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The preallocation of emergency resources is a mechanism increasing preparedness for uncertain traffic accidents under different
weather conditions. This paper introduces the concept of accident probability of black spots and an improved accident frequency
method to identify accident black spots and obtain the accident probability. At the same time, we propose a three-stage random
regret-minimization (RRM) model to minimize the regret value of the attribute of overall response time, cost, and demand, which
allocates limited emergency resources to more likely to happen accident spots. Due to the computational complexity of our model,
a genetic algorithm is developed to solve a large-scale instance of the problem. A case study focuses on three-year rainy accidents’
data in Weifang, Linyi, and Rizhao of China to test the correctness and validity of the application of the model.

1. Introduction

Freeways play a very important role in the transport system,
which accounted for 2.8% of national highways and carried
1/2 of business passengers turnover and 40% of freight and
cargo turnover in China in 2016. However, because of the
high speed of vehicles, once the incident happens on the
freeway, it will lead to relatively heavy casualties. Generally, in
response to these unexpected situations, freeway operational
companies often configure certain amount of emergency
resources around the accident sites to provide assistance to
victims conveniently. Hence, the preallocation of emergency
resources, as the first step to rescue, directly impacts the
efficiency of the rescue service. The reliable decision support
models are heavily needed to improve the freeway service
before incidents happen.

Increased attention to literature has been focused on
stochastic programming (SP) model in order to address
the problem of emergency recourse allocation. Zografos et
al. constructed an incident-management program to mini-
mize the incident delay and proved that the deployment of

traffic-flow restoration units is essential to finish this goal
[1]. Later, Zografos et al. developed decision support systems
(DSSs) that can be used for incident response logistics and
improved the quality of the decision. He also proposed
a mathematical model to decrease incident response time
considering users’ requirements [2]. Baker et al. introduced
criteria for budgets and workload and developed an integer,
nonlinear mathematical programming model to allocate
emergency medical services, especially for ambulances to
meet the government’s criterion of response time [3]. Ozbay
et al. put forward a flexible optimal dispatching model to the
operator with the probabilistic constraint for the potential
accident locations, that is, the concept of the quality of
service [4]. In order to satisfy the demands with a given
flood occurrence probability, Garrido et al. addressed an
issue of the delivery supplies and formulated a mathematical
optimization model considering the level of inventory of
emergency resources and the availability of vehicles [5]. Rawls
and Turnquist focused on the special disasters like hurricanes
and so forth, which had uncertainty in demand for the
stocked supplies. He presented a two-stage stochastic mixed
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integer program before the disasters [6]. Zhang developed a
multiagent-based decentralized resource allocation approach
for different emergency events based on the domain trans-
portation theory [7].

The above literatures have studied a variety of approaches
with respect to the allocation problem of different types of
emergency resources in specific disasters. Overall, there are
four obvious features and problems. Firstly, many efforts in
emergency response researches focus on natural disasters in
the cities, such as hurricane, earthquake, and flood [5, 6,
8], but relatively fewer scholars pay attention to applying
approaches on the freeway. In terms of problems of emer-
gency resources allocation in the cities, due to the complexity
and high density of the urban road networks, the researchers
mostly select the facility locations and then allocate the
resources [9]. However, the freeway network has lower road
coverage and density than urban road network and supply
spots are relatively fixed and less. Obviously, the existing
approaches cannot be adapted to the freeway network.
In addition, most scholars have studied how to distribute
resources to deal with natural disasters, such as floods and
earthquakes, but they ignored the fact that accidents happen
more easily on rainy, foggy, and snowy days. It is the lack
of researches in this field, which needs more adequate study.
Secondly, the goal of emergency resource preallocation is to
prepare for the future incidents to promise to give assistance
in time. There were some works on the potential accidents
or secondary locations, such as introducing the quality of
service to evaluate the probability for the future incidents [5,
6], and given probabilities of secondary disasters to allocate
resources [9, 10]. These methods of representation can, to
some extent, indicate the probability of an accident occurring
on a freeway, but they are not precise and specific and
have a large number of errors. In particular, the locations
of accidents are unfixed so that the accident data is mass
and disorderly. Under this condition, allocating emergency
resources is really difficult. Hence, it is very necessary to
investigate the accident-prone location, black spots, prior
to the deployment of emergency resources. Thirdly, in the
research of this issue, current researches are basically a
single-objective or multiobjective SP model to analyze and
solve the problem of the allocation of emergency resources.
The ultimate goal of optimization is the least cost or the
shortest response time. However, these models have a serious
problem: a well-performed attribute can compensate for the
performance of other poorer attributes. Therefore, the final
decision is not globally optimal. In our paper, a random
regret-minimization (RRM) function is introduced, which is
a convex function that can make up for the previous defi-
ciency. When the attributes are equally important, the better
performance of an attribute is only a half-compensating effect
on the overall regret value.

In the study of the identification of accident black spots
and the calculation of accident probability, the research
of these issues is relatively mature. Deacon et al. focused
on the intersection and nonintersection’s black spots and
distinguished between short highway segments and large
segments based on accident statistics [11]. Saccomanno et al.
established a multivariate Poisson regression and empirical

Bayesian models for the potential accidents and applied them
to the highway [12]. Gregoriades and Mouskos illustrated an
integration of Bayesian Networks model with the simulator
to assess the accident risk index, which was used to identify
accident black spots on road networks [13]. Washington
et al. proposed a combination of equivalency calculation
only considering property damage and quantile regression
technique to identify hot spots in a transportation network
[14]. Debrabant et al. addressed issues of discrete distribution
and overdispersion data from hospital records from Funen
and Denmark to present an autoregressive Poisson-Tweedie
model [15].The above studies used different methods to iden-
tify accident black spots. Especially for our paper, identifying
the black spots objectively and accurately will help decision
maker allocate limited resources to accident-prone sites in
the event of insufficient funds and improve traffic safety
management.

