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�is paper follows the previous e�ort of authors and builds the model of transit route network design for low-mobility individuals, 
proposing an appropriate solution methodology. Firstly, a desired objective, whose priority is to meet transit demands of low-
mobility individuals followed by those of general public, is presented to minimize the weighted sum of direct traveler, transfer, 
and unsatis�ed demand costs. �en, a hybrid metaheuristic approach based on ant colony and genetic algorithms is formulated 
to solve the proposed model in accordance with current conditions (i.e., existing routes that may need to undergo con�guration 
adjustments to di�erent degrees). Finally, the case study of Wenling is presented to highlight the performance and bene�ts of the 
proposed model and solution methodology.

1. Introduction

Given that many individuals  are unable to access all bene�ts 
of transportation services due to their limited mobility and 
the low-mobility population is large in China, some research-
ers started focusing on low-mobility individuals (LMIs, e.g., 
older adults, low-income individuals, and individuals with 
disabilities) in various �elds, such as policy development [1], 
tra�c data collection [2], and modeling mode choice [3].

In a previous paper, the authors analyzed the transportation 
demands of LMIs in Wenling, China [4], following the results 
of Jansuwan et al., [5] as a reference. Results of the demand 
analysis show that: (a) the transit share of LMI respondents 
(15.26%) is larger than that of general public (GP) respondents 
(6.53%) in China (respondents were asked to provide their tra�c 
information in the previous survey). �e main reason is that 
LMIs have to make mid- and long-distance trips using a bus due 
to �nancial or physical limitations, while the GP has access to 
more transportation options (e.g., private car and bus) to com-
plete mid- and long-distance trips; (b) due to inadequate national 
�nancial investment, most Chinese cities’ bus transit services 
lack the resources to meet the demands of many individuals, 
particularly of LMIs; (c) considering the high population density 
in most Chinese cities, planners and policymakers should 

develop the public transportation actively by learning from the 
experiences of other developed countries (e.g., Japan and 
Singapore), and take the special conditions of their own country 
into account to meet the transit demands of LMIs. Furthermore, 
an e�cient transit system is urgently needed to ensure access to 
transportation for citizens, and contribute in improving mobil-
ity, mitigating tra�c congestion, reducing energy consumption, 
and air pollution, etc. [6]. �erefore, this paper pays attention 
to the transit demands of LMIs and presents the next stage of 
research e�orts: a transit route network design model for LMIs 
with the same case study of Wenling, China.

Exiting studies related to transit route network design 
(TRND) have been presented by many researchers in di�erent 
public transportation networks. For example, transit network 
accessibility [7, 8], multi-user class transit network design [9, 
10], feeder network design [11, 12]. However, most of exiting 
studies related to public transportation for LMIs mainly focus 
on public transit accessibility (i.e., walking to the bus stop) [4, 
5, 13, 14], rather than on the TPND. Hence, modeling transit 
route network design for LMIs (TRNDLMI) is necessary and 
essential, since this is the theoretical basis in order to improve 
travel conditions of LMIs. Furthermore, di�erent routes must 
be subject to varying degrees of con�guration adjustments for 
real-world optimization, but traditional TRND algorithms 
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cannot achieve this requirement. As a result, a suitable solution 
algorithm, which can meet the requirements and be applied 
on TRNDLMI, is a significant challenge for researchers.

�is article aims to solve the TRNDLMI problem, i.e., to 
aid the design of transit networks that are more conducive to 
travel demands, and in particular those of LMIs. In this paper, 
the adjustments of stops and headway of routes are mainly dealt 
with, and a hybrid metaheuristic approach is adopted to com-
pensate for the shortcomings of existing algorithms. In addi-
tion, we show the effectiveness and precision of the proposed 
model and methodology through the following: (1) a compar-
ison between the original and optimal solutions, (2) a sensitivity 
analysis of different weights, (3) an evolution analysis from 
ACA to GA, and (4) a comparison to other approaches.

�e rest of this paper is organized as follows. �e literature 
review is given in Section 2. �e proposed model and method-
ology to the problem are shown in Sections 3 and 4, respec-
tively. �e results and analyses from an application in the case 
study of Wenling are provided in Section 5. Finally, we conclude 
the paper and give future research directions in Section 6.

2. Literature Review

In general, TRND models can be organized using a three-layer 
structure (objectives, parameters, and methodology). �e defi-
nition of parameters is related to the technical implementation 
details and usually considered during the formulation of the 
problem [15]. Objectives refer to a metric that describes the 
TRND as an optimization problem, such as a cost function, while 
methodology refers to the approach that is used to formulate the 
TRND model. �erefore, the literature review is divided into 
two parts, a review of approaches based on their objectives and 
a review of approaches based on their methodology approaches.

