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Queue length is one of the most important traffic evaluation indexes for traffic signal control at signalized intersections. Most
previous studies have focused on estimating queue length, which cannot be predicted effectively. In this paper, we applied the
Lighthill–Whitham–Richards shockwave theory and Robertson’s platoon dispersion model to predict the arrival of vehicles in
advance at intervals of 5 seconds. This approach fully described the relationship between disparate upstream traffic arrivals (as a
result of vehicles making different turns) and the variation of incremental queue accumulation. It also addressed the shortcomings
of the uniform arrival assumption in previous research. In addition, to predict the queue length of multiple lanes at the same time,
we integrated the prediction of the traffic volume proportions in each lane using the Kalman filter. We tested this model in a field
experiment, and the results showed that the model had satisfactory accuracy. We also discussed the limitations of the proposed
model in this paper.

1. Introduction

Queue length is the most important index for signal control
evaluation [1] or signal optimization [2–6]. Over the years,
many researchers have devoted themselves to the study of
queue length, which can be divided into three categories
(i.e., detection, estimation, and prediction), according to
queue length acquisition methods. The first category—the
direct detection of queue length using equipment such as
cameras—is one of the most commonly used methods to
obtain queue length in recent research [7–9]. This method
can simply and quickly obtain the queue length, but it does
not consider fluctuations in traffic flow, and the maximum
queue will not be obtained when the queue length exceeds
the visual range of the camera.

The second category, queue length estimation, is the most
studied by scholars. In the literature, queue length estimation
methods can generally be classified into two categories [10,
11]: input-output models [2, 12–14] and shockwave models
[10, 11, 15–18]. The input-output model analyzes the cumu-
lative traffic input-output (arrival-departure curve) of a link

to estimate the queue length. This kind of model has simple
conceptual properties. It is limited, however, by the inability
to capture the spatial queue in actual arterial traffic. At
the same time, the traditional input-output analysis cannot
describe the spatial distribution of queue length in real time,
nor is this model suitable for the estimation of queue length
at oversaturated intersections [10].

Recently, much attention has been given to the formation
and dissipation of queues using traffic shockwave theory. The
shockwave model provides a better analysis framework for
queue length estimation [6]. With the development of traffic
data acquisition technology, the estimation of queue length
by probe vehicles has also become a common method [19–
22]. Because of the unique mobility of probe vehicle data
and limitations on probe vehicle size, the precision of queue
length estimation can be guaranteed only when the penetra-
tion rate of probe vehicles is high. A penetration rate of 30%
was recommended by Ban et al. [11] and byGoodall, Park, and
Smith [23]. According to Hao et al. [24], penetration rates at
or above 10% are able to provide mean absolute error within±3 vehicles in queue length estimation. In addition, most
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researchers take isolated intersections as the research subject
to establish their queue length estimation model [19–22]. It
is usually assumed that the vehicle arrives from a uniform
traffic distribution [11, 19–21]. Intersections in real road
networks often are not isolated, however, and downstream
vehicle arrival is often closely related to upstream vehicle
release characteristics, flow rate, and travel time [25, 26].The
uniform distribution of vehicles cannot accurately describe
the dispersed characteristics of vehicle arrival, nor can it
describe the real-time attributes of the arrival of vehicles with
disparate characteristics of queue length.How to describe this
disparity is a primary focus of this paper.

The third category is the prediction of queue length. With
the improvement of traffic control requirements, predictive
traffic signal control has become a developing trend, which
relies on the ability to obtain relevant parameters of traffic
control in advance [27–31].Therefore, the prediction of queue
length is essential for predictive control optimization. The
research on queue length prediction is scarce. Hao and Ban
[24] usedmobile data to estimate queue length and noted that
queue length prediction is the direction of future research.
RHODES [32] and Sharma et al. [13] predicted vehicle arrival
and release rate using conventional input-output and queue
length estimations. Akçelik [12] modified the parameters of
the Highway Capacity Manual queue estimation model by
statistical analysis and established a queue length prediction
model. This model, however, cannot describe the spatial
distribution and evolution of queue length, nor is it suitable
for prediction of queue length at oversaturated intersections.
Geroliminis and Skabardonis [25] combined platoon disper-
sion characteristics and Lighthill–Whitham–Richards (LWR)
theory to predict queue length effectively, but the model
considers only the maximum queue, and it cannot describe
the evolution of the queue in real time or analyze the dynamic
effects of different upstream turning flowon the queue length.
In addition, this model cannot simultaneously predict the
queue length of multiple lanes at the same time.

To overcome the shortcomings of previous studies, in
which vehicle arrival was assumed to be uniformly dis-
tributed and the evolutionary process of queue length could
not be described, we combined the advantages of traffic wave
theory and the platoon dispersion model to analyze vehicle
arrival. We predicted the queue length in real time and
obtained changes in queue length in advance, which provided
support for predictive traffic signal optimization.

This study makes the following contributions:

(1) We obtained the upstream different turning flows in
real time at intervals of 5 seconds and fully considered
the discrete characteristics of the vehicle to predict
downstream vehicle arrival, which overcame the lim-
itation of the uniform arrival assumption in previous
research on queue length estimation.

(2) The proposed model predicted the lane-based queue
length in real time—the prediction included incre-
mental queue accumulation (IQA), queue trajectory,
maximum queue, and residual queue, which over-
came the shortcomings of previous research that
could not obtain the evolution trend of queuing in

advance; and we determined the specific predicted
advance interval of the queue length depends on the
travel time between upstream intersection and down-
stream intersection. This was a convenient way to
make an optimal strategy of proactive signal control.

(3) The proposed model obtained the influence of the
different upstream turning flows on downstream IQA
in real time, and the relationship between upstream
and downstream intersections was enhanced, which
was helpful for fine signal coordination optimization
design.

(4) The prediction of the proportions of traffic volume in
each lane provided the basis for prediction of lane-
based queue lengths. To improve accuracy in predict-
ing the lane-based traffic proportion while using the
Kalman filter, we used the information of all lanes
at the first three intervals in the prediction of lane𝑖. In the previous method, however, the researchers
used only the information of lane 𝑖 at the first three
intervals in the prediction of lane i.