Regret is one of the common and widespread negative
emotions which usually expresses dissatisfaction and disap-
pointment in people’s feelings about what has been chosen.
Initially, the regret theory (RT) was proposed by Bell et al. in
1982 and applied to the field of economics. The RT represents
a status that a decision maker, who engages in commodity
trading, tend to avoid the risk of loss as much as possible,
in other words, to avoid regret [16]. Over the years, Daskin
et al. applied P-minimax regret method to solve the facility
location problems and presented a newmodel that optimizes
the worst-case performance over a set of scenarios in 1997
[17].

In 2008, Chorus et al. presented random regret-mini-
mization (RRM) model rooted in RT at the first time and
provided several useful features for travel demand analysis
[18]. Later, the RRMmodel was gradually improved through
in-depth studies of many scholars and applied to more and
more fields. We introduce the latest publications and give an
overview of them. In 2010, Chorus developed a new discrete
choicemodel to improve theRRM2008modelwith respect to
foregone alternatives and revealed a promising performance
of the new RRM-model through the application of travel
mode choices, travel information acquisition choices, parking
lot choices, and shopping location choices [19]. Dekker
et al. introduced the concept of need-satisfaction into the
hybrid choice model and better understood the behavioral
processes underlying leisure activity participation based on
the RRM [20]. In the same year, Hess et al. stated the
contrast between RRMmodel and the Random Utility Max-
imization (RUM) model and found out that the differences
between two models, apart from the factor of alternatives,
were driven by the datasets [21]. Van Cranenburgh et al.
proposed new methodological insights on RRM models,
which are the 𝜇𝑅𝑅𝑀 model and the Pure-RRM model
illustrated by reanalyzing ten datasets [22]. Guevara et al.
developed an approach to achieve consistency, asymptotic
normality, and relative efficiency of the estimators while
sampling of alternatives and testing their approaches were
more practical than a truncated model through real data
experiments [23]. Jang et al. defined the regret as a function
of physical attributes of choice alternatives and proposed a
nonlinear psychophysical representations of the perception
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of attributes levels, which greatly enriched the RRM [24].
Rasouli and Timmermans compared original specification of
RRM with the logarithmic specification of RRM and found
that although logarithmic specification became theoretically
inferior to original specification, the results of case study
illustrated that the original specification outperformed the
new specification for the collected data [25]. In 2018, Rasouli
and Timmermans summed up the issues of recent researches
in this field and developed a new sight of Chorus and Van
Cranenburgh models [26]. Dekker and Chorus interpreted
the choice probability as a well-behaved approximation
and developed a measure of consumer surplus for RRM
[27].

We give a brief overview of these studies on the RRM
models and summarize three characteristics of these studies.
First, incremental changes have been suggested and new
insights of the RRM model have been added. An original
RRM model just considered the choice alternatives. Later, a
logarithmic specification was expressed. The scholars devel-
oped different specifications from various angles to provide a
good deal of insight into the fundamental theory involved.
Second, the empirical comparisons with RUM constitute
above all publications, because some peers have questioned
the performance of the RRM model. Therefore, their com-
promise effects and the differences have been argued and
observed. Third, the applications of the RRM model have
involved various fields including marketing decisions, travel
route choices, travel information acquisition choices, parking
lot choices, and shopping location choices. With its applica-
tion enlarged, its utility gets more and more important. Thus,
in this paper, we aim to broaden the range of the application
of the RRM model continually and use it in the emergency
management.

In this paper, we put forward a three-stage RRM model
to solve the emergency resource preallocation problem on
the freeway from the perspective of regret based on the
above research basis. Before the decision is made, we first
identify the black spots on the freeway using the improved
accident frequencymethod and then calculate the probability
of an accident. In particular, because of the different external
conditions such as the geographic location of the freeway
and the condition of the road surface, the black spots in the
discussed area are not completely consistent under different
weather conditions. Thus, only the accident data under
similar weather conditions can be collected.

We attempt to address the emergency resource allocation
problem with different approaches from other researches,
which is a three-stage RRM model. Since the response time
is the most vital factor in the rescue, a minimum response
time model is established in the first stage with the specified
coverage constraint about time. We use a genetic algorithm
to generate the initial plan set with regard to the number of
resources dispatching from supply locations to black spots. In
the second stage, a new solution set is generated based on the
original set of plans, combining the probability of accidents
occurring in black spots under specific circumstances. The
third stage is comparison of plans to select the final decision.
RRM model is formulated comparing three attributes of
every plan, i.e., response time, storage and procurement costs,

and the demand. The plan with the minimal regret value is
regarded as our final decision.

The rest of this paper is organized as follows. In Section 2,
we describe the mathematical formulation including two
parts, which is the identification of black spots and a three-
stage RRM model. In Section 3, we illustrate the use of the
model through a case study for a three-stage RRMmodel for
emergency resources preallocation in anticipation of rainy
day in three cities in China. Section 4 provides conclusions
and directions for further work.

2. Methodology

This section introduces the identification of freeway black
spots using the approach of improved accident frequency at
first and then describes the model development, that is, a
three-stage RRMmodel, which promises theminimization of
regret value, considering the probability of black spots. Our
goal is to find the most optimized plan to allocate resources
from supply locations to black spots on the freeway.

2.1. �e Identification of Black Spots. The diagnosis of acci-
dent black spots does not only solve the existing traffic safety
problems, but also provide first-hand information for the
prediction and prevention of traffic accidents.The black spots
seriously reduce the service quality of the road network,
since the cumulative number of incidents at each black
spot accounts for a high proportion of the total number of
accidents, which has a great impact on the overall safety of
the transportation system. For emergency management, the
identification of black spots on freeways also plays a vital
role as it provides guidance about preallocation emergency
resources to nearby areas prone to accidents.

To begin, we divide the road section into units so that it
is easier to process accident data statistically. And then the
improved accident frequencymethod is used to identify black
spots. We select a critical number of accidents as the criteria
for identification. If the number of accidents on a certain road
section is greater than the critical value, it will be marked as
an accident-prone point.The advantage of thismethod is easy
to calculate and select and clear at a glance. It is especially
suitable for the processing of massive accident data [28].

The improved accident frequency method is described as
follows. Firstly, calculate the average number of accidents 𝜆
on a unit.

𝜆 = ∑𝑚𝑖
𝑛 (1)

where 𝑚𝑖 is the number of accidents on the road section
𝑖 and 𝑛 is the total number of units.