2.1. Objectives. �e objectives of the TRND have been 
summarized as follows: (a) user benefit maximization, (b) 
operator cost minimization, (c) total welfare maximization, (d) 
network capacity maximization, (e) energy conservation and 
protection of the environment, and (f) individual parameter 
optimization [15]. �ese objectives have been widely used 
by many publications to solve various TRND problems, e.g., 
considering variable demand [16], sustainability [15], direct 
traveler density [17, 18], and transfer [6, 19].

A multi-objective nonlinear mixed integer model was for-
mulated by Fan and Machemehl [6, 19], considering user costs, 
operator costs, and unsatisfied demand costs based on differ-
ent weightings for those costs. Given that different weights 
might result in different optimal results using the same meth-
odology, they analyzed the sensitivity of user cost weights and 
found that the smaller the value of user cost weight, the better 
results they can obtain. In this paper, we also form a multi-ob-
jective optimization function based on user benefit and capac-
ity maximization, to further consider different user class costs 
(direct travel, transfer, and unsatisfied demand) and the rela-
tionship between three transit travel demands of LMIs and 
GP. Furthermore, a reasonable weight set is chosen according 
to results of weight analysis presented by Fan and Machemehl 
[6, 19] and our optimization goal (i.e., the priority of our opti-
mal transit route network) is to meet more travel demands, 
particularly those of LMIs.

2.2. Methodological Approaches. Given that the metaheuristic 
algorithms have proven to be a flexible and practical method, 
many researchers have recently presented various such 
approaches to solve TRND problems, such as those based 
on simulated annealing (SA) [20], tabu search (TS) [19], 
genetic algorithms (GA) [21–23], and ant colony algorithms 
(ACA) [17, 18]. However, the ACA and GA are the most well-
known, and can obtain good solutions for transit networks at 
reasonable computational cost.

�e ACA, proposed primarily by Dorigo et al., [24], does 
not focus on mathematical descriptions of specific problems, 
but rather on overall optimization ability and parallelization 
capacity. �e principle of the ACA is that ants communicate 
with one another via pheromones along their way from the 
food source to the nest. �e ACA has received considerable 
attention with respect to its potential as an alternative algo-
rithm for solving hard combinatorial optimization problems. 
Most researchers have generally applied the ACA to single 
path design problems; for example, in transit feeder network 

design [11, 25, 26] and school bus routing [27, 28]. However, 
ACAs applied on TRND problems require the original and 
terminal stops of routes beforehand, which limits the interre-
lation between different routes.

GAs, first presented by Holland [29], are a class of intelli-
gent search heuristics inspired by Darwin’s theory about evo-
lution. According to the evolution theory, only the best-fit 
individuals will survive and create new offspring, whereas the 
least-fit individuals will be eliminated. GAs have high effi-
ciency and adaptability, combining with their ability for mas-
sive parallel computing, makes them suitable for non-linear 
combinatorial problems. �erefore, GAs have been success-
fully implemented in a number of papers for addressing TRND 
problems [21–23, 30, 31]. However, GAs applied in the TRND 
problems produce the same degree of configuration adjust-
ment for all transit routes, which is not a viable approach for 
TRND, as mentioned in the Section 1.

Different metaheuristic approaches can be used for solving 
different TRND problems. With the increase of transit route 
network scale and optimization requirements, some researchers 
gradually tend to use hybrid metaheuristic approaches for solv-
ing complex TRNDLMI problems [32]. �e present paper inte-
grates the ACA and GA approaches to solve the TRNDLMI 
problem, with the purpose of leveraging the advantages of each 
algorithm and making up for their shortcomings. Given that 
existing routes may need to produce different degrees of varia-
tions in the configuration, we use the existing transit route net-
work as the input and then make the configuration of some 
routes change, mainly through the direct traveler density of 
routes using the ACA (see Section 4.2); a�erwards, we utilize the 
GA design all routes with fine configuration changes and then 
output the optimal transit route network (see the Section 4.3).

3. Model

A transit route network design model for low-mobility indi-
viduals is proposed to solve TRNDLMI problem faced by 
major Chinese transit networks. In our solution, the length, 
headway, and stop configuration of routes are actually being 
optimized to meet more transit travel demands, particularly 
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the direct travel demand of LMIs. Some assumptions we 
adopted are as follows:

(i)  �e number of routes is constant;
(ii)  �e origin and destination stops of each transit route 

are known;
(iii)  �e maximum transit §eet size available for public 

transportation is �xed;
(iv)  �e load capacity of each vehicle is same;
(v)  �e average speed of each operating vehicle is �xed;
(vi)  Any transit trips that require more than one transfer 

will be considered as trips not served by the transit 
transportation;

(vii)  Road congestion is not substantial;
(viii)  Each route has the same headway and operating line 

with its reverse route.

