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Adverse weather has significant impacts on road conditions and traffic dynamics. It is observed that adverse weather as a set of
exogenous factors lowers the free flow speed, shifts critical density, decreases flow capacity, and makes the freeway more prone to
congestion. This paper proposes a weather factor model to be plugged into a macroscopic traffic prediction model, so that under
bad weather traffic variables can be more accurately and reasonably estimated and predicted for traffic control use. To be specific,
weather-specific fundamental diagrams are built by introducing weather factors to free flow speed, capacity, and critical density. The
weather factors are modelled by selected weather measurements. Weather factor parameters are trained by recent historical weather
and traffic data and then can be put into real-time macro traffic prediction and control. The traffic prediction model in the case study
is METANET model, in which fundamental diagram parameters are one source of input. The weather-specific prediction error and
conventional prediction error are compared. Real data collected by loop detectors on Whitemud Drive, Edmonton, Canada, is used
for parameter calibration and prediction error evaluation. The results show that the proposed weather models reasonably improved

the accuracy of macro traffic state prediction model compared to conventional model.

1. Introduction

Over the past two decades, the focus of efforts in mod-
elling and forecasting macroscopic traffic states has transi-
tioned from univariate temporal correlation to multivariate
temporal-spatial correlation and from linear to nonlinear
forms. Those models may be loosely classified as statistical
and nonstatistical methods. Some examples are included in
the class of time series models, like the seasonal autore-
gressive integrated moving average model [1], Kalman filter
state-space model [2], neural network [3], nonparametric
regression [4], stochastic Newell’s three-detector method [5],
and other empirical models.

Another class of works is based on the use of macroscopic
traffic flow theory to estimate the internal traffic state for any
intermediate point on a freeway or arterial segment from the
boundary conditions. Macroscopic models consider traffic
flow as fluid instead of individual vehicles. Three variables
are capable of describing traffic stream characteristics: flow,
density, and mean speed. Macroscopic traffic flow models

are classified as first-order, second-order, or higher-order
models, depending on the number of differential equations
included [6]. Of all first-order models, the most used one
is the Lighthill-Whitham-Richards model [7, 8], which uses
one partial differential equation to describe the vehicle flow
conservation law. This model was also the first combination
of a traffic flow model with a static fundamental diagram.
Another representative first-order model is the Cell Trans-
mission Model [9-11], which is a discretized and simpli-
fied version of the Lighthill-Whitham-Richards model. The
Payne model [12] is the oldest second-order traffic flow
model. Besides the flow conservation law equation, the Payne
model also includes one partial differential equation that
describes mean speed dynamics. This model can replicate
traffic phenomena with higher accuracy. Other types of
second-order traffic flow models include variation kinematic
waves [13], second-order traffic flow model with Kalman
filter [14], CTM-based second-order traffic flow model with
particle filtering [15], the Lighthill-Whitham-Richards par-
tial differential equation with the Lagrangian measurements
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[16], and Newell’s simplified kinematic wave model [17, 18].
The second-order traffic flow model selected in this paper is
METANET [19, 20], which is a discretized and improved ver-
sion of the Lighthill-Whitham-Richards model combined
with the Payne model. The reason to choose METANET
model is that it has three separate dynamic functions to
predict traffic flow and average speed and density [21]. It
has a discrete space-time form and allows for convenient
discretization intervals [6], so that field collected data can
be easily implemented. The METANET model has nice and
simple analytical properties: it has an explicit state-space
form and contains continuous and differentiable functions
[6]. The clear mathematical form of METANET model allows
the introduction of other methods such as Kalman filtering,
optimization, and weather models. This model can also be
used for optimal real-time control of freeway traffic such as
variable speed limit and ramp metering [22]. In this paper, the
macroscopic traffic state prediction will be the METANET
model.