If the confidence level is 𝛼, the critical number of
accidents 𝑅 is

𝑅 = 𝜆 + 𝑢(1−𝛼)/2 ⋅ √𝜆, 𝑖 = 1, 2, . . . , 𝑛 (2)

We compare the number of actual accidents with the
critical value 𝑅. If it is greater than the critical value 𝑅, we
can determine that the road section is a black spot.
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The “spot” in the black spots can be a point, a road section,
an entire road, or an area, so the spot in this paper refers
to a road segment. However, the above method will miss
some real black spots resulting from concentrated accident
locations which were divided into two by a fixed segment;
hence, after the completion of the above identification, it
is necessary to use the section to cut surface technology
in order to correct the results. The principle of cut surface
technology is to move one or more adjacent unit sections
without exceeding the critical value 𝑅 to a suitable location
in light of their distribution. This supplementary calculation,
the nonfixed description of black spots, has greatly improved
the accuracy of the accident probability calculation.

2.2. A �ree-Stage RRM Model for the Emergency Resources
Allocation. The problem of freeway emergency resource
preallocation can be considered as a risky decision issue.
Existing studies have been focusing on a variety of factors
in the SP model. If certain attributes perform well, good-
performing attributes will fully compensate for other worse
performing attributes. Obviously, this is not acceptable for an
emergency rescue decision, because the result of emergency
decision does not depend on the longest board, but the
shortest board. However, the RRM model can exactly make
up for the shortages caused by the ordinary SP model.

RRM was proposed by Chorus based on classical regret
theory in 2008. RRM is a general choice model that deals
with multiple alternatives with multiattributes and it can
weigh the performance of multiple attributes to avoid the
regret. The regret results from the unselected schemes that
perform better than the selected scheme [18]. Consider the
traveler who faces a choice between alternatives 𝑖, 𝑗, and 𝑘.
The alternatives 𝑖, 𝑗, and 𝑘 have the attributes of 𝑥, 𝑦, and 𝑧;
that is, 𝑖 = {𝑥𝑖, 𝑦𝑖}, 𝑗 = {𝑥𝑗, 𝑦𝑗}. The regret is obtained by
the comparison of that alternative with the best of other two
alternatives:

𝑅𝑖 = max {𝑅𝑖𝑗, 𝑅𝑖𝑘} (3)

𝑅𝑗 = max {𝑅𝑗𝑖, 𝑅𝑗𝑘} (4)

𝑅𝑘 = max {𝑅𝑘𝑖, 𝑅𝑘𝑗} (5)

Take an example of the calculation of 𝑅𝑖𝑗:
𝑅𝑖𝑗 = 𝜑𝑥 (𝑥𝑖, 𝑥𝑗) + 𝜑𝑦 (𝑦𝑖, 𝑦𝑗) + 𝜑𝑧 (𝑧𝑖, 𝑧𝑗) (6)

where 𝜑𝑥, 𝜑𝑦, 𝜑𝑧 is an attribute-regret function using
the following formulas to obtain. Let 𝛽 be the estimated
parameter of the attribute.

𝜑𝑥 (𝑥𝑖, 𝑥𝑗) = max {0, 𝛽𝑥 ⋅ (𝑥𝑗 − 𝑥𝑖)} (7)

𝜑𝑦 (𝑦𝑖, 𝑦𝑗) = max {0, 𝛽𝑦 ⋅ (𝑦𝑗 − 𝑦𝑖)} (8)

𝜑𝑧 (𝑧𝑖, 𝑧𝑗) = max {0, 𝛽𝑧 ⋅ (𝑧𝑗 − 𝑧𝑖)} (9)

We finally select the minimum regret value from 𝑅𝑖,𝑅𝑗, 𝑅𝑘: min{𝑅𝑖, 𝑅𝑗, 𝑅𝑘}.

Based on the above theory, we propose a three-stage RRM
emergency resource preallocation at freeway black spots.The
first stage is that the SP model generates a preliminary plan
based on the response time. The second stage is to form a
new set of solutions by combining the probability of accidents
occurring at black spots. The third stage is to compare the
schemes obtained in the second stage by the calculation of the
RRMmodel and finally choose the scheme with the smallest
regret value.

Stage 1: Generate a Preliminary Plan Based on Response Time.
In emergency rescue, the response time is themost important
decisive factor. Certain supply locations do not cover many
black spots, so that rescue personnel cannot reach the black
spots within the response time range specified by the system.
Therefore, we need to make a preliminary match between
supply locations and black spots. Due to the vast area, i.e., the
large number of supply locations and black spots, preliminary
screening can simplify calculation and increase the speed of
operations.

In the first step, we propose a stochastic programming
model with the smallest response time. We assume that the
road from supply locations to the black spots is travelable
and the shortest distance. Supply can be prepositioned at
the location 𝑖, and black spots can be defined as 𝑗. We use
𝑡𝑖𝑗 to denote emergency resource transportation time from
supply location 𝑖 to black spot 𝑗, 𝑡0 to denote the rescue
system specified response time, and 𝑡𝑙 to denote the average
processing time after receiving the alarm at the depot 𝑖.
Let 𝑙𝑖𝑗 be the shortest distance from a supply location 𝑖 to
the black spot 𝑗, and let V𝑘 be the average transportation
speed under special scenario 𝑘 (𝑘 ∈ 𝐾): 𝑡𝑖𝑗 = 𝑙𝑖𝑗/V𝑘.
In addition, the parameter 𝜃𝑖𝑗 represents whether accident
black spots 𝑗 are within the coverage of the depot 𝑖 and
𝑎𝑖 represents the maximum stock capacity of the supply
location 𝑖. We use 𝑥𝑖𝑗 (𝑥𝑖𝑗 ∈ 𝑋𝑛) to denote the number of
emergency resources dispatched from depot 𝑖 to black spot
𝑗. Finally, an initial scheme set 𝑆1 is calculated by a genetic
algorithm and 𝑋𝑛 is the element of the initial scheme set
𝑆1.