3.1. Setting. We formulate the tra�c network as a directed 
graph �(�, �), which is denoted by a stop set � and a link set � consisting of feasible links (�, �) ∈ � connecting stops � and �(�, � ∈ �, � ̸= �). �e following notations for parameters and 
decision variables are used:      

Parameters�: Number of routes,   ��� : Total travel demand from stops � to � (persons),����:  Total travel demand of di�erent groups from stops � to � (person), where g is either LMIs or GP; note 
that ��� = �LMI

�� + �GP�� ,���: Length of the link (�, �) (km),� ��:  Minimum possible route length from stop � to � 
(km),      �

max
: Maximum route length (km),�

min
: Minimum route length (km),ℎ

max
:  Maximum headway required for any route (min/

vehicle),      ℎ
min

:  Minimum headway required for any route (min/
vehicle),�:  Maximum load capacity of each operating vehicle 
(persons/vehicle),�:  Fleet size available for operations in an hour 
(vehicles/h),�:  �e average speed of each operating vehicle (km/h),��:  Weights re§ecting the relative importance of three 
components: direct traveler costs, transfer costs and 
unsatis�ed demand costs, respectively, � = 1, 2, 3,

��
d
:  Weights re§ecting the relative importance of 

direct traveler costs between low-mobility indi-
viduals and general public, respectively, � is LMIs 
and GP      ��t :  Weights re§ecting the relative importance of trans-
fer costs between low-mobility individuals and 
general public, respectively, � is LMIs and GP,��

d
:  Time value of each unsatis�ed travel demand of 

di�erent groups (min), � is either LMIs or GP.      

Decision Variables�: �e �th route of a solution, � = 1, 2, ...,�,��: Transfer paths that use more than one route,��: Overall length of the route � (km),ℎ�: Headway of route � (min/vehicle),���� :  Transit passengers from stops � to � on route � (per-
sons) travelling directly,����,�:  Transit passengers of di�erent groups from stop �
to � on route � (person); � stands for LMIs or GP; 
note that ���� = ����,LMI

+ ����,GP,  ����� :  Transit passengers from stop � to � on path �� (per-
sons) transferring to another route,�����,�:  Transit passengers of di�erent groups from stops �
to � on path �� (persons), � is LMIs or GP; note that ����� = �����,LMI

+ �����,GP,����:  Set of direct routes used to serve demand from stop � to �����:  Set of transfer paths used to serve the demand from 
stops � to �,����: Length from stops � to � on the route � (km),�����:  Length from stops � to � along transfer path �� (km),���� :  Total travel time from stop � to � on route � (min), ���� = ����/�,����� :  Total travel time from stop � to � along transfer path �� (min), ����� = �����/�,��:  Maximum carried §ow occurring on route � 
(persons/h).    

3.2. Objective Function. �e objective is to minimize the sum 
of direct travel, transfers, and unsatis�ed demand costs for the 
studied transit route network, taking into account the trade-o� 
between transit trips of LMIs and GP. �e objective function 
is as follows:

(1)

min� =�1 ×(�
LMI

d
× ∑
�∈�
∑
�∈�
∑
�∈����
����,LMI
× ����+CGP

d
× ∑
�∈�
∑
�∈�
∑
�∈����
����,GP × ���� )+ �2 ×(

�LMI

t
× ∑
�∈�
∑
�∈�
∑
��∈����
�����,LMI
× �����+�GP� × ∑

�∈�
∑
�∈�
∑
��∈����
�����,GP × ����� )

+ �3 × [[[[[
�LMI

� × (∑
�∈�
∑
�∈�
�LMI

�� − ∑
�∈�
∑
�∈�
∑
�∈����
����,LMI
− ∑
�∈�
∑
�∈�
∑
��∈����
�����,LMI
)

+�GP� × (∑
�∈�
∑
�∈�
�GP�� − ∑

�∈�
∑
�∈�
∑
�∈����
����,GP − ∑

�∈�
∑
�∈�
∑
��∈����
�����,GP)

]]]]]
,
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possible. �ree degrees of con�guration adjustments, includ-
ing the length and stops of routes, are presented: major (many 
stops are adjusted), �ne (a few stops are adjusted) and no 
adjustments.

To meet three degrees of con�guration adjustments, the 
proposed approach incorporates ACA into GA, named ACA–
GA, including two processes: major tuning and �ne tuning. 
�is is depicted in Figure 1. Note that the major and �ne tun-
ing processes may not necessarily result in a change of a route’s 
con�guration.

During major tuning, we optimize the “original solution” 
(existing transit route network) based on the ACA, which 
instigates large changes in the con�guration of some routes.

In �ne tuning, the transit route network a®er the major 
tuning process is optimized using the GA to output the “opti-
mal solution” (ACA–GA transit route network), where all 
routes may produce subtle con�guration variations.

�is approach (i.e., ACA–GA) not only reduces the search 
scope and improves the quality, but also inherits many good 
genes (high occupancy links) from the existing transit route 
network. �e following notations for parameters and decision 
variables are used:  

Parameters

N: Maximum number of iterations,
K: Number of vehicles assigned to the origin in the 

beginning of each ant activity,�
t
: �reshold of direct traveler density of routes,�: Pheromone in§uence coe�cient,�: Visibility in§uence coe�cient,�: Adjustment coe�cient,�  : Evaporation parameter.      

