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�e modeling of car-following behavior is an attractive research topic in tra�c simulation and intelligent transportation. �e
driver plays an important role in car following but is ignored by most car-following models. �is paper presents a novel car-
following driver model, which can retain aspects of human driving styles. First, simulated car-following data are generated by
using the speed control driver model and the real-world driving behavior data if the real-world car-following data are not
available. �en, the car-following driver model is established by imitating human driving maneuver during real-world car
following. �is is accomplished by using a neural network-based learning control paradigm and car-following data. Finally, the
FTP-72 driving cycle is borrowed as the speed pro�le of the leading vehicle for the model test. �e driving style is quantitatively
analyzed by AESD. �e results show that the proposed car-following driver model is capable of retaining the naturalistic driving
styles while well accomplishing the car-following task with the error of relative distance mostly less than 5 meters for every
driving styles.

1. Introduction

Car-following behavior is common in real-world driving,
and its modeling has been an important research topic in
tra�c simulation and vehicle technology. In the car-fol-
lowing task, the following vehicle is required to minimize the
tracking errors in relative speed and distance with a leading
vehicle. �e strategies employed may vary from person to
person.�e car-following model (CFM) has been studied for
decades. It mainly relies on mathematical formulas and is
derived from tra�c �ow theory. �e General Motors (GM)
model is a good example, dating from the 1950s [1], and the
Gipps model is probably the most widely adopted in
microsimulation [2]. Unfortunately, the role of the driver is
neglected or ignored in almost all CFMs, and consequently,
no driving style is exhibited.

Car-following modeling has been an attractive research
topic for decades. �e Gazis–Herman–Rothery (GHR)
model was proposed in 1958 at the General Motors research
laboratory [3] and was hereafter named as the GM model.

�is model considers acceleration as a function of the
leading vehicle’s speed, relative speed, relative distance, and
driver reaction time.�e collision avoidance (CA) model [4]
describes the safe following distance as a function of the
speeds of the leading and the follower vehicles and the
driver’s reaction time. �e Gipps model [2] is based on the
CA model and is widely used for microscopic tra�c sim-
ulation. Many control approaches are also applied to develop
car-following models. An application of fuzzy logic to the
GHR model was reported in [4]. A back-propagation neural
network was applied to develop a car-following model by Jia
et al. [5]. A comprehensive review of car-following modeling
was presented by Brackstone and McDonald [6].

In recent years, some works focused on the driver’s
behavior in the car-following process [7–12]. In 1998, Boer
and Hoedemaeker [13] proposed a hierarchical driver
modeling framework, which took task scheduling, attention
management, and performance into consideration. �ey
pointed out that a neural net with proper measurable input
variables may be an alternative solution to characterizing
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human driver behavior and modeling in traffic simulation
[14]. Zhong et al. [15] modeled the intelligent car-following
model using Gaussian random variables as the parameters to
perform a probabilistic sensitivity analysis based on the
Kullback–Liebler dissimilarity measure in order to limit the
number of parameters requiring value estimation to those
yielding the greatest performance improvement relative to
default parameter values. In [16], human-like car-following
controllers without considering vehicle dynamics are de-
veloped using deterministic policy gradient by learning from
naturalistic human driving data. Khodayari et al. [17]
proposed a modified car-following model, which included
human driver effects, such as driver’s reaction time. *ese
and other unmentioned works have made significant con-
tributions to the advancement to the understanding and
modeling of driver’s behavior during car-following. One
issue that is rarely addressed is the retaining of human’s
naturalistic driving styles, which is however important for
car-following models.

*e objective of this work is to develop a car-following
driver modeling scheme that is capable of retaining the
original human driving styles. We propose to establish the
style-retaining Car-Following Driver Model (CFDM) by
imitating human driving behaviors. *e CFDM is designed
to track the relative speed and distance with a personal
sustainable level. Although ignored by most car-following
models, the driver plays an important role in car following
and should be taken into account in the modeling.

*e CFDM to be developed in this work is different from
the CFM in two aspects: (1) CFDM models the relationship
between the follower driver’s operations on the gas/brake
pedal and the relative speed/distance, while the CFM rep-
licates the relationship between the follower vehicle’s speed
or acceleration and the relative speed or distance; therefore,
CFDM is a driver model while the role of the driver is
neglected in CFM. Hence, CFM is not directly applicable in
unmanned vehicles. (2) More importantly, CFDM can retain
a particular driving style, while the CFM cannot.