The first stage of the stochastic programming model is
given as

min
𝑛𝑖∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝜃𝑖𝑗𝑡𝑖𝑗𝑥𝑖𝑗 (10)

subject to

𝑛𝑗

∑
𝑗=1

𝑥𝑖𝑗 ≤ 𝑎𝑖 (11)

𝜃 = {
{{
0 𝑡𝑖𝑗 > 𝑡0 − 𝑡𝑖
1 𝑡𝑖𝑗 ≤ 𝑡0 − 𝑡𝑖

(12)
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𝑥𝑖𝑗 ≥ 0,
𝑥𝑖𝑗 ∈ 𝑋𝑛,

𝑥𝑖𝑗 is integer
(13)

The objective function of the first stage (4) incorporates
the total response time in order to provide an incentive
to execute the resources preparedness at the lowest time
within the constraint of response time coverage. Constraint
(5) states that the number of emergency resources in depot
𝑖 must be within the maximum inventory capacity 𝑎𝑖 at
that point. Constraint (6) states that if the black spot 𝑗 is
within the coverage of supply location 𝑖, 𝜃𝑖𝑗 = 1; otherwise,
𝜃𝑖𝑗 = 0. Constraint (7) requires 𝑥𝑖𝑗 must be a positive
integer. After the calculation of the genetic algorithm, several
different solution sets will be generated. The solution set
will be stored in the form of a matrix 𝑋𝑛, which is a
set of solutions, and finally, form the initial solution set
𝑆1 (𝑋𝑛 ∈ 𝑆1).

Stage 2: A New Solution Set S2 Based on the Accident
Probability of Black Spots. Through formulas (1) and (2), we
can obtain the results of identifying black spots, so thatwe can
calculate the relative accident probability 𝑝𝑘𝑗 of black spots
under the circumstance 𝑘 and form a diagonal matrix 𝑃.
Each element 𝑋𝑛 in the set 𝑆1 is weighted by this diagonal
matrix 𝑃 to form a new element 𝑋𝑛. Formula (8) is as
follows:

𝑋𝑛 = 𝑋𝑛 ⋅ 𝑃 (14)

Through the above formula, we can obtain a new set of
solutions 𝑆2 (𝑋𝑛 ∈ 𝑆2).

Stage 3: �e Best Solution Based on RRM Model. After
the calculation of the above two steps, the initial set 𝑆1
is generated by statistic programming model on the basis
of geographical location and response time. In addition,
a new solution set 𝑆2 is generated based on the accident
probability of black spots. However, the two stages only
consider the response time and accident probability but
do not comprehensively consider the costs of storage and
procurement of emergency resources, and the demand for
black spots. Some emergency resources cannot be stored
permanently and need to be replaced regularly; therefore,
decision makers hope to use the lowest cost to maximize
benefits. We define that there are 𝑚 plans obtained by stage
2. Let 𝐶𝑠, 𝐶𝑏, respectively, be the inventory costs and the
procurement costs of emergency resources, and let 𝐶 be
the attribute of the total cost. The supply locations in the
rescue network have different resource allocation standards
and construction costs resulting in different rescue service
[29]. In this paper, we divide the supply locations into three
grades. Grade 1 is the top of them, which means that it has
the greatest rescue ability. Otherwise, Grade 3 is the bottom

of them, which has the worst rescue service. We denote 𝐺(𝑖)
as the service level of the depot 𝑖,

𝐺 (𝑖) =
{{{{
{{{{
{

3 Grade 1
2 Grade 2
1 Grade 3.

(15)

The purpose of the emergency resources preallocation is
that, in the event of a traffic accident, the supply locations
can distribute enough resources to meet the needs of the
accident site in the shortest possible time. Hence, in addition
to considering the response time and cost, we also consider
whether the scheme can meet the requirements of black
spots in the RRM model. We denote 𝑊 as the shortage of
commodity at black spots and denote 𝑑𝑗 as the demand of
black spot 𝑗.

According to formula (3), we put forward to RRMmodel
for emergency resource preallocation problem.

min 𝑅𝑛 (𝑘) (16)

𝑅1 = max {𝑅12, 𝑅13, ⋅ ⋅ ⋅ , 𝑅1𝑚} (17)

𝑅2 = max {𝑅21, 𝑅23, ⋅ ⋅ ⋅ , 𝑅2𝑚} (18)

... (19)

𝑅𝑚 = max {𝑅𝑚1, 𝑅𝑚2, ⋅ ⋅ ⋅ , 𝑅𝑚(𝑚−1)} (20)

𝑅𝑛1𝑛2 = 𝜑𝑇 (𝑇𝑛1 , 𝑇𝑛2) + 𝜑𝐶 (𝐶𝑛1 , 𝐶𝑛2)
+ 𝜑𝑊 (𝑊𝑛1 ,𝑊𝑛2)

(21)

𝜑𝑇 (𝑇𝑛1 , 𝑇𝑛2) = max {0, 𝛽𝑇 ⋅ (𝑇𝑛2 − 𝑇𝑛1)} (22)

𝜑𝐶 (𝐶𝑛1 , 𝐶𝑛2) = max {0, 𝛽𝐶 ⋅ (𝐶𝑛2 − 𝐶𝑛1)} (23)

𝜑𝑊 (𝑊𝑛1 ,𝑊𝑛2) = max {0, 𝛽𝑊 ⋅ (𝑊𝑛2 −𝑊𝑛1)} (24)

𝑇𝑛 =
𝑛𝑖∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑡𝑖𝑗𝑥𝑖𝑗 (25)

𝐶𝑛 =
𝑛𝑖∑
𝑖=1

𝑛𝑗

∑
𝑗=1

(𝐶𝑠 + 𝐶𝑏) 𝐺𝑖𝑥𝑖𝑗 (26)

𝑊𝑛 =
𝑛𝑗

∑
𝑗=1

(𝑑𝑗 − 𝑥𝑗) (27)

subject to

𝑛𝑗

∑
𝑗=1

𝑥𝑖𝑗 ≤ 𝑎𝑖 (28)

𝑛𝑖∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑥𝑖𝑗 ≤ 𝐴 (29)
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Figure 1: The accident data for each city in three years.