Decision Variables�:  �e �th iteration of a computational cycle, � = 1, 2, ..., �,�: �e �th vehicle of an ant activity, � = 1, 2, . . . , �,���: Direct traveler density of route � (persons/km),���: Pheromone from stop � to ����: Visibility from stop � to �,��� :  All upstream travel demands of stop � on route �,����: Probability of vehicle � moving from stop � to �,�: Stop adjacent to ������: Set of unfeasible stops for vehicle �,��: Route � found by the vehicle �,Δ���(��):  Increase in pheromone on link (�, �) of route ��,����: Direct traveler density on route ��,���,��: Carried §ow of link (�, �) on route ��,�
s
: Number of stops on route ��,�new�� : Pheromone on link (�, �) a®er updating,�old�� : Pheromone on link (�, �) before updating.    

4.1. Representation. A solution can be described by � (i.e., 
number of routes) di�erent integer series of variable length, 

subject to

Objective function (1) seeks to minimize the weighted 
sum of di�erent kinds of costs, including direct travel (the �rst 
term), transfer (the second part), and unsatis�ed demand (the 
third component) costs. Parameters �1, �2, and �3 re§ect the 
tradeo�s among di�erent costs, making TRNDLMI a mul-
ti-objective optimization problem. In the �rst term, parame-
ters �LMI

d
 and �GP

d
 are introduced to formulate the relationship 

between the direct travel costs of LMIs and GP. Parameters �LMI

d
 and �GP

d
 are similar to parameters �LMI

t
 and �GP

t
 (in the 

second part), and parameters �LMI

d
 and �GP

d
 (in the third com-

ponent). �e values of these parameters, the constraints of 
which are shown in Equations (6)–(10), depend on planners’ 
experience and experts’ judgment to meet more travel 
demands (Equation 6), more direct travel demand of LMIs 
(Equation 7), more transfer travel demand of LMIs (Equations 
8 and 9), and reduce the unsatis�ed demand of LMIs (Equation 
10). Note that Equation 9 shows that transit travel is the main 
transportation mode among LMI transfers due to the less 
alternative modes, but GP transfers may easily stop the transit 
travel because of the inconvenience of transferring. Constraint 
(2) is the route length constraint. �is avoids routes that are 
too small or long to guarantee the e�ciency of transit route 
networks. Constraint (3) is the route headway (frequency) 
constraint, which re§ects the necessary usage of policy head-
ways on extreme situations. Constraint (4) ensures that the 
maximum carried §ow on any route cannot exceed the max-
imum load capacity of vehicles. Constraint (5) shows the 
resource limits of the transit company and guarantees that 
each transit route network uses the same §eet size. Note that 
for Constraints (4) and (5), 60 is cited because 1 h is equal to 
60 min.

4. Solution Methodology

In this section, according to the proposed methodology, we 
force the optimal transit route network to retain the high occu-
pancy links of the existing transit route networks as far as 
possible, so as to not a�ect people’s travel habits as much as 

(2)�
min
≤ �� ≤ �max

,
(3)ℎ

min
≤ ℎ� ≤ ℎmax

,
(4)�� ≤ 60∗�ℎ� ,
(5)

�∑
�=1

2∗60ℎ� =�.

(6)�1 + �2 + �3 = 1, 0 < �1 < �2 < �3,
(7)�LMI

d
+ �GP

d
= 1, 0 < �LMI

d
< �GP

d
,

(8)�LMI

t
+ �GP

t
= 1, 0 < �LMI

t
< �GP

t
,

(9)�LMI

t
< �LMI

d
,

(10)0 < �GP
d
< �LMI

d
.
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the carried §ow of the link (�, �) on the route as the local 
pheromone.

�e procedure of major tuning based on the ACA is as 
follows.

Step 1.  Load the original solution, travel demands and 
tra�c network.

Step 2.  Obtain routes in need of the larger-scale con�g-
uration adjustment through the extract scheme 
(described in Section 4.2.1).

Step 3.  Optimize routes in need of larger-scale con�gura-
tion adjustment individually using the ACO pro-
cess, as follows.

Step 3.1.  Input the origin and terminal stops of 
a route;

Step 3.2. Initialize, set iteration number � = 0;
Step 3.3. Initialize, set vehicle � = 0;
Step 3.4.  Find the route for vehicle � through the 

ant activity scheme (Section 4.2.2);
Step 3.5.  If � < �, then � = � + 1, otherwise return 

to step 3.4;
Step 3.6.  Accumulate experiences of many ant 

activities through the trail update scheme 
(Section 4.2.3);

Step 3.7.  If � < �, then � = � + 1  otherwise return 
to step 3.3;

Step 3.8.  Obtain the optimal route a®er larger-scale 
con�guration adjustment.

Step 4.  Obtain the ACO solution (i.e., transit route network 
a®er larger-scale con�guration adjustment).