We propose to employ the neural network-based
learning control paradigm and the real-world car-following
data (CFD) to make the style-retained driver modeling
possible. Because of the personality of driving behaviors, the
car-following process is individual and complex. Hence, the
modeling of car following is analytically difficult. It is noticed
that a driver improves his or her driving maneuver through
repeated practices. It is thus possible to establish the style-
retained CFDM by gradually imitating human driving be-
haviors during real-world driving. More specifically, the
direct inverse modeling approach [18] is employed, and the
imitation of driving behavior is modeled using locally
designed neural networks.

To the best knowledge of the authors, there are three
main contributions in this paper: (1) *is paper proposes a
novel method for modeling CFDM capable of retaining
naturalistic driving styles. (2) *e proposed CFDM can well
accomplish the car-following task. (3) Minor diversities exist
among CFDMs of the same driving style. Each CFDM
displays the unique behavior of the driver.

*e remainder of this paper is organized as follows.
Section 2 gives a brief review of the speed-tracking driver
model. Driving behavior data and energy spectrum density
are used in establishing and evaluating this model. Section 3
introduces the process for generating simulated car-fol-
lowing data. In Section 4, a novel car-following model is
developed. *e simulated car-following test procedure and
results are represented in Section 5. In Section 6, the results
of the tests are analyzed. Conclusions and future work are
given in Section 7.

2. Review on STDM, DBD, and ESD

*e speed-tracking driver model (STDM) is established
based on the DBD and is applied to generate the simulated
car-following data. In addition, the energy spectrum density
(ESD) is used to evaluate the aggressiveness of driving be-
havior. *ese issues are reviewed as follows.

2.1. STDM. In our previous work [19], a STDM was
established by using a neural network, as shown in Figure 1.
A learning-based control approach is used to learn the
human operations on the block diagram of the driver
modeling process. Adapting to become an inverse model of
the vehicle, the driver modeling is accomplished by the distal
guidance learning.

2.2. Driving Behavior Data (DBD). Collected from an
instrumented vehicle by a motor company, DBD take ac-
count into various combinations of road situations (highway
and city), driving styles (mild, moderate, and aggressive),
and vehicle types (Fiesta or Escort). Many quantities are
recorded in DBD, including vehicle speed (VS), throttle
position (TP), brake pressure (BP), and engine speed. 36
classified DBD samples are used in this work for driver
modeling. Examples of the DBD samples are shown in
Figure 2.

In the longitudinal driving situation, the driving be-
havior is mainly represented by throttle position (TP) [20].
Figure 3 gives a summary view of TP time series of 18 DBD
samples on city roads, where each column represents the
time series of a certain driver. As shown on the x-axis, No. 1
to No. 6 was originally classified as the mild, while No. 7 to
No. 12 was classified as the moderate and No. 13 to No. 18
was classified as the aggressive. It is obvious that TP varies
widely among different driving styles.

2.3. Energy Spectral Density (ESD). *e ESD is applied to
quantitatively evaluate the aggressiveness of driving be-
havior [20]. ESD describes the energy distribution of a time
series with the frequency.*e spectral density ϕ(w) of a time
series with finite energy f(t) is the square of the amplitude
of its continuous Fourier transform F(w) [21]:
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where F(w) is the continuous Fourier transform of f(t) and
w is the angular frequency. F∗(w) is a conjugate function of
F(w). *us, the ESD of the discrete time series of TP in this
research is
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fne
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. (2)

After converting to the frequency domain, D(w) is used
to characterize the variance of car-following behavior.

3. Simulated Car-Following Data (SCD)

SCD are generated in case real-world car-following data
(RCD) are not available. Car-following data are essential for
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Figure 2: Driving behavior data examples. (a) Mild-city. (b) Aggressive-highway.
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Figure 1: Speed-tracking driver modeling based on learning control.
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car-following modeling. However, it may not be available
due to the fact that data collecting may consume extra
manpower and material resources unless originally
arranged. On the other hand, real-world speed-tracking
DBD are routinely collected by automobile companies and is
thus available. We propose to generate simulated car-fol-
lowing data by using the real-world DBD.

SCD generation is implemented by emulating a real-
world car-following scene. *e car-following behavior can
be described as the longitudinal action of a driver when
following another car. *e relative distance is determined by
the follower’s speed with respect to his/her aggressiveness
and the leading vehicle’s behavior. Figure 4 shows the car-
following scene with necessary variables for SCD generation,
where VF (in mile/h) denotes the speed of the follower, VL
(in mile/h) denotes the speed of the leading vehicle, and VR
(inm) denotes the relative distance between these two
vehicles.