The remainder of this paper is organized as follows. In
Section 2, we introduce the assumptions made and termi-
nology used in this paper and provide the simplified queue-
forming and queue-discharging process. Section 3 presents
models to predict the proportion of lane-based traffic volume
and the real-time queue length. The model is then tested
using field data in Section 4. Finally, Section 5 summarizes
the findings and provides directions for future work.

2. Preliminaries

In this section, we provide the assumptions for deriving the
queue length prediction model, some terminology defini-
tions, and a simplified queue-forming and queue-discharging
process.

2.1. Assumptions. Wemake the following assumptions:

(1) The vehicle follows the first-in-first-out (FIFO) prin-
ciple, and there is no obvious overtaking phe-
nomenon.

(2) The vehicle has the same acceleration and decelera-
tion behavior.

(3) The influence of buses on traffic flow is disregarded.

The necessity for these assumptions is explained in Appendix
A.

2.2. Terminology. In this paper, real-time queue length is
defined as the number of vehicles queuing at any given time.

2.3. Simplified Queue-Forming and Queue-Discharging Pro-
cess. On the basis of these assumptions, the queue-forming
and queue-discharging process can be described as shown
in Figure 1(b). The triangular fundamental diagram for con-
structing this process is shown in Figure 1(a). In these figures,
0 and 𝑘𝑗 are jam volume and jam density; 𝑞𝑚 and 𝑘𝑚 are
saturation volume and optimal density; 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ + 𝑡) and
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Figure 1: (a) Fundamental diagram; (b) shockwave propagation process.

𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ + 𝑡) are the volume and density of the downstream
arrival flow in 𝑙𝑎𝑛𝑒 𝑖 during the nth cycle at intervals of
5 seconds, as will be described in detail in Section 3.3. In
addition,𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖,𝑤𝑛2 ,𝑤𝑛3 , and𝑤𝑛4 are the queue-forming wave
in 𝑙𝑎𝑛𝑒 𝑖, the queue-discharging wave, the departure wave,
and the residual queue-forming wave, respectively. As shown
in Liu et al. [10] and Ban et al. [11], the speeds of the four waves
can be calculated as follows:

𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
0 − 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)𝑘𝑗 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)𝑘𝑗 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡) ,

(1)

𝑤𝑛2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞𝑚 − 0𝑘𝑚 − 𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
𝑞𝑚𝑘𝑗 − 𝑘𝑚 , (2)

𝑤𝑛3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞𝑚 − 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)𝑘𝑚 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
𝑞𝑚𝑘𝑚 , (3)

𝑤𝑛4 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
0 − 𝑞𝑚𝑘𝑚 − 𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑤𝑛2 . (4)

In Figure 1(b), A, B, C, and D each describe the queue
accumulation of traffic flow in different directions (i.e.,
through and right-turn movement, right-turn movement,
left-turn and right-turn movement, and right-turn move-
ment, respectively) from the upstream intersection to the
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Figure 2:The initial state for queue length prediction.

downstream intersection. A key point of this paper is describ-
ing the dynamic differences in vehicle arrival during condi-
tions of different turning flow at the upstream intersection.

3. Real-Time Queue Length Prediction

3.1. The Initial Moment of Queue Length Prediction. Over-
saturated traffic conditions evolve with the gradual increase
of traffic demand in undersaturated traffic conditions. In an
undersaturated traffic condition, the queue length of 𝑙𝑎𝑛𝑒 𝑖
is generally equal to 0 at the end of the effective green time
of 𝑙𝑎𝑛𝑒 𝑖 (𝑡𝑛𝑔,𝑙𝑎𝑛𝑒 𝑖). Therefore, we can use 𝑡𝑛𝑔,𝑙𝑎𝑛𝑒 𝑖 as the starting
time for the queue length calculation. As shown in Figure 2,𝑡𝑛𝑔,𝑙𝑎𝑛𝑒 𝑖 is when the first (current) vehicle actually moves. To
predict the arrival of vehicles in advance, this paper drew
upon lessons from the processing methods in Mirchandani
and Head [32] and Geroliminis and Skabardonis [25], taking𝑡𝑛0,𝑙𝑎𝑛𝑒 𝑖 as the advance running moment of the first vehicle,𝑡𝑛0,𝑙𝑎𝑛𝑒 𝑖 = 𝑡𝑛𝑔,𝑙𝑎𝑛𝑒 𝑖 − 𝑡, where 𝑡𝑛𝑔,𝑙𝑎𝑛𝑒 𝑖 is the end (or duration) of
the green time for the 𝑛th cycle of lane i, and 𝑡 is the average
travel time of vehicles from the upstream section (upstream
site A) to the downstream stopline (downstream site B).Thus,
we have 𝑡 = 𝑙/V, where 𝑙 is the distance between upstream site
A and downstream site B, and V is the average speed of the sec-
tion 𝑙, whichmeans that the predicted advance interval of the
queue length depends on 𝑡. Namely, as shown in Figure 2, the
queue length prediction process is such that, according to the
current state, we determined the advance state according to
the travel time, and then we predicted the queue length (giv-
ing the predicted state) according to the arrival prediction.

3.2. Lane-Based Traffic Proportions Prediction. To predict the
queue length of all lanes at the same time, we needed to

predict the proportion of lane-based traffic volume. A
Kalmanfilter [33] is a highly efficient recursive (or autoregres-
sive) filter that can be used to estimate the state of a dynamic
system from a series of measurements with moderate noise.
Because of its good state estimation and prediction accuracy,
as well as its ease of calculation and implementation, it
has been applied extensively to traffic flow estimation and
prediction [20, 34–36].