4.2.1. Route Extraction. �e direct traveler density is taken as 
the index to judge whether each route in the original solution 
produces a large change in con�guration. We extract those 
routes with low direct traveler density (< �

t
) to be optimized 

using the ACO process. �e direct traveler density of route � is de�ned as:

4.2.2. Ant Activity. Ant activity is in§uenced mainly by 
the pheromone (continuously updated with the increase of 
iterations) and visibility (which remains comparatively stable 
among iterations).

�e initial pheromone from stop � to � is de�ned by:

Visibility encourages a vehicle to visit a stop locally according 
to a greedy method. �e visibility from stop � to � is de�ned 
as:

(11)��� = ∑
�∈�
∑
�∈�

������ .

(12)��� = ���� �� .

(13)��� = ������ .

known as a route set (each series is a route). �e same network 
as in Wan and Lo [33] is used to illustrate our model, as 
shown in Figure 2(a). �ere are 10 stops (corresponding to 
the number of node) and 19 links. An example solution having 
3 routes is shown in Figure 2(b).

4.2. Major Tuning. In this process, the con�guration of 
di�erent transit routes should be optimized individually when 
the origin and terminal stops are known. Consequently, we use 
the ACA to complete the larger-scale con�guration adjustment 
of the transit route network.

Based on the study presented by Yu et al., [17, 18], our 
ACA considers vehicles as ants, the origin stop as the nest, and 
the terminal stop as the food source. �e colony needs to �nd 
the route with the shorter distance and meet more travel 
demands from the origin to the terminal stop using the pher-
omone. Some improvements were made on the proposed 
ACA: (1) we only need to �nd a route using the ant colony 
optimization (ACO) process (see Figure 1); (2) we consider 

Load travel 
demands and 

the tra�c 
network

Major
tuning

Input the original solution

Extract

Initialization (n = 0)

n = n+1

Vehicle k = 1 

k = k+1

Ant activity

k≥ K?

Trail update

 Route a�er ant colony optimization

n ≥ N?

No

No

Fine
tuning Initialization (n = 0)

n = n+1

Selection

Route mutation

Headway mutation

Output the optimal solution

n ≥ N?
No

Yes

Yes

Yes

Ant colony 
optimization 

(ACO)

Transit route network a�er major tuning

Figure 1: Flowchart of the ACA–GA.
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Judging from previous experiences, the GA includes selec-
tion, crossover, and mutation schemes. �e selection scheme 
is to select routes or the transit route network in need of cross-
over and mutation; the crossover scheme exchanges stops 
between two di�erent routes optionally, resulting in large-scale 
con�guration changes of routes; the mutation scheme adjusts 
the stops on a single route, only resulting in subtle variations 
of route con�guration. Due to the optimization requirements 
of �ne tuning in this case, our GA does not include the cross-
over scheme; we increase the selection probability in the selec-
tion scheme, and design an advanced route mutation scheme. 
In addition, the proposed GA adds a headway mutation 
scheme to adjust the headway of each route, while taking into 
account the interrelationship of di�erent routes.

�e procedure of �ne tuning based on the GA is as 
follows.

Step 1.  Load travel demands and the tra�c network, set 
the transit route network a®er large-scale con�gu-
ration adjustment as the current solution.

Step 2.  Initialize, set iteration number � = 0.
Step 3.  Execute the selection scheme on the current solu-

tion (Section 4.3.1).
Step 4.  Execute the route mutation scheme on routes 

obtained during step 3 (Section 4.3.2).
Step 5.  Execute the headway mutation scheme on the cur-

rent solution a®er step 4 (Section 4.3.3).
Step 6.  If � < �, then � = � + 1, otherwise return to step 3.
Step 7.  Output the ACA–GA solution by comparing objec-

tive function values.

4.3.1. Selection. A random selection strategy was used to select 
routes. �e selection probability is reduced as the scale of the 
network increases.

A search rule is then given to vehicles, where a vehicle tends 
to choose the better path, using the pheromone and visibility 
as variables. �e probability of the vehicle � moving from stop � to � is de�ned by:

4.2.3. Trail Update. �e experience of the ant colony search 
(which comprises many ant activities) is re§ected by the 
pheromone of the links, so update methods of the pheromone 
a�ect the process and result of the ant colony search directly. 
We improve the update strategy of the increased pheromone 
presented by Yu et al., [17, 18], taking the direct traveler 
density of a route and the carried §ow of a link as the global 
and local pheromone, respectively.

�e improved update strategy is as follows:

If all vehicles complete route searches, the pheromone matrix 
is updated as:

4.3. Fine Tuning. In this process, the interrelationship of 
di�erent routes must be considered. �erefore, we use the 
GA to perform �ne con�guration adjustment of the transit 
route network.

(14)���� =
{{{
{{{
{

(���)
�∗(���)

�

∑
�∉�����
(���)�∗(���)� if � ∉ �����,

0 otherwise.