Weather affects many aspects of road conditions. Maze et
al. provided evidence that traffic demand, safety, operations,
and flow can be reduced by rain, snow, fog, cold, and
wind [23]. Methods based on aggregated flow and speed
measurements from local sensors have been used to estimate
capacity and free flow speed during adverse weather [24].
HCM (2010) volume 1 chapter 5 provides fixed capacity
reduction percentage to estimate the impacts of bad weather
on the capacity of urban roads [25]. What HCM (2010)
provided does not consider the weather features in different
countries such as Canada or in real time. And those reduction
percentages cannot be applied to traffic features other than
capacity, such as free flow speed or critical speed. Kwon et
al. showed that in many cases the HCM underestimate or
overestimate the real effects [26]. Similar to HCM, FHWA
(2004) provided a report giving fixed weather impact factors
by simulating different weather conditions [27]. FHWA
(2006) showed empirical studies and statistics about the
impact of inclement weather on roadways [28]. Alhassan
and Ben-Edigbe conducted an empirical analysis of highway
capacity loss due to rainfall [29]. Hou et al. proposed that
in mesoscopic network simulation weather factors can be
introduced in the calibration of the traffic flow model for
adverse weather [30]. Shahdah and Fu simulated the impact
of winter weather on road mobility on a Canadian freeway
[31]. In 2013, Lam et al. modelled the effects of rainfall
intensity on traffic speed, flow, and density relationships and
calibrated model using hourly rainfall data from Hong Kong
[32]. In this paper, a weather factor modelling method for
free flow speed, critical density, and capacity is suggested
and calibrated by field data. The proposed model is able to
estimate the impact of snowy Canadian weather in real time
and can be potentially implemented in traffic prediction and
control.

The weather factor model is developed and then can be
inserted into the traffic state prediction model using field
data. Building on previous work, our study has three contri-
butions. Firstly, more than one weather factor are considered
and filtered under weather conditions varying from the worst
to the best weather and then applied to different macroscopic
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traffic variables. In contrast, previous works consider only
one category of extreme weather and one traffic variable.
Secondly, weather factors are successfully introduced into a
fundamental diagram as well as a traffic prediction model.
Thirdly, this paper uses high-resolution field data instead
of simulation data to obtain clear quantitative results that
show weather significantly impacts the traffic dynamics on
freeways.

The rest of this paper is organized as follows. The
macro traffic state prediction model is described in Section 2,
highlighting the modification for weather conditions. The
definition and calibrating skills for fundamental diagram are
also described in Section 2. The modelling of weather factors
to be applied to fundamental diagrams is studied in Section 3.
In Section 4, in case study the proposed weather factor model
is calibrated and applied to traffic prediction model using
field collected data, and the effect on improving prediction
accuracy is shown. Section 5 concludes the paper.

2. A Macro Traffic State Prediction Model
Factoring in Road Conditions

The model description is separated into four parts. Section 2.1
will provide notations and assumptions. Sections 2.2 and 2.3
will present the description of the traffic state prediction
model and the description of the fundamental diagram
(FD) used in this study. Section 2.4 will describe the model
calibration methods.

2.1. Notations and Assumptions. For consistency, the freeway
is divided into N sections with lengths A;,i = 1,...,N,
each having at most one on-ramp and off-ramp. All the
variables used throughout this paper are defined as in the
Notations.

The assumptions of this paper are listed as follows. (1)
In the case study part, field data collected by loop detectors
will be used. This paper assumes that loop detector data
can be regarded as ground-truth. (2) The weather data used
in case study is collected by one weather detection station
in Edmonton city. Since the case study freeway segment is
within 1km radius from the weather station and the snow
on freeway is not removed promptly, the authors of this
paper assumed that weather station detected snow depth is
proportional to the snow depth on freeway road surface, so
that it is reasonable to use weather station detected data in
this study.

2.2. METANET Prediction Model Framework. The develop-
ment of a mathematical model that describes the dynamic
evolution of three traffic variables enables the short time
prediction of macroscopic traffic states. The METANET
model has three dynamic functions that represent flow,
density, and speed. Among the three dynamics, the flow
dynamics and density dynamics are exact analytical models
without parameter calibration, and are derived from the flow
conservation law [33, 34] written as follows:

dp (t,x) N 0q (t, x) _,

> ™ (t,x) —s(t,x). 1
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This conservation law equation indicates that the vehicle
entering one section will eventually exit, moving onto either
the next section of main road or the off-ramp. The flow
and density dynamics together are the first-order part of the
METANET model. However, with solely first-order dynamics
the dynamics of speed change cannot be described. Although
there is a certain relationship between speed and density,
speed does not change instantaneously as density changes
in the real world. Payne proposed that a small time delay
should be applied to the speed-density relationship in the FD
as follows:

v(x,t+71)=V[p(x+Ax,1)]. (2)
Papageorgiou et al. [19] expanded the left-hand side of the
above equation in a Taylor series with respect to 7 and the
right-hand side with respect to Ax; after rearranging the
terms, the following equation is obtained:

ov v op
T E—V(P)—V—; F 3)

where dv/dt is the acceleration rate of an observer moving
with the traffic stream [19]. dv/dt is written as follows:

dv  ov ov

= 2 L 4
a otV ox )

Substituting (3) into (4) results in the continuous form of
speed dynamics model

dv_ ov [VI(p)—v-(vlp)-(9p/ox)]
dr 0x T

Combining (1), (5), and the identical equation g = p -
v together forms the three dynamics of the METANET
model. With the introduction of the speed dynamics model,
METANET is able to predict macroscopic traffic states
accurately. The discretized model formulation is written as
follows.

