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Camera-based pavement distress detection plays an important role in pavement maintenance. Duplicate collections for the same
distress and multiple overlaps of defects are both practical problems that greatly affect the detection results. In this paper, we
propose a fine-grained feature-matching and image-stitching method for pavement distress detection to eliminate duplications
and visually demonstrates local pavement distress. /e original images are processed through a hierarchical structure, including
rough data filtering, feature matching, and image stitching./e original data are firstly filtered based on the global position system
(GPS) information, which can avoid full-dataset comparison and improve the calculating efficiency. A scale-invariant feature
transform is introduced for feature matching based on the extracted key regions using spectral saliency mapping and bounding
boxes. Two parameters: the mean Euclidean distance (MEuD) and the matching rate (MCR) are constructed to identify the
duplication between two images. A support vector machine is then applied to determine the threshold of MEuD and MCR. /is
paper further discusses the correlation between the sampling frequency and the number of detection vehicles. /e method
provided can effectively solve the problem of duplications in pavement distress detection and enhances the feasibility of
multivehicle pavement distress detection based on images.

1. Introduction

Pavement condition measurements are essential for main-
tenance decisions [1]. Pavement distress detection has tra-
ditionally been a highly laborious and time-consuming task
[2]. Currently, the most commonly used detection vehicle is
a specially modified car with precise but delicate instru-
ments, and the process of detection is time-consuming,
expensive, and inefficient [3]. With the increasing demand
for real-time pavement maintenance, detection methods
based on lightweight sensors and rough-set data mining are
becoming popular. Automated pavement detections using
cameras [4], lasers, and ultrasonic sensors [5] are widely
used as replacements to manual work, which significantly
improves the efficiency and lowers the cost [6]. Among
them, the camera is the priority choice in pavement de-
tection because of not only its low cost and intuitive data but
also its lightweight and detachable features that satisfy the
requirements of multiple-vehicle detection and rough-set

data collection [7]. /erefore, pavement condition recog-
nition based on video image has become a central issue [8].

With the development of deep learning and computer
vision technology, image-processing algorithms lead to good
performance in automatic identification of pavement dis-
tress [9]. Different kinds of pavement defects such as cracks,
potholes, and nets can be identified with relatively high
accuracy [10, 11]; thus, the image-based detection has been
proved to be a reliable and efficient method [12]. Different
approaches were employed for image analysis. /e Sobel
edge detector recognizes edges in an image by smoothing the
image before computing the derivatives in the perpendicular
direction to the derivative [13]. /e Canny method is a
multistep algorithm that can detect edges and concurrently
suppress noise in an image [14]. /e semantic texton forests
(STF) algorithm is also used as a supervised classifier on a
calibrated region of interest (ROI) in the detection of
multiple pavement defects [15]. However, the results of
convolution neural networks (CNNs) are significantly better
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than the aforementioned algorithms in image-based de-
tection [16].

CNNs have become the most popular algorithm and
have been constantly improved to better fit the distress
detection [17]. CNNs have the advantage of performing
feature extraction and predicting crack/noncrack conditions
in an integrated and fully automated manner with good
prediction performance and a classification accuracy rate
(CAR) of 92.08% [18]. Gopalakrishnan et al. employed a
deep CNN with transfer learning for pavement distress
detection [19]. Jenkins et al. proposed a deep fully CNN to
perform pixel-wise classification of surface cracks on roads
and pavement images with 92.46% precision [20].

Besides, 3D laser-illuminated camera is also used to
detect pavement deterioration. Li et al. applied a fully au-
tomated algorithm for segmenting and enhancing pavement
crack based on 3D pavement images [21]. /e depth in-
formation collected by 3D techniques helps to perform
better in analyzing cracks, textures, rutting, etc.

However, there are still some practical problems remain
unsolved during road detection using a 2D or 3D camera.
High-acquisition frequencies are used to reduce the number
of missing defects to the minimum, and at the same time,
multiple overlaps of defects take place. Besides, it is always
the case that the low vehicle speed or traffic congestion
causes image duplications. Such duplication can greatly
affect the statistical reliability of pavement health assessment
and the calculation of relative indices like the pavement
condition index (PCI) [22]. Moreover, length and area are
used as units of summarization to better describe a crack and
this problem is more of a concern.