To start the recursive process, we set the system variables,
time update equations, and measurement equations. Let𝑝𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 be the proportion of downstream lane-based traffic
volume in lane 𝑖 in the 𝑛th interval (we took 5 minutes as
an interval). Because the traffic flow at the 𝑛th interval was
closely related to the traffic flow in the first three intervals, we
used the information of all the lanes at the first three intervals
in the prediction of lane 𝑖. The prediction value 𝑝𝑛|𝑛−1

𝑑,𝑙𝑎𝑛𝑒 𝑖 of𝑝𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 can be represented as follows:

𝑝𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖
= 𝑀∑
𝑖=1

(ℎ𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑝𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 + ℎ𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖𝑝𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 + ℎ𝑛−3𝑑,𝑙𝑎𝑛𝑒 𝑖𝑝𝑛−3𝑑,𝑙𝑎𝑛𝑒 𝑖)
+ 𝜔𝑛−1𝑙𝑎𝑛𝑒 𝑖,

(5)

where 𝑝𝑛|𝑛−1
𝑑,𝑙𝑎𝑛𝑒 𝑖

is the predicted value of the proportion of
downstream volume of lane 𝑖 during the 𝑛th interval; 𝑀 is
the total number of approach lanes (𝑀 is 3 in the test site for
the proposed model); 𝑝𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖, 𝑝𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖, and 𝑝𝑛−3𝑑,𝑙𝑎𝑛𝑒 𝑖 represent
the observed proportion of lane-based traffic volume at the
downstream in lane 𝑖 in the (n-1)th interval, the (n-2)th
interval, and the (n-3)th interval, respectively; ℎ𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖, ℎ𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖,
and ℎ𝑛−3𝑑,𝑙𝑎𝑛𝑒 𝑖 are parameters relating the state at the (n-1)th,
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(n-2)th, and (n-3)th intervals, respectively, to the state in
the 𝑛th cycle at the downstream in lane i; 𝜔𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 is the
observation noise in the (n-1)th cycle downstream in lane𝑖 and is assumed to be a white noise with zero mean; and𝑅𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 is the covariance matrix of 𝜔𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 in the (n-1)th cycle
downstream in lane 𝑖.

To use the Kalman filter to predict state variables, the
following integrated transformations are carried out:

𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = (𝑝𝑛−1𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , 𝑝𝑛−1𝑑,𝑙𝑎𝑛𝑒𝑀, 𝑝𝑛−2𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , 𝑝𝑛−2𝑑,𝑙𝑎𝑛𝑒𝑀,
𝑝𝑛−3𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , 𝑝𝑛−3𝑑,𝑙𝑎𝑛𝑒𝑀) , (6)

𝑋𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = (ℎ𝑛−1𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , ℎ𝑛−1𝑑,𝑙𝑎𝑛𝑒𝑀, ℎ𝑛−2𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , ℎ𝑛−2𝑑,𝑙𝑎𝑛𝑒𝑀,
ℎ𝑛−3𝑑,𝑙𝑎𝑛𝑒 1, ⋅ ⋅ ⋅ , ℎ𝑛−3𝑑,𝑙𝑎𝑛𝑒𝑀)𝑇 . (7)

Combining 𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 and 𝑋𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 with the Kalman filter, the
traffic volume proportions for our prediction model can be
obtained as follows:

𝑋𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐹𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 + 𝑢𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖, (8)

𝑝𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 + 𝜔𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖, (9)

where 𝑋𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 is the state vector; 𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 is the observation
matrix; 𝐹𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 is the state transition matrix; 𝑢𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 is the
process noise in the (n-2)th cycle downstream in lane 𝑖 and is
assumed to be awhite noisewith zeromean; and𝑄𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 is the
covariance matrix of 𝑢𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 in the (n-2)th cycle downstream
in lane i.

According to this analysis, we used the following steps to
predict traffic flow using the Kalman filter.

(1) Set the Initial Parameters. We set the initial value of the
state transition matrix 𝐹1|0

𝑑,𝑙𝑎𝑛𝑒 𝑖
in the Kalman filter equation

as the unit matrix 𝐼, and the dimension was 𝑀2 × 𝑀2. We
obtained the initial value of the process noise correlation
matrix and the observation noise correlation matrix by the
random function and covariance function in MATLAB,𝑄0𝑑,𝑙𝑎𝑛𝑒 𝑖 = cov(rand 𝑛(𝑀2,𝑀2)); and in this paper, the
observed data were in a one-dimensional time series, so𝑅0𝑑,𝑙𝑎𝑛𝑒 𝑖 = cov(rand 𝑛(1, 1)). The initial value of state vector
prediction 𝑋1|0

𝑑,𝑙𝑎𝑛𝑒 𝑖
was [0], and its error autocorrelation

matrix 𝐾1|0
𝑙𝑎𝑛𝑒 𝑖

was the zero matrix. To make the filter gain
process convergence faster, we estimated the initial value of
the state vector estimation 𝑋0|0

𝑑,𝑙𝑎𝑛𝑒 𝑖
using the R programming

language to fit the linear relation (by the method of least
squares) between the value of the 0 interval and the value of its
previous three intervals, and its error autocorrelation matrix
was the zero matrix.

(2) Run a Recursive Prediction Based on the Kalman Filter.

Step 1. Set the recursion cycle variable 𝑛, where the number
of recursions is the predicted length. Then calculate the
following quantities.

Step 2. The Kalman gain matrix:

𝐺𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐾𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 (𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖)𝑇
⋅ [𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝐾𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 (𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖)𝑇 + (𝑅𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖)]−1 .

(10)

Step 3. The observation error:

𝑒𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝑝𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 − 𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 . (11)

Step 4. The state vector optimal estimate:

𝑋𝑛−1|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐹𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 𝑋𝑛−2|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 + 𝐺𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑒𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖. (12)

Step 5. The correlation matrix computation of the error of
state vector 𝑋𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖:

𝐾𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐹𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 𝐾𝑛−2|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 (𝐹𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 )𝑇𝑄𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖. (13)

Step 6. The correlation matrix optimal estimate of the error
of the state vector:

𝐾𝑛−1|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = (𝐼 − 𝐺𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖)𝐾𝑛−1|𝑛−2𝑑,𝑙𝑎𝑛𝑒 𝑖 . (14)

Step 7. The estimated value of the state vector:

𝑋𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐹𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛−1|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 . (15)

Step 8. The prediction of the observation value based on the
estimated state value:

𝑝𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐶𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖. (16)

Step 9. TheKalman filter estimation of the observation value
based on the state filter estimation value:

𝑝𝑛−1|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 = 𝐶𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖𝑋𝑛−1|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖 . (17)

Step 10. Finally, increment 𝑛 by the loop variable and repeat
the steps until the loop variable is equal to the predicted
length.