Density dynamics are

pi(k+1) = p; (k)
T (6)
A (g1 (k) = q; (k) +1; (k) = 5; (k)] -
Speed dynamics are
vk 1) =0, 0+ = [V (,(0) = v ()]
T
+ A—ivi (k) [vi_y (k) = v; (k)] )
1T py (k) - p (K)]
A [p (k) +x]
Flow dynamics are
gi(k+1)=pi(k+1)-v;(k+1). (8)

In the model 7 (seconds) and x (veh/km) and « and
(km?/h) are global model parameters to be calibrated using
the historical data. The parameter 7 (seconds) describes
the gradient of current speed approaching desired speed.
The larger 7 (seconds) is, the larger the difference between
current speed and desired speed is. In practice, a large 7
value can improve the prediction accuracy through tuning
effects, however, since 7 has physical meaning as a lag
time item, the biggest acceptable value of 7 is set as 120s
empirically, meaning that a tolerance time of 120 s is allowed
for vehicles to adjust their speed to desired speed in general
road conditions. The constant x > 0 is added to keep the
fourth term of (7) limited when density is low. Again « is
empirically fixed as 10 (veh/km), since « is put together with
p;(k) which typically fall into a range of 0~50 (veh/km). The
fixing of x does not impact the prediction accuracy, because
n and x together make up the parameters of the fourth
term of (7). n is calibrated using training dataset and usually
falls within 0~100 (km?/h). « usually falls within 2~4. The
desired speed V(p;(k)) (km/h) in the speed dynamics model
is represented by

V (pi (k) —szexp[——(¥> ] €)

The desired speed variable leaves room for the introduction of
weather factors because it involves two important parameters
calibrated from the FD: free flow speed and critical density,
and the FD is impacted by weather. Density dynamics do not
involve parameters and other parameters in speed dynamics
are calibrated globally for goodness of fit. Note that, of the
four terms making up the speed dynamics, each term has a
physical meaning. In (7), the second term is referred to as the
relaxation term, describing that, with a lag time item 7, the
mean speed v of the link gets relaxed to the desired speed,
which largely depends on the parameters of the FD. In this
study, we chose the format of desire speed as (9). The third is
the convection term, indicating that vehicles travelling from
upstream link i—1 to current link i adapt their speed gradually
rather than instantaneously. The fourth is the anticipation
term, which is to indicate that drivers are always watching the
traffic condition on the road ahead. For example, if a driver
observes high traffic density in the downstream link i + 1,
the driver then reacts by slowing down. Taking into account
weather-specific FDs, it can be concluded that the desired
speed variable is the right place to insert the weather factor.

The Courant-Friedrichs-Lewy (CFL) condition should
be followed, which means to ensure that vehicles cannot
travel beyond one section within computing time interval T,
so that T satisfies the following condition:

i=12,...,N. (10)

2.3. The Weather-Specific Fundamental Diagrams. It is
assumed that the FD changes according to different weather
conditions, since weather significantly impacts driver
behavior and the driving environment. The weather-specific
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FIGURE I: llustration of (a) triangular FD and (b) its variation with speed as the vertical coordinate.

FD defines different V(p;(k)) for different weather conditions
in the METANET model. To be specific, the parameters
of FD such as free flow speed, critical density, jam density,
and capacity drop vary with weather conditions instead
of being constants as regarded before. And those key
parameters in the FD are essential for the accuracy of the
traffic prediction model. The triangular FD is still used
here shown as Figure 1(a). Note that, to better exhibit the
different free flow speeds under different weather conditions,
we also demonstrate the variation form of the triangular
FD, for which the vertical coordinate is space mean speed
as Figure1(b) shows. The three weather conditions are
defined as “good weather” which means no snow; “average
adverse weather” which means 1-15 cm of snow; and “most
adverse weather” which means more than 15 cm of snow. The
definition is based on Edmonton, Canada, and will be used
in case study.