For the comprehensive inspection cars, wheel encoders
are adopted to avoid overlaps. However, this solution is not
only expensive but also not suitable for our lightweight
equipment that can install and work quickly on any car.
/erefore, two existing problems are focused on in this
paper as follows:

(1) A defect in different images might bemisidentified as
different ones due to a location and pixel-size dis-
crepancy in different images, as shown in Figure 1(a).

(2) A longitudinal crack crossing different frames
(Figure 1(b)) might be recognized as different cracks
instead of one long crack.

To solve the problems mentioned above, we propose a
pavement distress stitching method to preprocess detected
data. On the one hand, stitching is a technology-neutral
pattern to use in locating distress over multiple passes, es-
pecially over time. It eliminates duplications and orderly
sorts the statistical summarizations such as number, length,
and area. On the other hand, adjacent defects in consecutive
images can be stitched to form a whole lane-level picture of
pavement distress. Such panoramic pictures are conducive
to manual verification while providing visualizations of the
pavement condition.

One of the most crucial parts of image stitching is the
feature-matching algorithm, which can be divided into three
categories: global feature-based matching algorithms, local

feature-based matching algorithms, and deep learning al-
gorithms. Global feature-based matching algorithms such as
the histogram of oriented gradient (HOG), local binary
pattern (LBP), and Haar-like features performed well in
human detection [23, 24]. Compared with global feature-
based matching algorithms, local feature-based matching
algorithms are more stable. Scale-invariant feature trans-
form (SIFT) was first proposed by Lowe as a local feature
description algorithm based on the analysis of existing in-
variance-based feature detection methods [25]. SIFT has
good stability and invariance, but it imposes a large com-
putational burden [26]. Speeded-up robust features (SURF)
is the replacement to SIFT, which has lower computation
cost for real-time systems at a tradeoff of poor relative
performance [27]. /e oriented FAST and rotated BRIEF
(ORB) algorithm is rotation invariant and resistant to noise,
and it performs almost as well as SIFTwhile being two orders
of magnitude faster [28]. In the field of deep learning, deep
matching (DM) is one of the most popular methods for
establishing quasi-dense correspondences between images
[29]. DM relies on a hierarchical, multilayer, correlational
architecture designed for matching images that have high
information dimensions and need sophisticated calculation.
Moreover, if the feature matrix correlation parameter
threshold control is too strict, the angular resolution will
consequently decline. /erefore, SIFT is adopted in this
paper because of its stability.

Image stitching is one of the main applications of SIFT.
Lowe proposed an invariant feature-based approach to fully
automatic panoramic image stitching [30], while Xiaoyan
et al. created a large field of view for robot control and
movement using dynamic image stitching when there was a
moving object in the environment [31]. Qiu et al. proposed
an image-stitching algorithm based on aggregated star
groups to obtain a complete star map [32]./is paper applies
the image-stitching method in pavement detection to solve
engineering application problems.

Based on the above problems, we present a pavement
distress image stitchingmethod based on a feature-matching
algorithm. Since the background of the pavement is mo-
notonous and the algorithm can falsely match the features of
the asphalt pavement, we propose the use of the spectral
saliency mapping (SSM) method along with a pavement
distress bounding box to extract information from dense
regions. /e scale-invariant features extracted from the key
region serves as the stitching points between two images.

/e remainder of this paper is organized as follows. In
Section 2, we present the data processing methods. In
Sections 3, 4, and 5, we describe the framework of the
proposed approach where the feature matching, key re-
gion extraction, and image stitching are introduced, re-
spectively. In Section 6, we discuss the correlation
between the sampling frequency and the number of de-
tection vehicles. In Section 7, we offer the conclusions of
this study.

1.1.Data. In our experiment, an integrated detection system
was used to collect pavement images. An industrial camera
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was fixed on the back of the vehicle, which faced obliquely
downward./e vehicle also equipped with a GPS unit, which
allows the images to match the corresponding locations on
the road. Full videos were stored in a vehicle-mounted
terminal while clipped images were uploaded at a frequency
of 2Hz.