In the previous steps, the quantities are defined as follows:

𝐺𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖: Kalman gain matrix in lane 𝑖 during the (n-
1)th interval;𝑒𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖: observation errors in lane 𝑖 during the (n-1)th
interval;𝐹𝑛|𝑛−1
𝑑,𝑙𝑎𝑛𝑒 𝑖

: state transition matrix in lane 𝑖 from the (n-
1)th interval to the 𝑛th interval;𝐾𝑛−1|𝑛−2
𝑑,𝑙𝑎𝑛𝑒 𝑖

: correlation matrix of the error of 𝑋𝑛|𝑛−1
𝑑,𝑙𝑎𝑛𝑒 𝑖

;

𝑄𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖: process noise correlation matrix in lane 𝑖
during the (n-1)th interval;

𝑅𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖: observation noise correlation matrix in lane 𝑖
during the (n-1)th interval.
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3.3. The Evolutionary Process of the Queue State

3.3.1. Analysis of Platoon Dispersion Characteristics. The
queue at a signalized intersection presented the problem of
stochastic vehicle arrival and fixed service rate.The process of
receiving service was relatively simple: when the red light was
turned on, the service rate was zero and the vehicle stopped;
when the green light was turned on, the service rate was the
saturated flow rate. The number of vehicles leaving the inter-
section was related to the duration of the green light, so part
of the problemwas to determine the variable service rate.The
problem of vehicle arrival was complex, however, so it was
necessary to consider the influence of the signal design and
platoon dispersion characteristics [25]. The different platoon
dispersion characteristics determined different arrival times,
and the varying arrival rate determined the dynamic change
of the queue length.

When the queuing vehicles of the upstream intersection
leave the intersection during the green phase, as a result
of the squeeze and segmentation between the vehicles, part
of one vehicle is divided into a one-by-one platoon, which
causes the vehicle not to reach the next intersection uni-
formly. Thus, the “dispersion phenomenon” has occurred in
the platoon travel process [37–39]. The platoon dispersion
model can dynamically describe arrival characteristics and
predict downstream vehicle arrival [40]. Because the tail of
the geometric distribution is longer than the corresponding
normal distribution, Robertson’s model can better predict the
platoon dispersion for any given mean travel time [41]. In
addition, because of the low computational requirements of
Robertson’s model, it is easy to apply this model both to the
signal optimization of large road networks [37, 42–44] and to
the development of other traffic theories [31, 45–49].

In light of this, when the vehicles are controlled by traffic
signals and left in the form of a platoon, we used Robertson’s
model to predict downstream vehicle arrival (as shown in
Figure 1, A and C). When the vehicles are controlled by
traffic signals, we used the upstream observation value as the
downstream predicted arrival value (as shown in Figure 1,
B, and D). According to Robertson’s model, the relationship
between the vehicle arrival rates at the downstream section
and the vehicle passing rates in the upstream section can be
described as follows:

𝑞𝑛𝑑 (𝑥 + 𝑡) = 11 + 𝛼𝑡𝑞𝑛0 (𝑥)
+ (1 − 11 + 𝛼𝑡) 𝑞𝑛𝑑 (𝑥 + 𝑡 − 1) ,

(18)

where 𝑞𝑛𝑑(𝑥 + 𝑡) is the estimated vehicle arrival rate on a
downstream section in the 𝑛th cycle of the (x + t)th interval;𝑞𝑛0(𝑥) is the vehicle passing rate in the upstream section of
the 𝑛th cycle of the xth interval; 𝑡 is 0.8 times the average
travel time 𝑡 between the above two sections; and 𝛼 is a
coefficient giving the degree of dispersion of the traffic flow
in the process of platoon movement, known as the discrete
coefficient of the traffic flow. This value was obtained by Bie
et al. [45] and is represented as follows:

𝛼

=
{{{{{{{{{{{{{{{{{

0.126𝑒−((𝑢/𝑠−0.786)/0.107)2 + 0.793𝑒−((𝑢/𝑠−0.809)/1.312)2 𝑁 = 2
0.160𝑒−((𝑢/𝑠−0.741)/0.146)2 + 0.771𝑒−((𝑢/𝑠−0.706)/0.778)2 𝑁 = 3
0.141𝑒−((𝑢/𝑠−0.766)/0.062)2 + 0.771𝑒−((𝑢/𝑠−0.701)/0.553)2 𝑁 = 4
0.084𝑒−((𝑢/𝑠−0.744)/0.06)2 + 0.815𝑒−((𝑢/𝑠−0.742)/0.416)2 𝑁 = 5,

(19)

𝑢 = 3600𝑄𝑖󵄨󵄨󵄨󵄨𝑇ℎ𝑖 − 𝑇𝑡𝑖󵄨󵄨󵄨󵄨 , (20)

𝑠 = 𝑁𝑆𝑎𝑖, (21)

where 𝑄𝑖 is the sum of the number of vehicles in the platoon
i; 𝑇ℎ𝑖 represents the moment at which the lead vehicle of
platoon 𝑖 passes through the upstream data collection point
(e.g., upstream site A in Figure 2); 𝑇𝑡𝑖 represents the moment
at which the tail vehicle of the platoon 𝑖 passes through the
upstream data collection point; 𝑁 is the number of lanes at
the upstream data collection point in the direction of the
traffic movements; and 𝑆𝑎𝑖 is the capacity per lane.

In addition, to predict the queue length of different lanes
at the same time, the effect of the proportion of lane-based
traffic should be considered. Robertson’s model, after adding
the lane-based traffic proportion, is as follows:

𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (𝑥 + 𝑡) = 11 + 𝛼𝑡𝑞𝑛0 (𝑥) 𝑝𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖
+ (1 − 11 + 𝛼𝑡) 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (𝑥 + 𝑡 − 1) .

(22)

3.3.2. Queue Formation Process, Part One. As shown in
Figure 3, this paper divides the queue length formation pro-
cess into two parts: part one (𝐿𝑛𝑓,𝑃𝑎𝑟𝑡 1,𝑙𝑎𝑛𝑒 𝑖) includes the queue
length formed from the moment of initial calculation to the
end of the red signal; meanwhile, part two (𝐿𝑛𝑓,𝑃𝑎𝑟𝑡 2,𝑙𝑎𝑛𝑒 𝑖) lasts
from the end of the red signal to the time when themaximum
queue length appears. First, we analyzed part one of the queue
formation process.

