 --0.869, m4 20.685.

For dtl,]- {1, 2, 4}, the cost of 16.647 was also obtained with

mI 0.631, m2 10.407, m4 0.297.

5. Conclusion

We have presented a predictive preventive maintenance model (still called conditional
preventive maintenance), which is applied to an initial system comprising either one

component with several working states or several components each having one or
more working states.

The failure rates of components are assumed to be constant in time, but in the
case of several components, they may depend on the state of other components (inter-
acting components). The lengths spent between inspections, on maintenance and on

repair all have continuous distributions (i.e, they have probability density functions
with respect to the Lebesgue measure).

We.have given equations that allow one to calculate the stationary distribution of
the system and the average cost of maintenance over an infinite horizon. This cost
takes into account not only the different intervention costs, but also the costs due to
immobilization of the material, by distinguishing between predicted immobilization
(due to preventive maintenance) and unpredictable immobilization (due to a failure).
In usual cases this cost depends only on the mean of the length of time spent during
maintenance and during repairs and not on other characteristics of their distribution
functions.

The precise results concerning the stationary distribution of the process constructed
through the addition of supplementary variables and methods employed for
calculating costs allow one to take into account other costs.

In the case where lengths of time spent between inspections follow the gamma
distribution we have shown how to make numerical calculations and we have used
two very different examples.

In each example, we have noted that the optimum policy for time between inspec-
tions was deterministic: the variances of the optimum distributions are so small that
they may be considered to equal zero. A mathematical demonstration of this result
remains a challenge.

Appendix

Let us suppose that the subset dtt is not absorbing, i.e., for any (r/,i,x)E E1 x x

+, (v,i,x)(3t’gPt t2 ) 1.

Let Sn (n >_ 1) be the successive times when the process ((I)t) enters a state
belonging to tA $"

S inf(t: t tA
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for n > 2, Sn inf{t > Sn 1, (I)t :/: (I)s (I)t @ p tO g}.
n_l

Lemma 20:
b>O,

Let T1 be the first jump time of the process ((I)t):T1 inf{t:(I) O0}" Since

l(,(I)J1 E 1)-1 for any r/E 2 tOg, the (Sn)are the successive enter times into

The states belonging to z2 tO g are regenerative points for the process ((I)t) therefore
the chain (Os’) is a Markov chain taking its values in the finite space P tO g. Let
be a recurrentnpoint for the Markov chain ((I)S ). We obtain immediately the follow-
ing proposition:

n

Proposition 17: Let us suppose that the subset ag is not absorbing and that the
Markov chain (Os has only one recurrent class. Then there exists a regeneration
state rr z) tO g such that for any (r, i, x) E x x +, F(9 i, x)(t: (I)t r/r) 1.
A sufficient condition for having only one recurrent class is given in the next propo-

sition.
Proposition 18: Let us suppose that the subset alg is not absorbing, that the graph
is irreducible and that for any , any x +, Ai(x)> 0. Then the Markov

chain (Os has only one recurrent class.
rt

Hypothesis on A can be weakened, but this leads to more technical proofs.
Proposition 18 is a consequence of the following lemmas. These lemmas are quite

intuitive and their proofs are not difficult, but need some tedious notations, so we

omit them. We also omit for each of them to recall some of the hypothesis of
Proposition 18.
Lemma 19: If there exists an arrow from to in Graph , then for any a > O,

b>O,
< + > o.

If there exists a path from to in Graph , then for any a > O,

et- n, xt < + b) > o.

Lemma21: Let ? E z2 tO g such that m(rl) > O. Then

P(o,0,0)(t, e algS: (I) ,I (),X -O)- 1.

Lemma 22: Let r be a recurrent state for the Markov chain (Os )"
exists alg such that

Then there

xifaP(,i, oc)(t:gPt rl, I O,X O) > O.
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