From the point of the space mean speed, the triangular FD
describes that, before density reaching critical density, space
mean speed keeps in free flow speed. After reaching critical
density, traffic becomes congested and the road segment
capacity drops by fraction 0 due to the unsatisfying driving
environment. After reaching the congestion point, traffic flow
decreases linearly to zero, which is when density also reaches
maximum, and that density is referred to as jam density. In
the variation form of the triangular FD, space mean speed
behaves similarly, remaining constant up until the congestion
point, and, after that, speed will drop together with capacity.
During congestion, the space mean speed will drop as inverse
proportional function of density. Figure 1(b) shows that we
anticipate that under different weather conditions FD will
shift. The expression of the variation form of the FD is as
follows:

Vf)i, if Pi (k + 1) € (0’ pcr,i)
vitk+1) =9 vei Pori ((k+1) = pei w
fi " Peri (1 . u ) , otherwise.
pi(k+1) Pjam,i ~ Per,i

In (11), weather factors are introduced to adjust the free
flow speed, critical density, and jam density of the FD
under varying weather conditions. In part 3 of this paper,
the modelling of three weather factors will be discussed.

Equation (12) describes the new form of flow dynamics
considering capacity drop and weather factors, and this
equation will replace the original flow dynamics in the
METANET model.



Journal of Advanced Transportation

Ptk + 1), Gk + 1),
qi(k+1)=

2.4. Fundamental Diagram and METANET Calibration Meth-
ods. The parameter estimation of the FD is based on data
collected by conventional loop detectors. For the parameter
calibration of FDs, free flow speed v ;, critical density p;,
capacity C;, jam density pj,,;, and capacity drop fraction
0 must be estimated. For calibration, the data format we
use is (p;, q;) data points, where the horizontal coordinate is
density and the vertical coordinate is flow. The procedure of
calibrating a triangular FD is as follows.

Step I (The identification of p, ; and capacity C;). In defining
the triangular FD, the summit point of the triangle roughly
indicates critical density and capacity. We plot all (p;,q;)
points and find the third largest g; and take it as capacity C;
and the corresponding p; as p,, ;. The reason for not choosing
the largest flow is that normally the largest flow is extremely
high as an outlier; this might be due to detection error.

Step 2 (The identification of v;). After defining p;, the
whole dataset can be divided into two parts: the left-side
triangle represents uncongested traffic conditions and the
right-side triangle represents congested traffic conditions.
Then we calculate the slope of each data point distributed in
the left side and take an average as v ;.

Step 3 (The identification of pj,,,; and capacity drop fraction
0). The jam density p;,,,; represents a theoretical value of
when the road section is totally congested and all vehi-
cles have stopped moving. When determining the right-
side triangle, we usually fix pj,,; with an empirical value
100 veh/km/I. In this study, the empirical value is set accord-
ing to historical observation of congested situations during
winter on the testbed. The slope of the right side is determined
by least square fit. After determining the foot and slope of
right side, the intersecting point of the right side and the
vertical auxiliary line passing through previous capacity C;
is the new capacity after dropping.

For the parameter estimation of the METANET model,
7, %, &, and # (km?/h) are global model parameters to be
calibrated using recent historical data. In this study, the global
parameters of the METANET model are fixed, which are
calibrated before this study, using loop detector data of the
same road segment via the following expression. All variables
with the subscript of obs represent field observed data:

N

o = argmn | ¥ [~ (1 O)f

(13)

>

N .. " 2
+ z {puobs - f (p”obs | 6)}

lf Pi (k + 1) € (0) pcr,i)

min (pi (k+1)-v;(k+1),(1-0)-vy; ~pcr,i) , otherwise.

where O is the set of global parameters 7, x, «, and #. ii is
the index of training data points. The set @ represents the
specific parameter set that minimize the summation of square
of residuals of both speed prediction and density prediction.
The parameter calibration is performed by MATLAB in a
nested loop fashion, with a gradient of 0.01. Since « is fixed
and empirically 7 obtains the boundary value and # and «
both have narrow ranges, the computing time is acceptable.