(1) Calculate Queue Length in Intervals of 5 Seconds. Fol-
lowing Bell [50] and Shen et al. [31], we took 5 seconds as
the time interval in the application of Robertson’s model. To
express the dynamic evolution of traffic waves more clearly,
we introduced the cell transmission model (CTM) [51, 52]
to describe the formation of traffic waves in intervals of
5 seconds. CTM is a convergent numerical approximation
to the LWR model and is widely recognized as a good
candidate for dynamic traffic simulation. Figure 4 depicts
the traffic flow in two adjacent cells of 𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖(5ℎ + 𝑡).
The values 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ + 𝑡) and 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ + 𝑡) denote the
volume and density in cell 𝑖 at time (5ℎ + 𝑡). We predicted
the volume of downstream cells according to Robertson’s
model.

Let 𝑥 = 5ℎ, ℎ = 1, 2, 3, ⋅ ⋅ ⋅ ,ROUND((𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 + 𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖)/5),
where the ROUND function rounds the value in parentheses,𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 is the end (or duration) of the 𝑛th red signal for lane
i, and 𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖 is the end (or duration) of the green time for
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the (𝑛 + 1)th cycle of lane 𝑖. Then the queue-forming wave𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖(𝑥 + 𝑡) is further expressed as follows:

𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡) = 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)𝑘𝑗 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡) , (23)

where 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ+𝑡) can be obtained by dividing 𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖(5ℎ+𝑡)
by V [10].The queue length at the interval of 5 seconds for the
nth cycle is

𝐿𝑛5ℎ,𝑙𝑎𝑛𝑒 𝑖 = 5𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)𝑘𝑗 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡) . (24)

(2) Improve Robertson’s Model in the Queue-Forming Process.
During queue formation, the two observation sections of
Robertson’smodel are as follows: upstream siteA’s section and
the downstream section of the queue’s tail end. Upstream site
A’s section is fixed, whereas the downstream section moves
backward with an increase in the queue length; in this case,𝑡 changes with the movement of the downstream section.

Given the ratio of queue length to section 𝑙, the travel time𝑡ℎ of the hth interval is

𝑡ℎ = 0.8𝑡 𝑙 − ∑𝑚ℎ=1 𝐿𝑛5ℎ,𝑙𝑎𝑛𝑒 𝑖𝑙 , (25)

where 𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖 is the duration from the initial moment
of queue length prediction to the appearance of the max-
imum queue length and 𝑚 is the number of 5-second
intervals before the maximum queue length occurs, 1 ≤𝑚 ≤ ROUND(𝑡𝑛𝐿 max,𝑙𝑎𝑛𝑒 𝑖/5). Thus, the modified Robertson’s
model can be expressed as follows:

𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ)
= 11 + 𝛼𝑡ℎ−1 𝑞𝑛0 (5ℎ) 𝑝𝑛|𝑛−1𝑑,𝑙𝑎𝑛𝑒 𝑖
+ (1 − 11 + 𝛼𝑡ℎ−1)𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ−1 − 1) .

(26)

(3) Determine Queue Length at the End of the Red Signal.
On the basis of the duration of the red signal, 𝐿𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 (the
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Figure 5: Queue length discharging process.

queue length of lane 𝑖 at the end of the 𝑛th red signal) can
be calculated as follows:

𝐿𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 = ROUND(𝑡𝑛𝑟,𝑙𝑎𝑛𝑒𝑖/5)∑
ℎ=1

5𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ)
= ROUND(𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖/5)∑

ℎ=1

5𝑞𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ)𝑘𝑗 − 𝑘𝑛𝑑,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ) .
(27)

3.3.3. Queue Formation Process, Part Two. As shown in
Figure 3, the key to calculating the maximum queue length
is to determine the intersection of the queue-forming wave𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 and the queue-discharging wave 𝑤𝑛2 , that is, to
determine the moment at which the maximum queue length
occurs (𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖). We determined this moment from the
following equations:

𝐿𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 + ROUND(𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖/5)∑
ℎ=ROUND(𝑡𝑛

𝑟,𝑙𝑎𝑛𝑒 𝑖
/5)

5𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡ℎ)
= 𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖,

(28)

𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖 = 𝑤𝑛2 (𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖 − 𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖) , (29)

where𝑤𝑛2 = |(𝑞𝑚−0)/(𝑘𝑚−𝑘𝑗)| = 𝑞𝑚/(𝑘𝑗−𝑘𝑚).We can derive
(30) after simplifying (28) and (29):

ROUND(𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖/5)∑
ℎ=1

5𝑤𝑛1,𝑙𝑎𝑛𝑒 𝑖 (5ℎ + 𝑡)
= 𝑤𝑛2 (𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖 − 𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖) .

(30)

Using these equations, 𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖 can be obtained from (30),
and 𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖 can be calculated by substituting it into (29).

3.3.4. Residual Queue Length Calculation. After the maxi-
mum queue length appeared, the queue dissipated at the

departure wave𝑤𝑛3 , as shown in Figure 5, where the density in
front of the stopline was 𝑘𝑚. Assuming that the tail end of the
maximum queue began to move before the end of the green
signal, the residual queue length (at intervals of 5 seconds)
during the queue-discharging period can be determined by
the following equation:

𝐿𝑛𝑑𝑖𝑠,𝑙𝑎𝑛𝑒 𝑖 (5ℎ)
= 𝑘𝑚(𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖𝑘𝑚 − ROUND(𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖/5)∑

ℎ=ROUND(𝑡𝑛
𝐿max,𝑙𝑎𝑛𝑒𝑖/5)

5𝑤𝑛3 (5ℎ)) . (31)

The time for queue clearance can be easily obtained by the
equation 𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖/𝑤𝑛3 = 𝑡𝑛3 . When 𝑡𝑛3 ≤ 𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖 + 𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 −𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖, there was no queue at the end of the green signal;
when 𝑡𝑛3 > 𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖 + 𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 − 𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖, it revealed a residual
queue 𝐿𝑛𝑟𝑒,𝑙𝑎𝑛𝑒 𝑖 at the end of the green signal, which can be
calculated as follows:

𝐿𝑛𝑟𝑒,𝑙𝑎𝑛𝑒 𝑖
= (𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖 − (𝑡𝑛+1𝑔,𝑙𝑎𝑛𝑒 𝑖 + 𝑡𝑛𝑟,𝑙𝑎𝑛𝑒 𝑖 − 𝑡𝑛𝐿max,𝑙𝑎𝑛𝑒 𝑖)𝑤𝑛3) 𝑘𝑚. (32)

When the residual queue existed, the traffic was in an
oversaturated state, and the queue length could be predicted
in real time by the residual queue length 𝐿𝑛𝑟𝑒,𝑙𝑎𝑛𝑒 𝑖 and the
previous process, which enabled us to design a signal control
strategy to prevent queue overflow in advance.