𝑥𝑖𝑗 ≥ 0,
𝑥𝑖𝑗 ∈ 𝑋𝑛,

𝑥𝑖𝑗 is integer
(30)

where 𝑅𝑛(𝑘) is the regret value of plan 𝑛 under the
scenario 𝑘, and𝑅1 , 𝑅2, ⋅ ⋅ ⋅ , 𝑅𝑚, respectively, is the regret value
of the plan 1, 2, ⋅ ⋅ ⋅ , 𝑚. Let 𝜑𝑇, 𝜑𝐶, 𝜑𝑊 be the attribute-regret
function. We use 𝛽𝑇 to denote the estimated parameters of
response time, 𝛽𝐶 to denote the estimated parameters of the
total cost, and 𝛽𝑊 to denote the estimated parameters of
unfilled demand.

The goal of the objective function (16) is to select the
minimal regret value from all schemes. Equations (17), (18),
and (20), respectively, indicate that the regret value of scheme
1, 2, ⋅ ⋅ ⋅ , 𝑚 equals the regret associated with the comparison
of that alternative with the best of the other alternatives.
Equation (21) represents the binary regret associated with
alternative 𝑛1 when compared to alternative 𝑛2. Equations
(22), (23), and (24) state that either alternative 𝑛1 performs
better than 𝑛2 in terms of the response time attribute, the
total cost attribute, and the demand attribute, in case there is
no attribute-regret, or alternative 𝑛1 performs worse than 𝑛2,
in case the regret value associated with these attributes is a
linear function of the difference in attribute values. Equation
(25) indicates the meaning of the attribute of the response
time. The total cost attributes including storage cost and
acquisition cost, as well as considering the rescue service
level of the depot 𝑖, are represented by formula (26). The
difference between the resources dispatched to the black
spots and its demand is stated by formula (27). Constraint
(28) requires that the number of emergency resources in
depot 𝑖 must be within the maximum inventory capacity
at that point. Constraint (29) states that the total number
of resources in the study area cannot exceed the total
number of emergency resources provided by the government.
Constraint (30) requires that𝑥𝑖𝑗must be a positive integer and
belong to𝑋𝑛.

Because the parameters belong to different dimensions
in 𝜑𝑇, 𝜑𝐶, 𝜑𝑊 and the numerical differences are relatively
large, it is not appropriate to use them directly in the
RRM model. Therefore, it is necessary to carry out the
nondimensionalization of (𝑇𝑛2 − 𝑇𝑛1), (𝐶𝑛2 − 𝐶𝑛1), and
(𝑊𝑛2 − 𝑊𝑛1), called the normalization of parameter data,
that is, convert the parameters into relative dimensionless
numbers. In this paper, a standardized method is used to
perform a dimensionless treatment of (𝑇𝑛2 −𝑇𝑛1), (𝐶𝑛2 −𝐶𝑛1),
and (𝑊𝑛2 − 𝑊𝑛1), and they are separately converted into
dimensionless standardized data to eliminate the impact of
the data dimension.

Standardized formula is as follows:

𝑦𝑖 = 𝑥𝑖 − 𝑥
𝑠 (31)

where𝑥 = (1/𝑛)∑𝑛𝑖=1 𝑥𝑖 and 𝑠 = √(1/(𝑛 − 1))∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2.

3. Case Study

We present a case study to demonstrate our approach.Three-
year accidents’ data of three big cities in Shandong province
is analyzed and processed to verify the effectiveness of the
three-stage RRM model. Although our model can cover
several types of emergency resources, in this case study, we
only consider single type resources (wreckers) for the sake of
clarity in the representation.

3.1. Identify Black Spots and Calculate the Accident Probability
of Black Spots. In this paper, we analyze the freeway accident
data on rainy days in Shandong province in years from 2014
to 2016 and count the accident distributions of each city. The
results are as in Figure 1.

As shown in Figure 1, we choose Linyi with the largest
number of accidents as our study area. Meanwhile, we select
its adjacent cities Weifang and Rizhao to identify three cities’
accident black spots on the freeway.



Journal of Advanced Transportation 7

Table 1: The number of accidents on the unit road section.

No. Original Pile No. Final Pile No. 𝑚𝑖
1 K69+909 K71+000 3
2 K71+000 K72+000 0
3 K72+000 K73+000 3... ... ... ...
52 K120+000 K121+000 2
53 K121+000 K122+000 4
54 K122+000 K123+000 5... ... ... ...
101 K188+000 K189+000 21
102 K189+000 K191+000 13
103 K191+000 K192+000 27... ... ... ...
121 K232+000 K233+000 30
122 K233+000 K234+000 27
123 K234+000 K236+414 39

Total 1109

Figure 2: Accident locations marked on the map of ArcGIS.

Weifang contains four freeways, which are G18, G25, G20,
and S16. Rizhao includes four freeways, which are G15, G1511,
G25, and S7801. Linyi has four freeways, which are G2, G20,
G22, and G25.

We calibrate the latitude and longitude positions of
accidents in three years on the map of ArcGIS. As shown in
Figure 2, we can see that the actual accident points aremarked
on the map. However, due to the large volume of accident
data and its inconsistent locations, their distributions are very
fragmented. If we do not classify them, it is very difficult to
allocate emergency resources in such a disorganized situa-
tion. Therefore, we need to process the three-year accidents’
data on the freeway and identify the black spots from them.

Take the G20 as an example to describe the identification
process. G20 has a total length of 419 kilometers, which starts
from east of Qingdao and passes throughWeifang, Zibo, and
Jinan. In this paper, we only identify the black spots of G20 in
the Weifang section.

(1) Determination of the Critical Number of Accidents. We
decide 1 km as a unit length and divide G20 into several
unit lengths, 123 unit road sections in total. The number of
accidents 𝑚𝑖 occurring on each unit 𝑖 is shown in Table 1.

The average number of accidents 𝜆 on a unit is

𝜆 = ∑𝑚𝑖
𝑛 = 1109

123 ≈ 9 (32)

If the confidence level is 95%, the critical number of
accidents 𝑅 is

𝑅 = 𝜆 + 𝑢(1−𝛼)/2 ⋅ √𝜆 = 𝜆 + 1.96√𝜆 ≈ 15 (33)

(2) Obtain Accident Black Spots through the Primary Election.
We compare the actual number of accidents on the G20 with
the critical value 𝑅 and then obtain the results of black spots
through primary selection. There are 31 accident black spots
in total as shown in Table 2.