3. Modelling Weather Impacts on the
Fundamental Diagram

The historical weather data provided by Canadian govern-
ment website, historical climate data webpage, Edmonton
area includes three critical categories of weather data: tem-
perature, amount of snow on the ground, and maximum
wind speed. We assume that free flow speed (FES), capacity,
and critical density of the FD of each day are impacted
by weather. The three categories of the weather index are
capable of expressing most kinds of weather in Edmonton,
Canada. People in Edmonton seldom experience rainfall that
is heavy enough to influence visibility, and fog is also rare
to see; the most common adverse weather is snowy weather.
HCM has pointed out that light snow reduces capacity by
5-10% and heavy snow reduces capacity by 25-30%. From
observations and previous data, we assume that ongoing
snow may significantly impact FFS. Because the variable
“snow on the ground” reflects the mean value at a time point,
the variable “derivative of snow on the ground” is added,
formulated as below.

B 7% ea?).

dt; ti—ti,

SG; is the depth of the snow on the ground for day j. ¢, is the
day and ¢ is the error term. In the dataset, SG; is the depth of
the snow, measured in centimeters, corresponding to the area
of the city where the target VDS is located.

$G; - SG;_,
DSG; = ————. (15)
t] - tj—l

DSG; is a derivative of snow on the ground, which is used
in our model. We assume that a change of SG; indicates that
a weather event is occurring. A positive DSG value means
that snow is falling, and a negative DSG value means that the
weather is improving and snow is melting. Temp represents
temperature and MWS represents maximum wind speed.
Weather factors w"/, w’ and w® are to be introduced to
adjust free flow speed, critical density, and capacity of the FD.
All three weather factors are ratio of free flow speed, critical
density, and capacity in November snowy days to those in
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TABLE 1: Pearson correlation coeflicient between multiple factors.
PCC SG DSG MWS Temp w® w'f whe
SG — 0.33 —0.69 —0.75 -0.39 —0.59 0.35
DSG 0.33 — -0.30 -0.50 -0.75 -0.74 -0.12
MWS -0.69 -0.30 — 0.54 0.29 0.35 -0.23
Temp -0.75 -0.49 0.54 — 0.64 0.88 -0.34
w® 0.39 -0.75 0.29 0.64 0.73 0.40
w'/ -0.59 —-0.74 0.35 0.88 0.73 — -0.25
wher 0.35 —-0.12 -0.23 —-0.34 0.40 -0.25 —
TABLE 2: Coeflicient ¢-test of weather factors models. After defining all independent and dependent variables,
- . the next step is to filter the key factors impacting FD fea-
Sl§nlﬁcance 5G DSG MWS Temp tures. PearS(I))n correlation coefﬁycient (PCC)pchecl;g (Table 1)
wcf YES YES NO NO is conducted and a t-test prior to our case study (Table 2).
w NO YES NO NO PCC ranges from -1 to 1, where 1 is total positive linear
wh NO NO NO NO correlation, 0 is no linear correlation, and —1 is total negative
*Significance at 95% confidence level. linear correlation [35, 36].
When absolute value of PCC between two factors is over
0.5 which is a normally used threshold, it is then defined
that the two factors are highly correlated. It is displayed as
DSG SG underlined value in the table that w® is highly linear related to
DSG and Temp and w'” is highly linear related to SG, DSG,
l><\ and Temp. However, Temp is highly related to both SG and
DSG. Hence, DSG is chosen for linear regression of w®. And
EFS Capacity SQ and DSG are used for linear rggression of w"/. wk is not
directly correlated to weather variables but can be computed

\/

Critical density

FIGURE 2: Significant weather factors impacting the FD.

May good weather days’ average. The weather factors will be
modeled by selected combination of independent variables
SG, DSG, WMS, and Temp. Field data from one loop detector
station in May and November 2013, on Whitemud Drive
Edmonton, Canada, is used, and this dataset is the same as
that will be used in the following case study part.

vy,

Wi Vg
Vi (k +1) = w;f’i Vit w;’cr,i " Per,i 0
pi(k+1)

so that the flow dynamics equation (12) will also be updated,
accordingly, in which

w = B+ B,DSG + B,SG

by w/w"’ according to the definition of FD. In Table 2, we
tried the above linear models of w"/, w”, and w®, and the
t-test of coeflicients at 95% confidence level is shown. This
result is identical with that of PCC. Since MWS and Temp
seriously confound with SG and DSG, they are not significant
as coefficients.

The flow chart in Figure 2 shows how DSG and SG affect
EFS, capacity, and critical density in the model of this paper.

The FD under varying weather is formulated as below.