Several typical pavement distress defects on the urban
road in Shanghai are considered in this paper, including
cracks, patched cracks, potholes, patched potholes, nets,
patched nets, and manhole covers (Figure 2). A 13.2 km road
section on Caoan Road in Shanghai was chosen for ex-
periments and validation, as shown in Figure 3. /e algo-
rithm processed more than 6000 images and generated
bounding boxes when the defects are recognized. At the
same time, the results were artificially calibrated to guarantee
accuracy.

1.2. Methodology. Figure 4 illustrates the flow chart of the
proposed hierarchical framework for image processing,
including rough data filtering, feature matching, and image
stitching. /e original images are firstly filtered according to
the GPS information, which can exclude most of the ir-
relevant images. /rough choosing the images that have the
most overlap, a feature matching method is applied to ex-
tract the SIFT features in the key region using SSM and
bounding boxes. After the feature-matching process, two or
more images are stitched according to the features and the
fitted perspective matrix.

2. Rough Data Filtering Using GPS to Reduce
Computational Cost

/e purpose of the preprocessing is to reduce the compu-
tation cost before further analysis. /e basic idea is to select

the images based on the GPS information because the lo-
cation of the potential matched images must be close. GPS,
though considered to be not accurate enough, excludes a
large number of images that are geographically too far apart
to be matched, thus serving as a rough data filtering to
reduce the calculating amount.

/e GPS module recorded the real-time locations during
detection and then linked to images according to the
timestamps [33]. /e GPS information makes it easier to
manage the statistical data at the level of road segment. Due
to the instability of GPS, images within 10 meters (Pn) are
selected as candidates for matching to make sure that no
targeted picture is omitted. /e chances that two defects
within 10 meters are too similar to differentiate by a human
or algorithm are negligible. If it happens, the number of the
candidate images would be more than the detection times,
and in this situation, the images need to be checked by a
human. /e Haversine equation [34] was adopted to cal-
culate the distance between two points using their longitudes
and latitudes, as formulated in the following equation:

d � 2r arcsin
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(1)

where φ1/φ2 and λ1/λ2 are the latitude and longitude of point
1 and point 2, respectively and d is the distance between
them./e same defects among Pn were searched and labeled
by artificial identification to build the ground truth.

In most cases, the same defects can be found within 10
meters unless there exists a GPS deviation. /erefore, when
Pn was an empty set, the GPSs of the retrieved images (Px)
were examined and the distances and time-lags from their
adjacent and matched images (Pk) were calculated. Figure 5
describes the method of dealing with abnormal data.

(a)

(b)

Figure 1: Typical problems of pavement distress images. (a) /e same pothole with different sizes and locations in different pictures. (b) A
longitudinal crack crossing three frames.

Journal of Advanced Transportation 3



/e collection speed was used as a discriminative index.
When the calculated value was more than 1.5 times the true
value as formulated in equation (2), the location was con-
sidered as being in error and was redefined as the time-
weighted average of Pk.

l GPSX − GPSK( 

tx − tk

> 1.5v, (2)

where v is the true value of the velocity, l is the distance
between two locations, GPSX is the GPS location of Px and tx
is the timestamp of Px, and GPSK is the GPS location of Pk
and tk is the timestamp of Pk.

3. SIFT Feature Matching

SIFTfeatures are located at the scale-spacemaxima/minima of
the differences between Gaussian functions, which keep the
rotation, scale, or illumination invariant. /ey are robust in
terms of vision changes, affine changes, and noise [35]. SIFT
feature matching mainly includes the following three steps.

3.1. Feature Detection in Scale Space. /is step involves
searching for scale-invariant features from the multiscale

images in scale space. /e scale space is defined as the
following convolution operation:

L(x, y, σ) � G(x, y, σ)∗ I(x, y) �
1

2πσ2
e

− x2+y2( )/ 2σ2( )

∗ I(x, y),

(3)

where σ is the scale-space factor, G is driven from a variable-
scale Gaussian distribution, and I is the input image. /e
difference of Gaussian (DOG) function can be further
established from the difference of the nearby scales with a
constant multiplicative factor k as follows:

D(x, y, σ) � (G(x, y, kσ) − G(x, y, σ))∗ I(x, y)