(3) �e Modification of Black Spots. According to the acci-
dents occurring on the adjacent road sections, we use “section
interception technology” to modify the original units and
merge adjacent black spots, and then we obtain the results
that include 14 black spots in Table 3.

We also calculate the critical value 𝑅 and identify black
spots for other freeways in the same method. The results are
in Table 4.

We totally identified 88 accident black spots on the
freeway in the three cities using the above method.

(4) �e Calculation of Accident Probability of Black Spots.
After screening out the black spots, we need to calculate
their accident probabilities. In the study area, there are
seven freeways with different traffic volumes and number
of accidents. We have mentioned before that the accident
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Table 2: Preliminarily select black spots.

Original Pile No. Final Pile No. The amount of accidents Original Pile No. Final Pile No. The amount of accidents
K99 K100 16 K206 K207 20
K135 K136 20 K207 K208 18
K136 K137 16 K208 K209 16
K144 K145 18 K209 K210 16
K157 K158 21 K210 K211 17
K158 K159 23 K211 K212 42
K159 K160 16 K212 K213 22
K165 K166 17 K213 K214 34
K168 K169 26 K216 K217 47
K177 K178 24 K220 K221 40
K188 K189 21 K225 K226 38
K191 K192 27 K230 K231 37
K194 K195 18 K232 K233 30
K197 K198 16 K233 K234 27
K200 K201 18 K234 K235 39

Table 3: The results of the modification.

Black spots 𝑗 The number of accidents
Original Pile No. Final Pile No.

K101 K102 36
K107 K108 36
K131 K133 36
K136 K141 96
K142 K144 36
K147 K151 60
K157 K158 36
K169 K172 60
K177 K186 156
K189 K191 84
K194 K196 36
K197 K199 36
K200 K206 144
K213 K216 132

probability of black spots is just relative value based on
the proportion of three-year accidents in this region. As
Figure 3 shows, the percentage of accidents on every freeway
is counted as in Figure 3.

We can get the results of the accident probability on the
basis of the above percentage in Table 5.

According to the accident probability, the summary graph
is shown in Figure 4.

We mark the black spots with different proportions that
depend on the accident probability on the map of ArcGIS in
Figure 5.The results are more obvious, clear, and orderly than
before.

3.2. �e �ree-Stage RRM Model of Allocating Emergency
Resource. We apply the three-stage RRM model to the free-
way in Linyi, Weifang, and Rizhao based on the accident data
in 2013-2016. We take the wrecker as an example under the
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Figure 3: The percentage of accidents on every freeway.

natural environment where the rainfall intensity is less than
2.5 𝑚𝑚 ⋅ ℎ−1, and the average speed V is 82.4 𝑘𝑚/ℎ to verify
the RRM emergency resource preallocation model.

(1) �e First Stage: Generate a Preliminary Plan. The goal
of this stage is to generate a preliminary plan based on the
minimum of response time through the genetic algorithm.
We change the initial scale of the population, the number of
iterations, and so on, in order to obtain several schemes.

Freeway operation company requires that the maximum
response time in the system 𝑡0 is 30 minutes and the average
process time 𝑡𝑙 is 5 minutes. According to the judging
conditions 𝑡0 − 𝑡𝑙 = 25min, we can get the value of
𝜃𝑖𝑗 whether supply location 𝑖 can cover the black spot 𝑗.
Finally, we get 15 schemes, which compose the plan set 𝑆1.
It is stipulated that government provides 75 wreckers for
three cities that are stored in road administration brigades
and road administration squadrons and their rescue grade,
respectively, are 1 and 2. The road administration brigades
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Table 4: The result of the identification of black spots in the study area.

Name G15 G18 G2 G20 G22 G25 G1511
The average number of accidents 𝜆 3 4 8 9 3 5 5
The critical value 𝑅 7 8 14 15 7 10 10
The number of black spots 4 7 21 14 7 22 13

Table 5: The results of accident probability.

No. Name Original Pile No. Final Pile No. Accident Probability
1

G15

K704 K707 0.012234
2 K712 K713 0.009176
3 K714 K715 0.006117
4 K742 K744 0.006117
5

G18
K363 K364 0.00534... ... ... ...

11 K443 K445 0.00534
12

G2
K542 K543 0.006662... ... ... ...

32 K707 K709 0.006662
33

G20
K101 K102 0.010531... ... ... ...

46 K213 K216 0.038614
47

G22
K101 K103 0.005706... ... ... ...

53 K159 K160 0.005706
54

G25
K1406 K1408 0.005464... ... ... ...

75 K1604 K1606 0.010927
76

G1511
K16 K18 0.009786... ... ... ...

88 K156 K158 0.009786
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Figure 4: Probability statistical chart.
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Table 6: The preliminary schemes.

Black spot Scheme No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2
2 0 0 2 0 0 0 0 0 0 2 0 0 2 0 1
3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
80 2 2 2 0 0 0 1 0 1 0 1 0 0 0 1
81 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
82 1 2 0 1 0 1 1 0 0 0 2 0 2 2 1
83 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
84 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
85 0 0 2 0 1 2 1 2 0 0 0 0 0 0 0
86 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2
87 2 2 2 0 0 0 1 1 0 0 0 2 2 2 2
88 2 2 2 0 0 0 1 0 1 0 1 0 0 0 1

Figure 5: The map with final black spots.

and road administration squadrons make up the supply
location 𝑖, and they are 18 in all. We get 15 schemes that
can represent how many wreckers allocate in every supply
location, which is shown in Table 6.

Figure 6 shows the result of SchemeNo. 1 through genetic
algorithm operation. The optimal local value is 0.782123 after
221 iterations. Other schemes are obtained by changing the
size of the initial population and themethods of hybridization
or selection, and so forth.