Vs . C .
Three weather factors, w'”, w™, and w}’, are introduced

to adjust the free flow speed, critical density, and capacity

of the FD under varying weather conditions. The capacity
adjustment factor qu will not appear in the following FD
expression, but the critical density adjustment factor w;.)“"" is

computed from w].c" as follows:

if Pi (k + 1) € (0> pcr,i)

Pi (k + 1) - w;‘)cr,i * Per,i . (16)
- o , otherwise
Pjam,i ~ wj " Peri
ch,. =a, + a,;DSG
Ci
b _ Wi @+aDSG
w. = = N
] w;f”' Bo + B1DSG + 5,SG
(17)
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TaBLE 3: Fundamental diagram features of target location under the three weather conditions.

Features Good weather condition Light snow condition Heavy snow condition
v, (km/h) 84.38 81.52 66.66
C (veh/h/) 1647 1572 1323
Pe: (veh/km/1) 24.84 22.30 2146
Piam (veh/km/1) 100 100 100
0 (capacity drop) 0.05 0.09 0.17
Sample size 1440 1440 1440

TABLE 4: Estimated weather factor parameters and statistics.

X Bo By

0.873 —-0.01796 0.9648 -0.01737

Coeflicients with 95% (0.8391,0.9068) (—0.02908, —0.006853) (0.9251,1.004) (-0.02363,-0.0111)
confidence bounds B,

—-0.00105
(—0.00346,0.00136)

0.1344

Adjusted R-square ij“'" model: 0.7924

w]”.f"' model: 0.833

Sample size: 29

Vi
where f3,, f3;, and f3, are parameters of w jf’ . And «; and o,

are parameters of ch". A constant adjustment factor § is

added. i is the index of road section, and j is the index of data
collection day.

4. Case Study

The Vehicle Detection Stations (VDSs) on a 10-kilometre
corridor of Whitemud Drive in Edmonton, Canada, collect
and store traffic data from dual loop detectors. This sec-
tion of road plays an important role in people and freight
transportation in the city. The road section has two curves
and several bottleneck locations where the number of lanes
drops. The VDS system currently has 28 VDSs in total, and
each station has three or four dual loops. The data recording
frequency is 20 seconds. Each dual loop reports the volume
q—the number of vehicles crossing the loop detector during
a 20-second time interval—and mean speed measurement v,
as well as the occupancy measurement, which cannot be
used directly in traffic control and cannot be transformed
accurately into density. The accurate density measurement p
is calculated by p = g/v. The target loop detector station is
located at a major curve of westbound Whitemud Drive. This
target VDS has four dual loops on four lanes, respectively, and
is 500 meters from its upstream and downstream VDS.

The calibration and validation of the models are based on
the data of target VDSs from May and November of 2013. In
this study, three weather conditions are involved in testing
the stability of the models. Accordingly, three different FDs
and weather-related parameters are generated. In Edmonton,
Canada, the main type of adverse weather is snowy weather,
so the three weather conditions are categorized as “good
weather conditions,” “light snow conditions,” and “heavy
snow conditions.” During the days of May 1 to May 5,
the snow melt and temperature indicated “good weather
conditions.” From November 11 to 15, “light snow conditions”
were observed, with the snow on the ground measuring

around 6-9 cm. During the days of November 18 to 22, “heavy
snow conditions” were present, as the amount of snow on
the ground ranged 16-26 cm. Figure 3 shows the indexes
of the three weather conditions, and Figure 4 shows VDS
locations on Whitemud Drive and the location of closest
weather station.

Table 3 shows the calibrated FD features and weather fac-
tors, while Figure 5 combines data points and the calibrated
ED together to help visualize the difference in macroscopic
traffic conditions under different types of weather. Under
each weather condition, the sample size is 5 days of traffic data
aggregated at 5 min frequency, which means 1440 data points.
From the field data we observed that the triangular FD holds.
Note that, in the calibration process, some obvious outlier
points have been eliminated. The significant differences
between the types of weather are visibly evident. For free
flow speed, good weather conditions experienced the highest
free flow speed, which is higher than the posted speed limit
(80 km/h); under light snow conditions, the free flow speed is
slightly lower than that under good weather and almost equal
to the posted speed limit; when it snows heavily, the free flow
speed drops drastically to 66.7 km/h. In terms of capacity,
which cannot be directly observed from the FD, under good
weather conditions the capacity is 1647 veh/h/l, while under
light snow conditions the capacity is slightly lower with a
number of 1572 veh/h/l. However, under heavy snow condi-
tions the capacity drops as low as 1323 veh/h/l. In terms of
critical density, the difference among the weather conditions
is not as significant as the previous two parameters. Good
weather conditions still show the largest critical density of
24.84 veh/km/], and, under light snow conditions and heavy
snow conditions, the critical densities are 22.30 veh/km/l and
21.46 veh/km/], respectively. Jam density represents the ability
of a road segment to accommodate vehicles, so in this paper
we assume that jam density does not change since the length
and number of lanes do not change with the weather.