4. Numerical Experiments

4.1. Test Sites and Basic Data. In the case study, we selected
the intersection of South Qilin Road and Wenchang Street
(Qujing, China) as the testing site. The data collection time
was from 15:00 to 18:00 on October 31, 2017 (Tuesday), in
which 15:00 to 17:30 was the off-peak period and 17:30 to
18:00 was the evening peak period. Figure 6 shows the lane
configuration of the intersection of the study area and the
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Figure 6: (a) Aerial photograph of the study area; (b) data collection site.

layout of the data collection sites. The upstream volume
was collected by Camera A, and the proportion of lane-
based downstream traffic volume was collected by Camera B.
Furthermore, through Camera B, we effectively validated the
proposedmodel by observing the actual queue length. Table 1
shows the signal timing parameters at the intersection of
SouthQilinRoad andWenchang Street.The yellow interval of
each signal stage lasted 3 seconds, there was no red clearance
interval, and right-turn vehicles were not controlled by traffic
signals. The letters T and L represent through movement and
left-turn movement, and E, W, N, and S represent the east-
bound approach, the westbound approach, the northbound
approach, and the southbound approach, respectively. Table 2
shows the fundamental parameters for model validation. We
estimated the jam density using the equation 𝑘𝑗 = 1000/ℎ𝑗,
where ℎ𝑗 is the average vehicle spacing in a stationary queue,
which, according to field investigation, is 6.4m.

4.2. Calculation Results and Analysis. We used the mean
absolute error (MAE), the mean absolute percentage error
(MAPE), and the root mean square error (RMSE) to evaluate
the accuracy of the proposed model. The MAE, MAPE, and
RMSE are defined as follows:

𝑀𝐴𝐸 = 1𝑚∑
𝑚

|𝑂𝑏𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| , (33)

𝑀𝐴𝑃𝐸 = 1𝑚∑
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑂𝑏𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 × 100%, (34)

𝑅𝑀𝑆𝐸 = 1𝑚√𝑚∑
𝑚

(𝑂𝑏𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)2, (35)

where𝑚 is the total number of intervals (a total of 28 intervals
for prediction of the proportions of traffic volume) or cycles
(a total of 48 cycles for queue length prediction) in this
experiment.

4.2.1. Prediction of the Proportions of Traffic Volume in
Each Lane. Figures 7(a)–7(c) show comparisons between the
predicted value (all lanes and single lane) and the observed
value of the traffic volume proportions of lane 1, lane 2,
and lane 3, respectively. The label “all lanes” means that
information from all lanes (including lane 1, lane 2, and lane
3) in the first three intervals is used in the prediction of lane i,
whereas “single lane” means that only information from lane𝑖 in the first three intervals is used in the prediction of lane 𝑖.
As shown in Table 3, when using information from all lanes,
the MAE, MAPE, and RMSE were lower than when using
information from a single lane, meaning that it was necessary
to take all lane information into account when predicting
traffic flow proportions. The average MAE (all lanes) and
RMSE (all lanes) of each lane were close to three, which
indicated that the average error of queue length prediction in
the proposedmodel did not exceed three vehicles and showed
satisfactory prediction accuracy. In addition, the MAE and
RMSE of different lanes were close and showed no obvious
deviation, which indicated that the calculation results of the
proposed model were stable and reliable. The overall average
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Figure 7: Proportions of traffic volume (observed and predicted).

Table 1: The signal timing of the South Qilin Road-Wenchang Street intersection (downstream intersection).

Time interval (min) Time length of signal stage (s) Cycle (s)
T and L of N T of N and S T and L of S T and L of E T and L of W

15:40–17:30 31 34 30 37 28 160
17:30–17:40 40 45 37 37 43 200
17:40–19:00 37 35 39 26 43 180

MAPE (all lanes) was 10.33%, which showed favorable predic-
tion accuracy, especially for lane 2 (6.52%) and lane 3 (6.71%).
The averageMAPEof lane 1was the largest (17.75%).Themain
reason was that the left-turn volume was lower than that of
the other lanes, and its observed traffic volume was relatively
small, which made the MAPE value increase; however, its

average MAE (2.43) showed that the prediction result was
satisfactory. Furthermore, as shown in Table 3, when using
information from a single lane (the previous method with
the Kalman filter), every MAE, MAPE, and RMSE was larger
than that of the other traditional prediction methods (single
exponential smoothing, quadratic exponential smoothing,
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Figure 8: Maximum queue length comparison.

Table 2: Model parameters.

Parameters Values Parameters Values
V (𝑘𝑚/ℎ) 28 𝑘𝑗 (V𝑒ℎ/𝑘𝑚) 156.25
V𝑓 (𝑘𝑚/ℎ) 50 𝑘𝑚 (V𝑒ℎ/𝑘𝑚) 78.125

and third-ordermoving average); however, when using infor-
mation from all lanes (the proposedmethod with the Kalman
filter), every MAE, MAPE, and RMSE was the smallest
of all the noted methods. This further demonstrated the
effectiveness of the proposed method.

4.2.2. Queue Length Predictions for Each Lane. As shown in
Table 4, the average MAE and RMSE of each lane was less
than three, which indicated that the average error of queue

length prediction in the proposed model showed satisfactory
prediction accuracy. The average MAE of lane 3 was slightly
higher than that of lane 1 and lane 2, because lane 3 was
the through and right-turn lane, and the right-turn vehicles
were not controlled by the signals. Thus, some of the right-
turn vehicles would leave the intersection during the red
signal, resulting in increased error. However, the overall
average MAE was 1.82, less than 2; the overall average RMSE
was 2.33, less than 3; and the MAE and RMSE of different
lanes were close and showed no obvious deviation, which
showed that the calculation results of the proposed model
were satisfactory.Theoverall averageMAPEwas 16.12%, close
to 15%, and the average MAPE of lane 1 was the largest
(20.94%). As when predicting the traffic volume proportions,
the main reason for this finding was that the left-turn volume
was the smallest, and its observed queue length was relatively
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Table 3: MAE, MAPE, and RMSE of the predictions of traffic volume proportion in each lane.