Two sets of SCD are generated by using the same process
for driver modeling and model testing, namely, the training
SCD and the testing SCD. *e only difference lies in the
speed profile of the leading vehicle. In generating the
training SCD, the actual speed in each DBD sample is used as
the speed profile of the leading vehicle, whereas the speed
profile of the FTP-72 is used for generating the test SCD.

3.1. Generation of SCD. As reviewed in the Section 2, the
STDM is capable of imitating and reproducing the driving
behavior of the original human driver in the longitudinal
driving situation; for this reason, we propose to employ the
STDM as a virtual driver to generate SCD.

*e follower vehicle is assumed to be operated by a
virtual driver (VirDriver), or a STDM, to follow a leading
vehicle when it is driven with a certain speed profile, i.e., the
profile used for real-world vehicle testing or the standard
driving cycle test.

*e SCD generation proceeds as shown in Figure 5 and is
conducted recursively. *e VirDriver issues appropriate TP
or BP operations according to the desired vehicle speed
VFD[t] and current vehicle speed VF[t], which results in the
actual vehicle speed at next moment VF[t+ 1]. *en, the
relative distance DR is obtained by the integral of the

difference between the speed of the leading vehicle VL and
the follower VF. A distance-to-speed conversion (DSC)
module is designed to transform the relative distance DR to
the desired follower speed at the next moment, VFd[t+ 1].
*e actual speed of the real-world DBD is adopted as the
speed profile of the leading vehicle, and the resulted fol-
lower’s TP/BP operations, vehicle speed, and the relative
distance constitute the simulated car-following data.

3.2. DSC. A DSC mechanism is proposed to convert the
relative distance to the desired speed VFd (in mile/h) for the
follower vehicle. It is found that the time-headway (THW) is
consistent with drivers and is constant over a range of speeds
[22]. THW represents the time available for the driver to
reach the same level of deceleration as the leading vehicle in
case it brakes [23] and is widely used in risk measurement
and driving-assisting system design [24]. Based on the as-
sumption that THW tends to be constant and is subject to
Gaussian distribution for each driver, VFd is defined by (3),
where THW and σ vary from driver to driver, depending on
their driving styles:

VFFd ∼ N
Dr

THW
, σ2 . (3)

4. Car-Following Driver Modeling

*e CFDM is established by imitating human driver be-
havior. *is is accomplished by using the learning control
paradigm. By adapting to become an inverse model of the
vehicle behavior, the follower driver (model) and the vehicle
(model) work together to form a closed-loop control system.

*e modeling of CFDM is illustrated in Figure 6, where
the CFDM is learnt and modified by using the direct inverse
modeling approach [18]. Because of the causes of speed
changes, the actually applied TP or BP forms the desired
output for the CFDM.*e integral of the difference between
the vehicle speed of follower VF and the leader VL forms the
relative distance and serves as the input to CFDM. To some
extent, this is similar to inversing the roles of the input and
the output of the follower vehicle. A neural network is
utilized tomimic human car-following behaviors, i.e., TP/BP
operation during real-world driving, by learning this inverse
relationship. To deal with the possible drastic variations on a
local or intermediate scale within the driving behavior data,
the B-spline neural network (BSNN) is employed to im-
plement the car-following driver model.

As shown in Figure 7, BSNN is a locally designed feed-
forward neural network composed of B-spline basis func-
tions [25, 26]. *e output of a BSNN is represented as
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where xk and yk are the input and output of the network,
respectively, wi is the weight attached to the ith basis
function, and bi

q(x) is defined as the ith basis function of
order q.

Each B-spline basis function is composed of q polyno-
mial segments. A simple and stable recursive relationship
exists to evaluate the membership of a B-spline basis
function of order q, shown as (5) and (6):

b
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b
i
0(x) �

1, x ∈ Ii,

0, otherwise,
 (6)

where bi
q(x) is the ith basis function of order q, λi is the ith

knot, and Ii is the ith interval.

5. Car-Following Test Simulation

To verify the effectiveness of the proposed scheme, the
established CFDM is applied to the car-following test
simulation as shown in Figure 8. In order to improve the
transient response, a regular proportion and derivative (PD)
controller is usually employed as an auxiliary controller [27]
in learning control. It also helps in handling hazardous
situations such as avoiding crashes when two vehicles are too
close.