� L(x, y, kσ) − L(x, y, σ).
(4)

3.2. FeatureLocalization. /e candidate feature points in the
scale space extracted from the images are further refined to
perform a detailed fit to the nearby data to determine the
locations, scales, and ratios of principal curvatures. /is
information allows points to be rejected that have low
contrast or are poorly localized along an edge. /e DOG

Figure 3: /e experimental road section on Caoan Road in Shanghai.
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Figure 2: /e targeted pavement distress.
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Figure 5: /e method of dealing with abnormal data.
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Figure 4: /e pavement distress image-stitching pipeline.
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function at the candidate feature points X is adopted here to
discard unstable features with low contrast in the under-
water images:

D( X) � D + 0.5
zDT

zX
X, (5)

where X denotes the offset from the location of the extre-
mum, and all extrema with a value of D( X) less than 0.03 are
discarded. In this paper, the threshold of the principal
curvature is set to 0.6 considering that the edge-detect results
of the pavement distress are not obvious.

3.3. Orientation Assignment and Feature Description. /e
main direction and auxiliary direction of the key points
are given according to the gradient direction histogram of
the key feature points, where the resultant matrix of
2 ∗ 2 ∗ 8 dimensions is mathematically described. SIFT
features are calculated and the matching features are
shown in Figure 6.

In Figure 6(a), the frame indicates the gradient direction
of an extracted feature point. In Figure 6(b), a line indicates a
link between two matched features. /e more links exist, the
greater the probability that the images share the same feature
will be. However, the features of both pavement distress and
normal pavement are extracted, as shown in Figure 7(a). Due
to the similarity of the pavement structure and pavement
markings therein, matching errors can easily arise. /ere-
fore, a bounding box is needed to extract features in the
designated area, which can greatly improve the matching
accuracy and pertinence as shown in Figure 7(b).

Meanwhile, the random sample consensus (RANSAC)
method was used once the feature matching is finished.
RANSAC was firstly proposed by Fichler and Bolles as a
robust estimation procedure that uses a minimal set of
randomly sampled correspondences to estimate image
transformation parameters and screens correct data [36]. In
general, different perspectives can be transformed by a
perspective matrix, and RANSAC was used to find pa-
rameters with the maximum likelihood in image matching.
/eoretically, all the matched feature points should satisfy
the matrix transformation. However, there will always be
some errors, and RANSAC rejects abnormal values. /e
SIFT-matched results used in this paper were processed with
RANSAC, which can effectively improve the reliability and
robustness of feature points.

/e mean Euclidean distance (MEuD) between two
feature points and the matching rate (MCR) were used as
indices to evaluate the matching degree. /e Euclidean
distance indicates the matching degree, and the matching
rate illustrates the proportion of correctly matched points.
/e smaller the Euclidean distance is, the better two feature
points match will be. When two defects are of the same type,
there will be more matched features than those are not the
same. However, the matched SIFT features do not fully
indicate whether two objects are the same object. /e
shortest Euclidean distance can only illustrate the best match
of the corresponding SIFTfeature points on the other image.
Hence, it is difficult to judge whether two matched features

are the same defect with complete certainty using a nu-
merical threshold or a threshold derived from the root mean
square of the distance. In this paper, theMEuD and theMCR
of the matched feature points were used as indicators for
evaluating image similarity. /e MEuD is defined as in the
following formula:

MEuD(S, T) �
1
m



m

i�1
min
1≤j≤m

������������



128

k�1
sik − tjk 

2




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (6)

whereMEuD(S, T) is the root mean square distance between
two images (S and T), m is the number of matched SIFT
feature points, j is the sequence number of a feature, and
sik/tjk is the SIFT matrix. Because the root mean square
distance is affected by the size of the images, the MCR was
also used as a similarity evaluation index. /e MCR is de-
fined as follows:

MCR �
Nm

N
, (7)

where N represents the number of points and Nm is the
number of matched points. /e MCR indicates the pro-
portion of all retrieved matched SIFT features. Cross-vali-
dation was used to calculate the matching accuracy of the
SIFT features.