Prediction methods Errors Lane 1 Lane 2 Lane 3 Average

Kalman filter

MAE (vehs)

All lanes (the proposed method) 2.43 2.37 2.25 2.35
Single lane (the previous method) 3.36 3.28 2.74 3.13

Single exponential smoothing Single lane 3.15 2.98 2.46 2.86
Quadratic exponential smoothing Single lane 2.78 2.77 2.31 2.62
Third-order moving average Single lane 2.85 2.89 2.35 2.70

Kalman filter

MAPE (%)

All lanes (the proposed method) 17.75 6.52 6.71 10.33
Single lane (the previous method) 24.96 9.18 8.07 14.07

Single exponential smoothing Single lane 23.90 8.37 7.13 13.11
Quadratic exponential smoothing Single lane 20.76 7.67 6.79 11.74
Third-order moving average Single lane 21.07 8.11 7.07 12.08

Kalman filter

RMSE (vehs)

All lanes (the proposed method) 3.44 3.32 2.70 3.15
Single lane (the previous method) 4.38 4.34 3.31 4.01

Single exponential smoothing Single lane 4.61 3.82 3.03 3.82
Quadratic exponential smoothing Single lane 4.04 3.52 2.76 3.44
Third-order moving average Single lane 3.82 3.47 2.76 3.35

Table 4: MAE, MAPE, and RMSE of maximum queue length.

Errors Lane 1 Lane 2 Lane 3 Average
(left-turn movement) (through movement) (through and right-turn movement)

MAE (vehs) 1.52 1.83 2.12 1.82
MAPE (%) 20.94 11.28 16.14 16.12
RMSE (vehs) 1.93 2.42 2.65 2.33
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Figure 9: Queue trajectory.

small, which made the MAPE value increase. However, it
can be seen from its average MAE (1.52) that the prediction
result was better than that of the other lanes. Overall, Table 4
shows that the proposed model performed very well in the
calculated results of all three lanes.

Figures 8(a)–8(c) compare the predicted value and the
observation value of the maximum queue length of lane 1,
lane 2, and lane 3, respectively. The queue length of the peak
period (17:30–18:00) was greater than the queue length of the

off-peak period (15:40–17:30) as a whole. Moreover, because
of the randomness and diversity of the vehicle arrivals, the
queue length may show a sudden change at certain times,
such as the queue length near the moments 16:40:17 and
17:07:12 in the off-peak period of lane 1 and the queue length
near the moment 16:35:37 in lane 2, which was obviously
larger than that at other off-peak times. Figure 8 shows that
the proposed model can predict the burst phenomenon of
queue growth in advance and thus is convenient for the
optimization of predictive signal control.

Figure 9 gives the queue length variation, which shows
that the proposed model clearly described the process of
queue formation and discharge. The quadrilaterals depicted
the residual queue trajectory points in the queue discharge
process (at intervals of 5 seconds). Figures 10(a)–10(c) show
trajectories of the upstream section arrivals and the IQA of
lane 1, lane 2, and lane 3, respectively. Figure 10 shows that
the queue length prediction at intervals of 5 seconds can
dynamically reflect the effect of different upstream turning
flow releases on IQA (R, T and R, and L and R represent
the right-turn flow, the through and right-turn flow, and the
left-turn and right-turn flow at the upstream intersection,
respectively). The IQAwas consistent with the dynamic trend
of traffic flow. The IQA when the upstream through flow was
released was obviously larger than the IQA when the other
traffic flows were released (see Table 5). This change could
provide powerful support for the precise analysis of signal
control parameters, for example, in delay analysis [53].
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Figure 10: IQA trajectories.

Table 5: Average IQA (veh/5 seconds) under the influence of different upstream turning flows (period: 17:40–17:50).

Upstream turning flow Lane 1 Lane 2 Lane 3
(left-turn movement) (through Movement) (through and right-turn movement)

T and R 0.64 1.27 1.55
L and R 0.20 0.45 0.54
R 0.05 0.13 0.15

4.3. Discussion

4.3.1. Model Reliability and Sensitivity. To further analyze
the stability and reliability of the model and the sensitivity
of selecting initial conditions, we analyzed the accuracy of
the model by changing the V in Table 2 (in reality, other
parameters are relatively fixed). As discussed in Section 3.1,
changing V is actually a change in the initial moment. The
survey showed that 90% of the vehicles travel within a speed
range of 20 (𝑘𝑚/ℎ) ≤ V ≤ 40 (𝑘𝑚/ℎ) (excluding 5% low-
speed vehicles and 5% high-speed vehicles, respectively), so
the corresponding travel time was 46 s ≤ 𝑡 ≤ 92 s. In
accordance with the upstream data acquisition interval, we
changed the initial moment at an interval of 5 seconds to
calculate the accuracy of queue length estimation. As shown
in Figure 11 and Table 6, when 60 s ≤ 𝑡 ≤ 75 s, the average

MAE and RMSE of all lanes was less than 3, and the average
MAPE of all lanes was less 20%, which showed that the results
of the model were satisfactory in the range of 20 seconds
(four 5-second intervals); when 𝑡 ≤ 55 s and 𝑡 ≥ 80 s, the
calculation error of the model increased gradually. Therefore,
it was evident that the calculation results of the model were
stable and reliable in a certain range of initial parameters. At
the same time, the calculation also reflected that the selection
of initial parameters had a significant impact on the accuracy
of the model. How to dynamically select the calculation
parameters of the model is the next step to be improved.

Inevitably, a delay occurred between the observed and
predicted time of the model. In the verification of the
maximum queue length, we predicted the maximum queue
length and its occurrence time by the proposed model, and
the calculation error was compared with the actual maximum
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Table 6: MAE, MAPE, and RMSE of maximum queue length for different travel times.