(2) Generate Scheme Set S2 on the Basis of Accident
Probability. According to the accident probability of black
spots in Table 4, we generate a diagonal matrix: 𝑃 =
[ 0.012234 ⋅⋅⋅ 0
... d

...
0 ⋅⋅⋅ 0.009786

].Then, we apply formula (8) in Section 2.2

and finally obtain the new scheme set 𝑆2.

Best: 0.782123 Mean: 0.784786
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Figure 6: The result of genetic algorithm operation.

(3) Generate the Most Optimal Plan through the Calculation
of the RRM Model. In this part, we put every element in the
scheme set 𝑆2 into theRRMmodel to calculate. At first, we use
a standard method to perform a nondimensional treatment
of (𝑇𝑛2 − 𝑇𝑛1), (𝐶𝑛2 − 𝐶𝑛1), and (𝑊𝑛2 −𝑊𝑛1), then compare 15
plans, respectively, 210 times to obtain 𝜑𝑇, 𝜑𝐶, 𝜑𝑊, and select
the lowest regret value 𝑅𝑛(𝑘).

According to the degree of importance of each attribute,
we use the expert scoring method to determine the estimated
parameter values, 𝛽𝑇 = −0.45, 𝛽𝐶 = −0.3, 𝛽𝑊 = −0.25.
The results are shown in Table 7 and Figure 7. In addition
to the analysis of the results, except for scheme 15, the
maximum regret value of other alternatives is generated from
the compassion with 𝑅𝑛1,15. Comparing all regret values of
each plan, scheme 15 has the lowest total regret value and
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Table 7: The regret value of each plan.

𝑅1 𝑅1,2 𝑅1,3 𝑅1,4 𝑅1,5 𝑅1,6 𝑅1,7 𝑅1,8 𝑅1,9 𝑅1,10 𝑅1,11 𝑅1,12 𝑅1,13 𝑅1,14 𝑅1,15
1.065 0.297 0.143 0.143 0.306 0.143 0.462 0.445 0.429 0.569 0.419 0.286 0.000 0.000 1.065
𝑅2 𝑅2,1 𝑅2,3 𝑅2,4 𝑅2,5 𝑅2,6 𝑅2,7 𝑅2,8 𝑅2,9 𝑅2,10 𝑅2,11 𝑅2,12 𝑅2,13 𝑅2,14 𝑅2,15
0.908 0.000 0.071 0.071 0.080 0.071 0.462 0.374 0.357 0.303 0.214 0.214 0.000 0.000 0.908
𝑅3 𝑅3,1 𝑅3,2 𝑅3,4 𝑅3,5 𝑅3,6 𝑅3,7 𝑅3,8 𝑅3,9 𝑅3,10 𝑅3,11 𝑅3,12 𝑅3,13 𝑅3,14 𝑅3,15
1.734 0.811 1.036 0.594 1.117 0.704 1.109 0.870 1.074 1.237 1.087 0.242 0.611 0.551 1.734
𝑅4 𝑅4,1 𝑅4,2 𝑅4,3 𝑅4,5 𝑅4,6 𝑅4,7 𝑅4,8 𝑅4,9 𝑅4,10 𝑅4,11 𝑅4,12 𝑅4,13 𝑅4,14 𝑅4,15
1.139 0.217 0.442 0.000 0.523 0.110 0.515 0.303 0.480 0.643 0.493 0.143 0.017 0.000 1.139
𝑅5 𝑅5,1 𝑅5,2 𝑅5,3 𝑅5,4 𝑅5,6 𝑅5,7 𝑅5,8 𝑅5,9 𝑅5,10 𝑅5,11 𝑅5,12 𝑅5,13 𝑅5,14 𝑅5,15
1.051 0.071 0.143 0.214 0.214 0.214 0.534 0.517 0.500 0.445 0.357 0.357 0.000 0.071 1.051
𝑅6 𝑅6,1 𝑅6,2 𝑅6,3 𝑅6,4 𝑅6,5 𝑅6,7 𝑅6,8 𝑅6,9 𝑅6,10 𝑅6,11 𝑅6,12 𝑅6,13 𝑅6,14 𝑅6,15
1.029 0.107 0.332 0.000 0.000 0.413 0.462 0.303 0.370 0.533 0.383 0.143 0.000 0.000 1.029
𝑅7 𝑅7,1 𝑅7,2 𝑅7,3 𝑅7,4 𝑅7,5 𝑅7,6 𝑅7,8 𝑅7,9 𝑅7,10 𝑅7,11 𝑅7,12 𝑅7,13 𝑅7,14 𝑅7,15
0.767 0.164 0.461 0.143 0.143 0.470 0.200 0.214 0.570 0.502 0.583 0.286 0.000 0.000 0.767
𝑅8 𝑅8,1 𝑅8,2 𝑅8,3 𝑅8,4 𝑅8,5 𝑅8,6 𝑅8,7 𝑅8,9 𝑅8,10 𝑅8,11 𝑅8,12 𝑅8,13 𝑅8,14 𝑅8,15
0.863 0.244 0.469 0.000 0.026 0.549 0.136 0.310 0.434 0.438 0.448 0.071 0.043 0.000 0.863
𝑅9 𝑅9,1 𝑅9,2 𝑅9,3 𝑅9,4 𝑅9,5 𝑅9,6 𝑅9,7 𝑅9,8 𝑅9,10 𝑅9,11 𝑅9,12 𝑅9,13 𝑅9,14 𝑅9,15
0.803 0.023 0.248 0.000 0.000 0.329 0.000 0.462 0.231 0.449 0.156 0.000 0.000 0.000 0.803
𝑅10 𝑅10,1 𝑅10,2 𝑅10,3 𝑅10,4 𝑅10,5 𝑅10,6 𝑅10,7 𝑅10,8 𝑅10,9 𝑅10,11 𝑅10,12 𝑅10,13 𝑅10,14 𝑅10,15
0.605 0.000 0.030 0.000 0.000 0.111 0.000 0.231 0.071 0.286 0.143 0.143 0.000 0.000 0.605
𝑅11 𝑅11,1 𝑅11,2 𝑅11,3 𝑅11,4 𝑅11,5 𝑅11,6 𝑅11,7 𝑅11,8 𝑅11,9 𝑅11,10 𝑅11,12 𝑅11,13 𝑅11,14 𝑅11,15
0.693 0.000 0.092 0.000 0.000 0.172 0.000 0.462 0.231 0.143 0.293 0.000 0.000 0.000 0.693
𝑅12 𝑅12,1 𝑅12,2 𝑅12,3 𝑅12,4 𝑅12,5 𝑅12,6 𝑅12,7 𝑅12,8 𝑅12,9 𝑅12,10 𝑅12,11 𝑅12,13 𝑅12,14 𝑅12,15
1.419 0.712 0.937 0.000 0.495 1.018 0.605 1.010 0.700 0.832 1.138 0.845 0.512 0.451 1.491
𝑅13 𝑅13,1 𝑅13,2 𝑅13,3 𝑅13,4 𝑅13,5 𝑅13,6 𝑅13,7 𝑅13,8 𝑅13,9 𝑅13,10 𝑅13,11 𝑅13,12 𝑅13,14 𝑅13,15
1.551 0.486 0.783 0.429 0.429 0.720 0.522 0.784 0.731 0.891 1.055 0.905 0.571 0.286 1.551
𝑅14 𝑅14,1 𝑅14,2 𝑅14,3 𝑅14,4 𝑅14,5 𝑅14,6 𝑅14,7 𝑅14,8 𝑅14,9 𝑅14,10 𝑅14,11 𝑅14,12 𝑅14,13 𝑅14,15
1.326 0.261 0.557 0.143 0.186 0.566 0.296 0.559 0.462 0.666 0.829 0.679 0.286 0.060 1.326
𝑅15 𝑅15,1 𝑅15,2 𝑅15,3 𝑅15,4 𝑅15,5 𝑅15,6 𝑅15,7 𝑅15,8 𝑅15,9 𝑅15,10 𝑅15,11 𝑅15,12 𝑅15,13 𝑅15,14
0.220 0.000 0.139 0.000 0.000 0.220 0.000 0.000 0.000 0.143 0.109 0.047 0.000 0.000 0.000
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Figure 7: The regret value of each plan.