Table 4 shows the regression results of the weather factor
parameters and statistics. The weather data used in this
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FIGURE 3: Ground snow and wind speed for the three weather conditions.

regression include the DSG and SG from May 1-5, November
11-15, and November 18-22 of 2013. Loop detector data for
the same periods is also used to calibrate the FDs, and the
data frequency is 20 seconds. The negative «, indicates that
capacity decreases with a positive DSG, and a positive DSG
indicates that snow is accumulating and road conditions are
worsening. The negative 3; and f, indicate that the free flow
speed will decrease with a positive value of DSG and SG,

which implies that the snowfall is relatively heavy and snow
is accumulating. Note that all the parameters fall within 95%
confidence bounds and both regressions have a good fit; see
adjusted R-square.

To validate the necessity of considering weather factors in
the METANET prediction model, we conducted a prediction
simulation, in which the seed of each calculation round
was field data. We compared the prediction error of both
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FIGURE 6: The prediction performance of average speed and density in one heavy snow day (November 18): (a) speed prediction using fixed FD
parameter. (b) Speed prediction when weather factors are applied: v; = 66.50; p,,; = 21.46. (c) Density prediction using fixed FD parameter.
(d) Density prediction when weather factors are applied: v; = 66.50; p,; = 21.46.

space mean speed and density between not adding weather
factor and adding weather factor conditions. The prediction
scenario is set to be 10 minutes with a calculating frequency
of 20 seconds with rolling horizon. The calculation interval
is 20 seconds, and, in predicting the traffic status 10 minutes
in advance, each round of calculation includes 30 iterations.
Since the prediction simulation is not in real time, we
calculate the prediction error by comparing the traffic state
predicted 10 min in advance via METANET and the real
traffic state from the field dataset. The root mean square error
(RMSE) is calculated in each of the situations.

In each pair of the following three comparisons, the
condition without a weather factor always uses the fixed

parameters v;; = 80.06 and p.; = 23.83. Note that those
fixed parameters together with other global parameters are
used. These parameters indicate that, under uncongested
conditions, the free flow speed can be slightly higher than the
posted speed limit of 80 km/h; however, under unsatisfying
weather conditions the above default setting might be too
high. Based on the weather-specific FD assumption, we apply
the calibrated weather factors to vy; and p,;, while other
global parameters of METANET remain unchanged. From
each type of weather, we picked up one day as a case to
conduct a prediction experiment for both speed and density
variables. For heavy snow conditions, we chose November 18
(Figure 6); for light snow conditions, we chose November 14
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(Figure 7); and, for good weather, we chose May 2 (Figure 8).
For each day the traffic state prediction ran from 6 AM to
9 PM. In Figures 6-8, (a) and (b) compare the prediction
performance of average speed with and without adding
weather factors. (c) and (d) of Figures 6-8 compare the
prediction performance of traffic density with and without
adding weather factors. The prediction result of traffic flow
is not shown since it can be easily calculated through flow
identical equation (8). The fixed global parameter values are
shown in Table 5. Those global parameters are calibrated
using the traffic data of the first day of November, 2013.

It is found from Figures 6-8 that in speed prediction
simulation observable prediction error can be seen while the

TABLE 5: Calibrated METANET global parameters.

T n K o
120.00 37.98 10.00 2.29

error in density prediction is invisible. The reason is that the
speed dynamics model heavily relies on the parameters, while
density dynamics are simply derived from mass conservation.
Tables 6 and 7 show detailed quantitative error measurement
for comparison. Under heavy snow conditions, the whole
daytime speed RMSE of conventional prediction is 11.69,
while in weather-specific prediction the RMSE is 9.52. During
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TABLE 6: Speed prediction root mean square error (RMSE) (km/h).