Errors Travel time 𝑡 (s) Lane 1 Lane 2 Lane 3 Average
(left-turn movement) (through movement) (through and right-turn movement)

MAE (vehs)

45 3.00 5.98 4.17 4.38
50 2.33 4.48 3.60 3.47
55 1.97 3.32 3.31 2.87
60 2.02 2.69 2.01 2.24
65 1.52 1.83 2.12 1.82
70 1.71 2.40 2.16 2.09
75 2.07 1.83 2.12 2.01
80 2.26 2.81 2.92 2.66
85 1.94 4.65 4.27 3.62
90 2.68 5.30 5.23 4.40

MAPE (%)

45 40.68 34.82 30.00 35.17
50 31.70 26.53 26.16 28.13
55 27.02 19.80 24.05 23.62
60 27.32 15.22 15.80 19.45
65 20.94 11.28 16.14 16.12
70 23.58 12.70 18.95 18.41
75 28.50 14.76 15.60 19.62
80 30.77 16.46 21.58 22.94
85 26.59 27.24 30.70 28.18
90 36.30 30.92 37.44 34.89

RMSE (vehs)

45 3.27 6.35 4.61 4.74
50 2.69 4.85 4.16 3.90
55 2.37 3.82 3.80 3.33
60 2.39 3.34 2.43 2.72
65 1.93 2.42 2.65 2.33
70 2.15 2.79 3.07 2.67
75 2.42 2.95 2.70 2.69
80 2.61 3.29 3.42 3.11
85 2.34 5.06 4.71 4.04
90 2.98 5.68 5.65 4.77

queue length value without considering its occurrence time
(which was consistent with the processing method of Liu et
al. [10]). By comparing the time of maximum queue length
between the predicted value and the observed value, we found
that, within 60 s ≤ 𝑡 ≤ 75 s, the average time difference
between the two was less than three 5-second intervals (15
seconds), which indicated that model accuracy would not be
affected when the average error between the observed time
and the predicted time was within three intervals.

4.3.2. The Real-Time and Proactivity of the Model. We took
the maximum queue prediction value at 15:47:07 of lane 3
as an example. As shown in Figure 12, during this signal
cycle, the red time was 129 seconds, 𝑡0𝐿max,𝑙𝑎𝑛𝑒 𝑖 − 𝑡0𝑟,𝑙𝑎𝑛𝑒 𝑖
is 12 seconds, and, according to Section 3.1, the predicted
advance interval (𝑡) of the queue length was 65 seconds
(V = 28 𝑘𝑚/ℎ). Furthermore, the initial moment of queue
length prediction was 15:43:41, and the red time started at
15:44:46 (the initial moment of queue length observation).

In the 15:43:41–15:44:46 interval (65 seconds), we obtained
the historical data of upstream section A to estimate the
downstream arrival, and at that time, the acquisition time of
the data of upstream sectionA lagged behind the downstream
arrival estimation time. After 15:44:46, the upstream data
could be acquired in real time with 5-second intervals,
and the downstream queue could be predicted. Translating
the dotted line at 15:43:41 with 𝑡(65 s) to the predicted𝐿𝑛max,𝑙𝑎𝑛𝑒 𝑖 clearly showed that the maximum queue length was
predicted in advance of 65 seconds at 15:46:02, which fully
demonstrated the proactivity of the model.

5. Conclusion

In this paper, we used LWR shockwave theory and Robert-
son’s model to establish a real-time prediction model of
lane-based queue length, which effectively predicted queue
length (including IQA, queue trajectory, maximum queue,
and residual queue).This model is convenient for the optimal
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Figure 11: Average MAE, MAPE, and RMSE of maximum queue
length at different travel times.

design of predictive signal control. In the proposed model,
vehicle arrival was described with an interval of 5 seconds in
Robertson’s model. In this way, we described the formation
and dissipation of queue length in real time and dynami-
cally described the influence of different upstream vehicles,
arriving from disparate turning lanes, on IQA. In addition,
the model predicted the queue length of multiple lanes at
the same time by predicting the proportion of traffic volume
using the Kalman filter. The computational complexity of
the model was relatively low, and it was convenient for
engineering and design.

Several directions for future research can be summarized
as follows:

(1) Lane-changing phenomenon. This paper assumed
that vehicle lane changing had no effect on vehicle
arrival characteristics. However, research has shown
that when the vehicle lane-changing phenomenon
was prominent, the vehicle running state was dis-
turbed [20, 54].Therefore, analyzing the effect of lane
changing on queue length prediction is a promising
research direction.

(2) Arrival effect of heterogeneous traffic flow. When the
bus occupied a large proportion of the lane, the travel
characteristics of the bus (such as passengers, slower
speed relative to cars, and so on) interfered with
car travel and affected the travel time distribution
and formation and dissipation of traffic waves [55].
Thus, another important research direction is to study
the queue length under the arrival characteristics of
heterogeneous traffic flow.

(3) Dynamic correction of travel time. In this paper, the
travel time of Robertson’s model was fixed, but the
travel time will be different according to the change of
the traffic flow. Another research direction will be to
optimize and perfect this model while incorporating

the short-term prediction of travel time for probe
vehicles.

Appendix

A. Analysis of the Necessity of Assumptions

A.1. The Vehicle Follows the First-In-First-Out (FIFO) Prin-
ciple, and There Is no Obvious Overtaking Phenomenon. In
the queue-discharging process of a cycle, a free-flow vehicle
cannot depart ahead of any queued vehicle; a normally
queued vehicle cannot depart ahead of any oversaturated
vehicle. This can be ensured if the principle of first-in-first-
out (FIFO) is satisfied. In a real-world situation, FIFO can be
violated if overtaking is frequent (e.g., if multiple lanes exist)
[24], which provides no guarantee that IQA changes follow
the FIFO principle, so the assumption is made to ensure the
reasonableness of IQA analysis.

A.2. The Vehicle Has the Same Acceleration and Deceleration
Behavior. Differences between drivers and vehicles will cause
differences in vehicle acceleration and deceleration. In this
case, the complexity of traffic wave analysis will be increased,
and the fundamental diagram (FD) cannot be guaranteed
to be a triangle form [55]. Because we used triangular FD
to analyze the evolution of traffic waves, it was necessary
to assume the consistency of acceleration and deceleration
behavior.

A.3. The Influence of Buses on Traffic Flow Is Disregarded.
Because of significant differences in arrival characteristics
between cars and buses when the percentage of buses is large
(e.g., above 10% [46]), there will be an obvious influence
on the discrete characteristics of traffic flow [46, 56], but
Robertson’s model (taking homogeneous traffic flow as the
object of study) cannot describe these characteristics well.
Therefore, we ignored the influence of buses in this paper.
In addition, queue estimation in a heterogeneous traffic flow
environment is another topic of the authors’ current research,
which will be discussed in a subsequent paper.
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