*e leading vehicle and the traffic conditions are im-
portant factors affecting the follower driver’s behavior
[1, 27, 28]. In order to evaluate the car-following perfor-
mance on an equal base, these two factors should be kept
unchanged as much as possible. As a well-known driving
cycle test, the FTP-72 is used here as the speed profile of the
leading vehicle.

*e car-following test proceeds as follows:

(1) *e leading vehicle adopts the FTP-72 speed profile
as its current vehicle speedVL and then calculates the
relative distance DR by the integral of the difference
between the vehicle of the follower and the leading
vehicle, as defined by (7).

(2) Determine the output of the car-following driver
model, TPm[t] or BPm[t], according to the current
leading speed VL[t] and relative distance DR[t];
meanwhile, obtain the output of the PD controller,
TPa[t] or BPa[t], according to current relative dis-
tance DR[t]. *e actual applied TP[t] or BP[t] is their
summation as defined by (8) to (11):

DR[t] � 
t− 1

0
VL[t] − VF[t]( dT, (7)

TPm[t + 1],BPm[t + 1]  � BSNN VL[t], DR[t]( , (8)

TPa[t + 1],BPa[t + 1]  � PD DR[t],ΔDR[t]( , (9)

TP[t + 1] � TPm[t + 1] + TPa[t + 1], (10)

BP[t + 1] � BPm[t + 1] + BPa[t + 1]. (11)
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(3) *e vehicle model outputs follower’s speed VF[t+ 1],
accordingly.

(4) Repeat steps 1 to 3 recursively until the entire driving
cycle speed profile is accomplished.

Since a VirDriver can be implemented by using the
proposed car-following driver model under various vehicle
test conditions, the car-following performance can be
demonstrated for various driving styles and road situations.

6. Results

To verify the proposed scheme, simulations have been ac-
complished by using the 36 DBD samples as described in
Section 2. Firstly, a car-following driver model is established
for each DBD sample, which results in 36 CFDMs. Secondly,
each established CFDM is applied to the car-following test
simulation, where the leading vehicle speed profile is

adopted from the FTP-72 with the same road type as that in
DBD.

Several issues are considered in evaluating the car-fol-
lowing performance: (A) training error of CFDM; (B) the
effect of the follower driving style; (C) sensitivity analysis for
the order of B-spline function; (D) consistency with the
original data, and (E) diversity and similarity within the
same driving style.

6.1. Training Error of CFDM. *e weights of CFDM is learnt
and modified by using direct inverse modeling approach as
shown in Figure 6. Figures 9 and 10 show the error of TP and
BP after being tuned for 5, 10, 40, and 80 epochs.

As shown in Figure 9, the error of TP lies in the range of
[− 10, +10] degrees after 5 epochs, then [− 5, +10] degrees
after 10 epochs, and finally decreases to [− 2, +2] degrees.*e
performance of BP is the same as shown in Figure 10. *e
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Figure 8: Car-following test simulation.
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Figure 9: Error of TP during training CFDM after 5 (a), 10 (b), 40 (c), and 80 (d) epochs.
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error of BP finally decreases to [− 10, 10] psi after 80 epochs.
Obviously, the error of TP and BP is continuously becoming
smaller as far as the tuning of CFDM is being conducted and
eventually converges.

6.2.Effectof theFollowerDrivingStyle. We consider 3 driving
styles and 2 road conditions, which forms 6 combinations,
namely, Aggressive-City, Moderate-City, Mild-City, Ag-
gressive-Highway, Moderate-Highway, and Mild-Highway.
Figures 11–16 show the car-following performance of one
CFDM for each combination, where subplots (a’s) show the
vehicle speed of the leading and the follower, subplots (b’s)
show the TP time series of the follower, and subplots (c’s)
show the error of the relative distance between the car-
following test result and the test SCD, i.e., Dis_Error.

As can be seen in subplots (a’s) and (c’s), all follower
vehicles track the leading vehicle’s speed quite well, except
for a slight lag. *e resulted error in relative distance is
acceptable compared with the original SCD. It is for themost
part less than 5 meters. Subplots (b’s) show that distin-
guished diversity exists in the TP operations among drivers
of different driving styles when following the same leading
vehicle, either on the city road or highway.