Table 1 shows the SIFT matching results of several se-
lected images in a 10-m-long test section. Five of them are
recognized as the same pothole by the algorithm.

Although SIFT is robust to the shooting angle, the MCR
of the images with a large distance is only 37.39%, while the
MCR of the images with similar angles is as high as 85.50%.
/e MEuD of the images is relatively stable, which reaches
104 orders of magnitude. As for the different types of defects,
the MEuD does not exist and MCR equals zero because no
matching features could be found.

A matching test of two hundred pairs of images was
performed on the sample library to determine the SIFT-
based image matching threshold. A support vector machine
(SVM) was used to estimate the tangential plane to de-
termine the model threshold. /e matching accuracy, as
determined with the five-fold cross-check method, of the
SIFT features is 81.4%. Figure 8 shows the results of the
binary classification based on SVM, in which the dots
represent the good matching result, while the crosses
represent the incorrect matching result. /e SIFTmodel is
more inclined to identify a mismatch as a correct match
because SIFT has a certain degree of angular robustness.
Unfortunately, this can easily cause errors due to the effect
of shooting angles. As two different defects, which are
highly similar, are less likely to be present in the same
location, the matching accuracy was as high as 92% in the
sample set test.

4. Key Region Extraction

/e monotonicity of a pavement results in matching errors
of the SIFT features, as shown in Figure 9. To this end, we
propose SSM along with bounding boxes generated by the
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(a)

(b)

Figure 6: SIFTfeatures matching. (a)/e gradient direction of extracted features of two images. (b) Links between matched features of two
images.

(a)

(b)

Figure 7: (a) /e mismatched features. (b) SIFT feature matching with bounding box.
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Table 1: SIFT matching results of the example images filtered by the specified GPS.

Image S Image T Distance (m) MEuD MCR (%)

2.19 1.52×104 59.58

2.19 5.16×104 37.49

0.85 6.13×104 50.42

6.44 NaN 0

0.59 2.22×104 85.50
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Figure 8: /e results of the binary classification based on SVM.
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algorithm to extract the key regions to find prominent SIFT
features.

SSM is a simulation of human visual attention char-
acteristics, which can capture significant changes in an
image. It is the dynamic visual attention that makes it
easier for a human being to find important information in
an image at first glance, instead of searching the elements
one-by-one. From the perspective of information theory,
the information processed by human beings is mainly
divided into background information and changing in-
formation, the latter to which human vision is more
sensitive. Although image incision technology and se-
mantic segmentation can also segment background and
subject information, they can only target specific objects
and require a large amount of model training. Moreover,
these methods will destroy the overall characteristics of an
image, and it is difficult to reflect the overall characteristics
of real human vision.

Xiaodi and Liqing found through a large amount of data
analyses that the average log-spectrum of input images is
positively correlated with the log frequency [37]. /e
spectral residual of an image in the spectral domain is
extracted by subtracting the average log amplitude spectrum
from the actual log amplitude spectrum of the image. In this
paper, an FFT-based visual saliency model was used to
extract the feature regions of the pavement, as shown in the
following equation:

S(x) � g(x)∗F
− 1

[exp(L(f) − A(f) + P(f))]
2
, (8)

where S(x) represents the SSM of graph x, g(x) is a Gaussian
filter used to smooth the SSM graph, F− 1 represents the
inverse Fourier transform, L(f) is the log vibration spectrum
of the image, A(f) represents the average log vibration
spectrum, and P(f ) represents the phase spectrum of the
image. Figure 10 shows the key region extracted using SSM.

According to Figure 10, the SSM method has a certain
sensitivity to pavement distress, especially the patched
distress, and the sensitivity is relatively stable, regardless of
the location in an image. However, this method is not
sensitive to potholes or cracks. /erefore, SSM was com-
bined with a bounding box to form key regions. After
selecting the key regions, SIFT feature extraction was per-
formed on the region locations, and the SIFT factor was
calculated in the selected region. Each image was rescaled to
ensure that the directions were consistent. A K-dimension
tree (KD Tree) was established, and the k-nearest-neighbors
(KNN) algorithm was used to find the KNN for each feature,
where K was set to 2. /e validity needed to be verified when
the K neighboring values were found. /e valid verification
threshold was 0.6, as is shown in the following inequality (9):

1 − NN
2 − NN
< 0.6, (9)

where NN represents the nearest-neighbor.