(15)

Δ���,�� =
{
{
{

���� + ���,��/� ��
�∗(��+2) if link (�, �) on the route��,
0 otherwise.

(16)�new�� = (1 − �) ∗ �old�� + �∑
�=1
Δ���,�� � ∈ (0, 1).

Figure 2: Illustration of example network. (a) Transit network and (b) Route representation.
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Table 2, where we see that the con�guration dri® from original 
to ACA–GA routes takes place according to the three degrees 
of con�guration adjustments (major, �ne and no adjustments). 
Routes 1, 2, 6, 7, 9, 10, 11 and 12 were optimized by the ACO 
and their con�guration was changed to a large extent; routes 
4 and 13 only have subtle con�guration variations; others 
routes retain the original path and were not adjusted at all. 
In the optimal routes, direct traveler densities of all routes 
are no less than 10 persons/km; the larger the direct traveler 
density of a route is, the smaller the headway of the route. 
�ese results indicate that all ACA–GA routes are based on 
available con�gurations and inherit many high occupancy 
links from original routes.

Table 3 presents the results of the original and ACA–GA 
transit route network solutions, including the number of direct 
travelers (N

DT
), the average travel time ratio of LMI and GP 

direct travelers (AR
DT

), the number of transfers (N
T
), average 

travel time ratio of LMI and GP transfers (AR
T
), the number 

4.3.2. Route Mutation. �e route choice is governed mainly 
by travel demands. �erefore, we give priority to stops with 
more travel demands for selection as mutated stops. Note 
that this scheme only considers the mutation of intermediate 
stops.

4.3.3. Headway Mutation. Under the precondition of steady 
§eet size, this scheme increases the headway of routes whose 
direct traveler density is smaller, and decreases headways 
whose direct traveler density is larger.

5. Case Study

�e approaches described in this paper were coded in 
MATLAB so®ware and ran on an Intel 4Ghz PC under 
Windows 7. In this section, we examine our proposed model 
initially on the tra�c network of Wenling city, using data 
obtained in the previous survey of the authors [1] to demon-
strate the computational e�ciency and solution optimality.

5.1. Scenarios. �e total population of the survey region 
is approximately 442.6 thousand and the build-up area is 
about 61.55 km2. As shown in Figure 3, the tra�c network of 
Wenling has 259 stops (corresponding to the node number) 
and 406 links (the length can be obtained based on the scale). 
In our previous survey [1], the total survey results (12,013) 
consisted of 4,319 low-mobility respondents and 7,694 general 
respondents. Here, we used two parts of trip O–D (Origin–
Destination) from survey results to formulate our travel 
demands: (1) transit trip O–D of respondents; (2) trip O–D of 
low-mobility respondents who made mid- and long-distance 
travels (at least 20 minutes) by riding a bicycle, electric bicycle 
or motorcycle. �e actual travel demand matrix (259∗259) was 
generated according to calculations based on the proportion 
of respondents in the survey region (i.e., the sum of two parts 
of trip O–D divided by the proportion of respondents). �e 
number of iterations of ACA and GA were 100 and 400, 
respectively. Table 1 lists the values of the other parameters 
related to the proposed model according to the actual state, 
the optimization requirements, and Equations (6–10).

5.2. Result Analysis
5.2.1. Comparison between Original and ACA–GA 
Solutions. �e results of the route optimization are listed in 
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Figure 3: Layout of stops and links in Wenling.

Table 1: Relevant parameters.

Parameters Value
M, W, K 13, 77, 100�
max

, �
min

10, 30ℎ
max

, ℎ
min

20, 7.5�, � 75, 30�1, �2, �3 0.15, 0.3, 0.55�LMI

d
, �GP

d
0.45, 0.55�LMI

t
, �GP

t
0.4, 0.6�LMI

d
, �GP

d
80, 40�

t
, �, �, �, � 10, 0.9, 0.2, 0.1, 0.3
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�LMI

t
, �GP

t
, �LMI

d
, and �GP

d
, listed in Table 1); (b) equitableness 

for LMIs and GP (parameters �LMI

d
, �GP

d
, �LMI

t
, and �GP

t
 are all 

0.5, parameters �LMI

d
 and �GP

d
 are both 60); (c) tendency for 

general public (parameters �LMI

d
, �GP

d
, �LMI

t
, �GP

t
, �LMI

d
, and �GP

d

are 0.55, 0.45, 0.6, 0.4, 80, and 40, respectively). �e results 
of these three types of transit route network solutions are 
denoted as Solution-b, Solution-c, and Solution-d in Table 3, 
respectively. �e comparison shows that the numbers of 
direct travelers, transfers, and unsatis�ed demand are almost 
equal in the three di�erent solutions, but the numbers of 
direct travelers and average travel time ratios between LMIs 
to the GP in Solution-b are the largest in the three di�erent 
solutions, followed by Solution-c, and then by Solution-d. 
�ese �ndings reveal that the proposed weights in this paper 
(i.e., the tendency for LMIs) applied on the TRND problem 
promote the transit travel environment of LMIs better than 
the other two types of weights.

of unsatis�ed demands (N
UD

), and the value of the objective 
function (V

OF
). Compared to the original transit route net-

work, it can be seen that the ACA–GA transit route network 
(Solution-b) produces more direct travelers and transfers, and 
reduces the unsatis�ed travel trips; at the same time, the aver-
age travel time ratios between LMI to GP direct travelers and 
transfers are both increased. �ese results indicate that the 
proposed model can obtain a better transit route network than 
the original transit route network, particularly for LMIs.