is the best option for the decision maker. Since scheme 15 is
the best plan in all solutions, it can generate the lowest regret
value among them. Therefore, if the decision makers choose
other schemes rather than scheme 15, the regret will be larger
than the regret of scheme 15.

In order to prove the superiority of our proposedmethod,
we compare it with the SP model considering response time,
total cost, and the demand as well and solve it by a genetic
algorithm. The final SP solution and the final RRM solution
are considered as two alternatives. Then we compare them
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Table 8: The comparing result.

Selected plan SP model RRM model
𝑇 𝐶 𝑊 Final Result 𝜑𝑇 𝜑𝐶 𝜑𝑊 𝑅

SP plan 36.98 55.18 45.22 137.38 2.21 2.64 0.69 5.54
RRM plan 55.93 48.79 49.19 153.91 0.00 0.00 0.00 0.00

separately by the SP model and RRM model. The results are
shown in Table 8.

As shown in Table 8, although the result of SP plan
is smaller than the RRM plan through the calculation of
the SP model, the attribute of response time extremely
compromises the final result in SP plan. In addition, we
can see that the regret of the SP plan is larger than the
regret of the RRM model when we choose the SP plan. The
regret value of every attribute of the SP plan performs worse
than the RRM plan, but we cannot find this result from
the calculation of SP model. Therefore, the results of the
comparison can confirm that theRRMapproachweproposed
is better than SP model in emergency resource preallocation
problem.

4. Conclusions

A three-stage RRM model considering the accident prob-
ability of black spots is established to study the emer-
gency resource preallocation. Firstly, the improved accident
frequency method is used to identify the black spots, in
order to calculate the accident probability. Although some
scholars considered the probabilistic constraints in the model
for the resource allocation problem, they assumed a given
probability rather than identifying the accident black spots.
With no doubt, the identification of the black spot can
be beneficial to summarize the mass accident data, which
makes the occurring accident probability more authentic and
believable.

Secondly, we come up with a three-stage RRMmodel for
the emergency resources preallocation in this paper. Because
response time plays the most important role in the rescue,
we select the initial plan set through minimization stochastic
programming model with response time constraint in the
first stage.Then, we combine the accident probability with the
initial plan set to obtain a new scheme set. To put it in another
way, accident probability is attached as theweight to the initial
plan set. In the third stage, we consider the factors of response
time, total cost, and demand of black spots comprehensively
and regard them as the attribute of RRM model to calculate
every scheme’s regret value and select the scheme with the
smallest regret value.

In the case study, in order to verify the correctness and
validity of our approach, we analyze three-year rainy day
accidents’ data of Linyi, Weifang, and Rizhao, identify 88
black spots, and calculate their relative accident probability.
In addition, we calculate the regret value of 15 plans through
the RRM model and compare the final selection with the
result of the SP model. The case study shows the following
results:

(1) The improved accident frequency method is effective
for limited accident data. The method extremely sim-
plifies the complexity of data and highly summarizes
where accidents occur more. The identification of
black spots lays the foundation for the following
emergency resource preallocation issue.

(2) The three-stage RRM model for emergency resource
preallocation ismore advantageous for the emergency
decision than common SP model, since the charac-
teristics of semi-compensation in RRM model can
consider every attribute comprehensively, while the
better performance of attribute can completely com-
promise the total value in SP model. Therefore, our
approach has good applicability to the preallocation
of emergency resources on the freeway.

Several avenues present themselves as direction for fur-
ther work. At first, due to the limitation of data acquisition
and the confidentiality of certain data by related departments,
there is no specific number of casualties. Hence, we cannot
put this factor into the identification of black spots. Actually,
the number of casualties cannot be ignored in the issue
of identifying black spots. Although the improved accident
frequency has relatively errors, this approach has already
made the most of available data. In the future, the number of
casualties per accident can be fully taken into consideration
as one of the identification factors for black spots to improve
the accuracy. On the other hand, the RRM model needs to
compare every plan with others, which obviously increases
the computation time. Hence, how to decrease the computa-
tion time using the heuristic algorithm is also the next step of
our study.
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