52 tentative matches 

4(7.69%) inliner matches out of 52

Figure 9: /e bad matching and stitching results due to the monotonicity of a pavement.

Figure 10: /e key region extracted using SSM.
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Bounding box

Extracting features in the specific region

SSM+

Succeed

64 tentative matches

Fail

Without SSM and bounding box: 159 tentative matches

Figure 11: Feature extraction and image stitching using SSM and a bounding box.

Figure 12: /e stitching results.
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Figure 11 shows the effect of the feature region on the
results. When a feature region is not adopted, a large
number of matching points exist in the normal pavement
and more mismatches are caused due to the consistency of
the pavement. However, when the SSM combined with the
bounding box is applied, the matching accuracy
improved.

In addition to the SSM method, the bounding boxes are
generated to locate the region of interest by the object de-
tection algorithm named “you only look once version 3
(YOLOv3) [38].” YOLO is one of the real-time deep CNN

methods that aim at detecting objects and is widely applied
in traffic management. YOLO reasons globally about the
image when making predictions and learns generalizable
representations of objects [39]. And it has been proved that
YOLO performs well among other existing models, such as
SSD or R-CNN in pavement defects recognition [40].
Moreover, YOLOv3 performs best especially in small object
detection among the four versions of YOLO [41]. /e
precision of the algorithm was 0.7869 with 10,000 pavement
images for training and 3,000 images for testing. Addi-
tionally, although YOLO consumes a lot of computational

pr

pr

Perspective
transformation 

pl

pl

pl

p

Perspective
transformation 

Perspective zoom

Stitching

Next
image

One a�er one Multiple image stitching 

Figure 13: Flow chart of the image stitching algorithm.

Journal of Advanced Transportation 11



power when training the model, not much computational
power is needed for prediction.

5. Image Stitching

After matching the SIFT features in the key region using
the SSM and bounding box, two candidate images that had
the most matched features were stitched according to the
features and the fitted perspective matrix. After that, the
next image was stitched on to the base of the previously
stitched images. /e stitching results are displayed in
Figure 12.

/e angle and size of the stitched portion can change
within the perspective matrix, so the weighted average fusion
approach was used, as shown in the following equation:

p �
dl

dl + dr

pl +
dr

dl + dr

pr, (10)

where p represents the synthesized pixel coordinates and dl
and dr represent the distances of pl and pr, respectively, from
the left and right edges of the image.

According to the number of feature points matched in
the image set, the images were preferentially stitched. /e
algorithm stopped when the ratio of inliers was less than
50%. A flow chart of the image stitching algorithm is shown
in Figure 13. /e current algorithm can process up to 12
images, and the result is shown in Figure 13. /e perspective
field of view exists in the original image, which makes it a
challenge to stitch more images. /e distortion becomes
serious as the stitched images increase, and further study will
be carried on to solve this problem.

6. Calculating the Minimum Number of
Sampling Vehicles

It is difficult to obtain all the pavement distress character-
istics with a single detection car. For one thing, it is always

the case that some pavement defects are missed in the course
of detection, in which the video sampling rate and vehicle
speed are considered. For another, the algorithm could not
completely identify the pavement defects, and the mis-
detections exist. /erefore, it is necessary to have multiple
detection vehicles to superimpose and match the data to
show the overall condition of the pavement. /e minimum
number of required vehicles is discussed here using prob-
ability theory as shown in Figure 14.

/e precision pt of the pavement detection algorithm used
in this paper is 0.7869, which is the probability that we can
correctly detect pavement distress. /e parameter pc repre-
sents the probability of collecting an image at a certain position
on the pavement via detection with a single vehicle, which is
the functionpc(v, f) that is related to the traveling speed v and
the camera sampling frequency f. When v is high and f is low,
the detection vehicle could possibly miss some information at
certain positions on the pavement, so the resultant value of pc

is low. Conversely, when v is low and f is high, the pc value is
high, but it can easily cause duplications. /e number of
detected pavement defects by the algorithm in one detection by
a single vehicle is shown in the following expression (11):