Figure 17 demonstrates the car-following performance
during the acceleration and deceleration process on city
roads, which are parts of the FTP-72 driving cycle. As shown
in Figure 17(a), the aggressive driver accelerates more
rapidly and follows the leading vehicle better than the other
due to his/her aggressive personality. In Figure 17(b) , the
leading vehicle brakes to stop. *e mild driver tends to

decelerate smoothly while the aggressive driver is more likely
to brake sharply.

Each driver has a unique TP time series even when
drivers follow the same leading vehicle. *e ESD and the
variance of TP are thus calculated for evaluating the car-
following driving behaviors. Table 1 shows these two indices
applied to the TP series of following cases: (1) σTP, variance
of TP; (2) AESD, average of ESD of TP. Obviously, σTP and
AESD can both roughly distinguish the three styles, where
AESD is better for characterizing the TP distribution among
the styles. AESD is thus selected as the feature of car-following
driving style clustering.

In order to visually demonstrate the car-following
driving style reproduction of the CFDM, a K-means algo-
rithm is applied to cluster these two groups of 36 results.*e
clustering results are shown in Figure 18, where dotted
horizontal lines from the top to bottom represent clustering
centres of the aggressive, moderate, and mild drivers,
respectively.

*ese centres are 359.75, 307.05, and 244.15 for city and
1118.2, 945.7, and 815.5 for highway. Every sample is fitted
to its original experiential classification, which means the
driving style is retained and the distinction between different
styles are kept.

6.3. Sensitivity Analysis of the Order of B-Spline Function.
To deal with the possible drastic variations on a local or
intermediate scale within the driving behavior data, the
BSNN is employed to implement the car-following driver
model. It is then verified by the car-following test simulation
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Figure 10: Error of BP during training CFDM after 5 (a), 10 (b), 40 (c), and 80 (d) epochs.
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Figure 15: Car-following test: moderate-highway.
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Figure 16: Car-following test: mild-highway.
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as shown in Figure 8. Sensitivity analysis should be con-
ducted for the order of B-spline function and its impact on
accuracy and instability.

Table 2 shows the car-following accuracy under different
orders of B-spline function. *e accuracy is indicated by

Serr �
1
m



m

i�1
(Dist Error)2, (12)

wherem denotes the length of FTP-72. It is observed that the
best performance of car following is obtained when the order
of B-spline function is 3 both for the city road and highway.
And the car-following accuracy deteriorates as the order
increases beyond 3.

*e stability of driving style under different orders of
B-spline function is also studied. Figure 19 shows the resulted
TP when the order q is 1, 3, and 6, respectively. It can be seen
that the difference of driving style is not distinct among orders
for the same style, while the driving styles are retained.

On the whole, the car-following accuracy is sensitive to
the order of B-spline function and the driving style is not at
all. *is might be due to the fact that the car-following
accuracy is highly relevant to the accuracy of themodel itself,
while the driving style is not.

6.4. Consistency with Original Car-Following Data. *e
consistency of the simulation results and original car-
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Figure 17: Two typical short time car-following behaviors in city roads.

Table 1: Indices of TP for city road and highway.

Driver σTP(city) AESD(city) σTP(highway) AESD(highway)

Mild #1 11.774 240.252 11.278 828.886
Mild #2 12.301 260.193 11.041 820.992
Mild #3 11.837 243.052 11.120 861.584
Mild #4 11.254 223.581 10.387 790.462
Mild #5 11.813 245.912 10.432 749.293
Mild #6 11.956 251.960 10.497 841.852
Mode #1 13.915 308.496 10.317 910.879
Mode #2 13.264 301.337 11.554 962.742
Mode #3 13.809 287.214 11.740 915.586
Mode #4 12.959 322.409 11.246 985.642
Mode #5 13.704 316.411 11.161 961.084
Mode #6 12.339 289.629 11.391 938.092
Agg #1 14.747 355.605 11.733 1144.425
Agg #2 14.905 361.851 12.782 1135.201
Agg #3 13.771 336.843 12.039 1058.622
Agg #4 15.064 391.851 13.173 1198.153
Agg #5 14.815 352.626 12.528 1090.364
Agg #6 14.128 323.874 12.803 1082.348
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Figure 18: K-means clustering for AESD of TP in city road and highway (the dotted lines are the respective centres).

Table 2: Performance of car following under different q.

Order q Serr
City road Highway

1 25.28 19.71
2 15.21 10.34
3 9.32 3.20
4 12.41 4.32
5 13.90 5.03
6 13.86 4.59
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Figure 19: Continued.
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Figure 19: Resulted TP when the order of q is 1 (a), 3 (b), and 6 (c).