5.2.2. Sensitivity Analysis of Di�erent Weights. �e sensitivity 
analysis of weights among direct travel, transfer, and 
unsatis�ed demand costs is similar to that presented by Fan 
and Machemehl [6, 19]. In consideration of our study for LMIs, 
the sensitivity of weights between LMIs and the general public 
was analyzed using the ACA–GA. �ree di�erent weights were 
extracted: (a) the tendency for LMIs (parameters �LMI

d
, �GP

d
, 

Table 2: Results of original and ACA–GA routes.

No. Type Con�guration of stops ��� �� ℎ� ACO?

1
Original 59, 53, 54, 71, 132, 126, 120, 121, 122, 123, 124, 125, 118, 173, 181, 189, 197, 231, 235 5.4 30.4 12

Yes
ACA–GA 59, 60, 73, 74, 75, 155, 156, 157, 158, 159, 160, 154, 186, 187, 216, 217, 220, 223, 221, 

222, 224, 225, 250, 245, 244, 241, 235 18.7 40.6 7.5

2
Original 3, 6, 9, 18, 25, 29, 39, 55, 57, 58, 75, 74, 73, 72, 138, 139, 140, 141, 142, 147, 149 8.0 21.3 10

Yes
ACA–GA 3, 6, 9, 10, 14, 20, 19, 18, 25, 29, 30, 31, 32, 13, 69, 70, 71, 72, 143, 144, 145, 146, 148, 

149 42.9 16.0 7.5

3
Original 3, 4, 7, 10, 14, 20, 30, 31, 32, 44, 54, 60, 73, 74, 75, 76, 77, 78 32.9 11.3 15

No
ACA–GA 3, 4, 7, 10, 14, 20, 30, 31, 32, 44, 54, 60, 73, 74, 75, 76, 77, 78 30.2 11.3 20

4
Original 33, 34, 35, 36, 37, 27, 23, 16, 17, 8, 5, 2, 3, 6, 9, 18, 25, 29, 39, 55, 57, 65, 67 8.9 16.4 7.5

No
ACA–GA 33, 34, 35, 36, 37, 27, 23, 16, 17, 8, 5, 2, 3, 6, 9, 18, 25, 29, 39, 55, 57, 65, 67 10.4 16.4 20

5
Original 66, 63, 49, 45, 36, 26, 27, 28, 29, 30, 31, 32, 43, 53, 59, 74, 150, 156, 157, 158, 165, 166, 

167, 171, 172 20.6 24.3 7.5
No

ACA–GA 66, 63, 49, 45, 36, 26, 27, 28, 29, 30, 31, 32, 43, 53, 59, 74, 150, 156, 157, 158, 165, 166, 
167, 171, 172 20.9 24.3 10

6
Original 47, 48, 49, 45, 36, 26, 27, 23, 24, 25, 18, 19, 20, 21, 22, 13, 69, 119, 106 0.2 15.0 7.5

Yes
ACA–GA 47, 48, 49, 45, 46, 37, 38, 28, 27, 23, 16, 17, 8, 5, 2, 3, 4, 7, 10, 14, 20, 30, 31, 32, 44, 54, 

71, 70, 126, 120, 119, 106 35.2 25.7 7.5

7
Original 67, 64, 50, 55, 51, 56, 58, 59, 60, 73, 72, 143, 144, 145, 140, 134, 128, 129, 130, 124, 

110, 113, 114 4.1 27.4 7.5
Yes

ACA–GA 67, 66, 62, 48, 49, 50, 55, 51, 56, 52, 53, 59, 60, 54, 71, 72, 138, 132, 126, 70, 69, 119, 
106, 107, 104, 105, 109, 110, 113, 111, 112, 114 20.1 40.6 12

8
Original 67, 65, 57, 58, 56, 52, 41, 42, 43, 32, 22, 13, 69, 119, 120 11.0 13.8 10

No
ACA–GA 67, 65, 57, 58, 56, 52, 41, 42, 43, 32, 22, 13, 69, 119, 120 28.4 13.8 10

9
Original 3, 6, 9, 18, 25, 29, 39, 40, 41, 52, 53, 59, 74, 150, 151, 152, 153 2.2 11.9 15

Yes
ACA–GA 3, 4, 7, 10, 14, 11, 12, 21, 20, 19, 18, 25, 29, 30, 41, 40, 51, 56, 58, 75, 76, 77, 78, 80, 