Feature: RMSE of speed prediction

Good weather condition

Light snow condition Heavy snow condition

Daytime Conventional 6.88 9.12 11.69
6 AM-9 PM Weather-specific 5.32 8.21 9.52
AM peak hours Conventional 6.47 8.35 16.21
7 AM-9 PM Weather-specific 4.54 6.81 14.96
PM peak hours Conventional 9.39 15.89 17.43
4 PM-7 PM Weather-specific 6.45 15.29 13.51
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TABLE 7: Density prediction root mean square error (RMSE) (veh/km/1).

Feature: RMSE of density prediction

Good weather condition

Light snow condition Heavy snow condition

Conventional prediction 4.46
Weather-specific prediction 4.45

PM peak hours, the RMSE dropped drastically from 17.43
to 13.51, and the same situation applies to AM peak hours.
Under light snow conditions and good weather conditions,
the whole daytime speed RMSE of conventional prediction
is 9.12, while in weather-specific prediction the RMSE is
8.21. During AM peak hours, the RMSE drastically dropped
from 8.35 to 6.81. Under good weather conditions, the whole
daytime speed RMSE for conventional prediction is 6.88,
while in the weather-specific prediction the RMSE is 5.32.
During PM peak hours the RMSE dropped from 9.39 to 6.45,
which is more drastic than daytime average and AM peak
hours; however, under good weather conditions, the original
speed RMSE is small enough. In terms of density prediction,
due to the nature of the density dynamics, the conventional
prediction and weather-specific prediction did not show
significant difference. The RMSE difference range 0.01~0.03
may be attributed to random computation error. Thus, the
prediction error of flow is proportional to the prediction
error of speed. It can be concluded that the weather-specific
METANET prediction will be more helpful under the most
adverse weather conditions and during peak hours when
speed drops steeply.

5. Conclusions

Various kinds of traffic flow models are used to describe traffic
flow characteristics; however, very few of them describe
the explicit negative impact of adverse weather on travel
speed, flow capacity, critical density, and many other aspects,
such as driving safety. This paper demonstrated that weather
conditions indeed impact the driving environment and driver
behavior so that it is necessary to build weather-specific FDs.
The proposed weather factor modelling is one possible way.

The modelling of weather factors in this paper is rea-
sonable, practical, and repeatable. The same weather variable
filtering method can be applied to other cases if researchers
have access to higher resolution weather data, such as hourly
weather data, or data on other weather events, such as rain
and fog. Using the same method, researchers can assess differ-
ent significant variables according to the situation. Through
prediction simulation, macroscopic traffic prediction accu-
racy is found to be improved after introducing weather-
specific FD parameters, especially in speed prediction. In
adverse weather conditions, weather factors improved the
accuracy of macroscopic traffic prediction models. This study
is limited by the accessibility to higher resolution of weather
data and future studies may propose more sophisticated
weather modelling method. Future studies may also look
into the combination of a weather-specific FD and real-time
weather forecast and consider their implementation into real-
time traffic control.

6.02 717
5.98 7.14

Notations

T: Data collection interval = 20 seconds (s)

A Length of section i (km)

Q: Set of space and time (x;, t)

q(x,t): Traffic flow at time ¢, space x(veh/h)

p(x,t):  Traffic density at time ¢, space x(veh/km)

v(x,t):  Vehicle space mean speed at time ¢, space
x(km/h)

r(t,x):  On-ramp flow at time ¢, space x(veh/h)

s(t,x):  Off-ramp flow at time ¢, space x(veh/h)

q;(k):  Traffic flow entering section i at time step
k(veh/h)

p;(k):  Traffic density at time step k, section
i(veh/km)

v;(k):  Space mean speed at time step k, section
i(km/h)

r;(k): On-ramp flow at time step k, section
i(veh/h)

s;(k): Off-ramp flow at time step k, section
i(veh/h)

V(p;(k)): Desired speed in speed dynamics in the
METANET model (km/h)

O: Set of global parameters of METANET
model

C;: Flow capacity of FD at section i(veh/h)

Perit Critical density of FD at section i(veh/km)

Pami:  Jam density of FD at section i(veh/km)

Vil Free flow speed of FD at section i(km/h)

0;: Capacity drop fraction of FD at section i

w'r: Weather adjustment factor for free flow
speed of FD

w®: Weather adjustment factor for flow
capacity of FD

wher: Weather adjustment factor for critical
density of FD

SG: Snow on the ground (cm)

DSG: Derivation of snow on the ground (cm).
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