Table 3: Statistics on 36 car-following driver models on city road and highway.

σerr(VS) σerr(DR)

min max mean min max mean

Mild-city 2.421 3.107 2.793 4.337 7.796 5.581
Mode-city 2.864 5.587 4.172 5.053 7.295 6.499
Agg-city 2.357 4.276 3.342 4.148 7.84 5.663
Mild-highway 0.598 0.844 0.721 1.088 1.669 1.439
Mode-highway 0.950 1.637 1.496 1.517 3.316 2.542
Agg-highway 0.975 1.901 1.365 1.356 3.338 2.214
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Figure 20: Car-following test on city roads: 4 mild CFDMs.
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following data is another important issue for evaluating the
CFDM. Although the relative distance error is mostly less
than 5 meters for every driving style, statistics on the var-
iance of speed error and the variance of relative distance
error are used to obtain a quantitative measure of this
consistency. *e variance of speed error shows the similarity
between the CFDM and the original driver in operating the
vehicle while the variance of relative distance error dem-
onstrates the similarity in car-following performance.

Statistical of 36 results are shown in Table 3 with respect
to the driving style and road condition. It can be seen from
Table 2 that (1) *e variance in all cases are small, which
shows that every CFDM performs consistently with the
original driver. (2) *e variance is generally smaller on
highways rather than on city roads. *is is reasonable be-
cause city roads are usually more complicated than high-
ways. (3) *e σerr(VS) and σerr(DR) are no much difference
between different driving styles in each specific environ-
ment. Based on these three facts observed, a conclusion can
be drawn that the CFDM performance is inconsistent with
the original driving data.

6.5.Diversities of CFDMsof the SameStyle. Figures 20 and 21
show the TP series of 4 CFDMs for mild drivers when
conducting the car-following test on city roads and 4

CFDMs for aggressive drivers on highways. It can be seen
that the CFDMs of the same driving style demonstrate
similar driving behaviors, i.e., small magnitude in TPs with
smooth changes for mild driver CFDMs and large magni-
tude TPs with sudden changes for CFDMs for aggressive
drivers. However, minor diversities exist even though of the
same driving style. Each CFDMdisplays the unique behavior
of the driver.

7. Conclusions

Style-retained car-following driver modeling is studied in
this paper. We establish a car-following driver model by
imitating human driving behaviors. *is is accomplished by
using a neural network-based learning control paradigm and
the car-following data. We also generate simulated car-
following driving data by employing the speed-tracking
driver in case that the real-world car-following driving data
are not available. Finally, FTP-72-based car-following test
simulation is conducted to verify our scheme. Several
conclusions can be obtained from this study:

(1) *e novel CFDM in this study is capable of retaining
and reproducing naturalistic driving styles. *is is
quantitatively analyzed by AESD and further dem-
onstrated based on the k-means cluster method. For
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Figure 21: Car-following test on highway: 4 aggressive CFDMs.
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the city road, the AESD of mild, moderate, and ag-
gressive drivers generally falls within the range of
[220, 270], [280, 320], and [330, 400], respectively.
And for the highway, these are [750, 870], [900, 990],
and [1000, 1200], respectively.

(2) *e CFDM can track the leading vehicle’s speed quit
well, and the error of relative distance is mostly less
than 5 meters for every driving styles.

(3) *e car-following accuracy is sensitive to B-spline
function, and the driving style is not at all. *e best
performance is obtained when the order of B-spline
function is 3 both for the city road and highway.

(4) *e CFDM performance is consistent with the
original driving data, where all of the σerr(VS) and
σerr(DR) are small.

(5) Similar driving features are demonstrated by the
same style of CFDMs; however, minor diversities
exist even though of the same driving style.

*e proposed scheme is a realistic approach based on the
state of the art in car-following driving modeling. And it is
suitable for the situation where human drivers are replaced
by robot drivers and driving style is an important issue. In
our future work, efforts will be devoted to driverless driving
and the driving assistance system for safer driving when
autonomous vehicles and human-operated vehicles coexist.

Notations

CFM: Car-following model
CFDM: Car-following driver model
CFD: Car-following data
STDM: Speed-tracking driver model
ESD: Energy spectrum density
DBD: Driving behavior data
VS: Vehicle speed
TP: *rottle position
BP: Brake pressure
SCD: Simulated car-following data
RCD: Real-world car-following data
VirDriver: Virtual driver
DSC: Distance-to-speed conversion
THW: Time-headway.
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