M × pc × pt, (11)

where M represents the actual number of pavement defects.
Considering that v of different vehicles are basically the same
in the same time period, and f are also the same, p is assumed
to be a fixed value. In view of this, the pavement defects
detected by each vehicle are consistent with the same dis-
tribution. Whether the pavement defects x can be detected
conforms to the n-multiple Bernoulli trials x ∼ B(N,

pc × pt), as shown in the following equation:

P(x � k) � C
k
np

k
(1 − p)

n− k
. (12)

In order to meet the need that more than 95% of the
defects are detected by multiple vehicles, the corresponding
inequality is shown in the following inequality (13):

Universal set

The first 
detection 

vehicle ……

The multiple 
detecting 

distress sets

The multiple 
detecting 

distress sets

The single 
detecting 
distress set

The second 
detection 

vehicle 

The Nth

detection 
vehicle 

Error detection set

Figure 14: /e fusion result of multiple detection.
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P(x≥ 1) � 1 − P(x � 0) � 1 − 1 − pc × pt( 
n ≥ 0.95.

(13)

A pixel in a camera image is i∗ j, and the range that the
camera can detect is (u, v). /e matrix transformation re-
lationship between the pixels and world coordinates is as
shown in the following equation:

s

u

v

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �� A r1 r2 t 

i

j

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

Distance along the road is l ∈ (u, v), and the probability
of collecting an image at a certain position on the pavement
pc can be expressed as follows:

pc(v, f) � min
l · f

v
− ε, 1 − ε , (15)

where ε represents equivalent loss of the focused image.
When the length of the road covered by the camera exceeds v

multiplied by the collection interval, there will be duplicate
areas between the pictures, so the detection probability is
1 − ε. According to the conditions set in this paper, pc is
calculated to be 0.67, where ε � 0.05, v � 50 km/h, f � 2Hz,
and l � 5m. /e minimum number of detected vehicles is
five as calculated by the following formula (16):

n � ⌈log0.473(0.05)⌉ � 5. (16)

According to the calculation result, at least five vehicles
are needed to form the whole picture of the road surface.
Based on the camera parameters used in this experiment,
the relationship between speed, sampling frequency, and
the minimum number of vehicles is shown in Figure 15.
Figure 16 depicts the relationship between sampling fre-
quency and the minimum number of vehicles at a speed of
50 km/h. /e sampling frequency is determined by the
traffic flow, the number of vehicles, the facilities, and the
experimental environment. /e purpose of this part is to
indicate that the number of detecting vehicles is an essential
parameter for further field implementation, and thus we

conducted theoretical deductions to provide a recom-
mended number of detecting vehicles, which can offer help
for field applications.

7. Conclusion

In this paper, we established a feature-matching and image-
stitching method for pavement distress detection based on
images obtained with multiple vehicles. A large number of
pavement images and their corresponding time and posi-
tional information were obtained with detection vehicles
under controlled acquisition conditions.

A hierarchical framework was built to process the im-
ages, including rough data filtering, feature matching, and
image stitching. Duplications were effectively eliminated
based on the three-layer structure that included GPS,
bounding boxes, and SIFTfeatures. GPS is used to avoid full-
dataset comparison, which can reduce the calculating
amount. SIFTwas introduced to match features based on the
extracted key regions using SSM and the bounding boxes.
An SVM was used to analyze the influence of the output
parameter thresholds of the MEuD and the MCR of the
matching classification. /e matching accuracy using the 5-
fold cross-check method to calculate SIFT features is 81.4%,
and the multilevel comprehensive matching accuracy can
reach up to 92.0%. Images that have the most feature
matches were stitched according to the matched features and
the fitted perspective matrix. We then discussed the cor-
relation between the sampling frequency and the number of
detection vehicles and introduced a method to calculate.

Not only the whole lane-level pavement distress can be
analyzed statistically by eliminating duplications and clus-
tering according to the GPS tag and matched features, but
local pavement distress can also be visually represented with
the image-stitching algorithm. /e algorithm provided in
this paper effectively solves the problems of duplications of
pavement distress and provides a reliable means for pave-
ment distress detection in a collaborative, multivehicle
environment.
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