163, 156, 157, 158, 151, 152, 153 32.8 20.2 20

10
Original 3, 2, 5, 8, 17, 24, 28, 38, 39, 40, 51, 52, 56, 58, 75, 155, 156, 163, 164, 169 14.4 15.8 20

Yes
ACA–GA 3, 4, 12, 11, 14, 19, 20, 30, 41, 40, 51, 55, 57, 65, 76, 77, 78, 80, 163, 164, 169 29.0 18.4 8.5

11
Original 58, 59, 53, 54, 71, 132, 133, 134, 135, 136, 137 0.3 11.5 10

Yes
ACA–GA 58, 56, 51, 40, 39, 29, 25, 18, 19, 14, 10, 11, 12, 13, 69, 70, 126, 127, 128, 134, 140, 141, 

142, 136, 137 46.8 19.0 7.5

12
Original 47, 61, 62, 63, 64, 65, 76, 155, 156, 157, 158, 159, 161, 162 0.8 16.2 10

Yes
ACA–GA 47, 61, 62, 66, 67, 65, 76, 77, 78, 80, 163, 164, 165, 170, 166, 161, 162 12.4 20.4 15

13 Original 57, 58, 59, 74, 150, 151, 152, 153, 154, 160, 187, 216, 217, 218, 219, 220, 223, 224 26.7 28.0 12 No
ACA–GA 57, 58, 75, 74, 150, 151, 152, 153, 154, 160, 187, 216, 217, 218, 219, 220, 223, 224 36.5 28.0 7.5
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As the objective function does not have any practical inter-
pretation for LMIs, we performed the optimization processes 
for the ACA and GA applied on the TRNDLMI problem with 
the same travel demands, respectively. Table 3 also presents 
the results of the transit route network optimization using the 
ACA (Solution-e) and GA (Solution-f), respectively. 
Compared to the results of ACA–GA (Solution-b), the optimal 
solution of the ACA achieves the same number of direct trav-
elers and fewer transfers, and the ratio between direct LMI 
travelers to GP travelers remains virtually unchanged. �e 
optimal solution of the GA gives fewer direct travelers and 
more transfers, and the ratio between direct LMI travelers to 
GP travelers also remains virtually unchanged, while the val-
ues of the objective function of the ACA and GA are both 
inferior to that of ACA–GA. Hence, the ACA–GA applied on 
TRNDLMI problem obtains a better optimal solution for LMIs 
than both ACA and GA.

As shown in Figure 5, comparative results were obtained 
by executing the optimization processes ten times for the three 
approaches (ACA–GA, ACA and GA) applied on the 
TRNDLMI problem with the same travel demands, 

5.2.3. Evolution Analysis from ACA to GA. �e evolution 
process from ACA to GA, including the major tuning (from 
original to ACO) and �ne tuning (from ACO to GA), was 
analyzed from two aspects: transit route and network points.

(1) Transit Route Point. As shown in Figure 4, route 2 
produces larger-scale adjustments in the stop con-
�guration during the major tuning, which causes an 
increase of 252 persons in the transit travel demand 
from original to ACO. �en, the stop con�guration 
change of route 2 during �ne tuning only produces 
subtle variations, which agrees with the expected 
change degree. Generally, such a change should not 
result in a signi�cant transit travel demand change 
on route 2. However, the transit travel demand on 
route 2 is increased by 274 persons from ACO to 
GA. �e main reason is that the headway of route 2 
was reduced from 10 to 7.5 min during �ne tuning. 
Likewise, the evolution analyses of routes 6, 7, 9, 10, 
11, and 12 are similar to that of route 2. Note that 
the evolution analysis of route 1 is similar to that of 
route 2 from original to ACO, but route 1 has no stop 
con�guration change from ACO to GA. 

(2)  Transit Network Point. �e results of the ACO tran-
sit route network (Solution-a) are listed in Table 3. 
Comparing the original with the ACO transit route net-
work, we see the evolution process of the major tuning: 
more direct travelers and transfers are realized by the 
ACO transit route network, but the optimal tendency 
(i.e., the direct traveler and transfer ratios between 
LMIs to GP) from original to ACO is almost equal for 
LMIs and GP. Furthermore, the evolution from ACO 
to GA can be analyzed by comparing the results of the 
ACO and ACA–GA transit route networks. We see that 
more direct travelers and transfers are accommodated 
by the transit route network and the average travel time 
ratio between LMI to GP direct travelers is increased 
from ACO to GA. �e explanations for the transit route 
points are also applicable here.

5.2.4. Comparison to Other Approaches. In this section, the 
proposed approach (ACA–GA), the ACA approach of Yang 
and Yu [17] and the GA approach of Nayeem et al. [21], are 
compared.

Table 3: Results of original and ACA–GA transit route networks.

Groups Original Solution-a Solution-b Solution-c Solution-d Solution-e Solution-f

N
DT

 (person)
GP 1830 3694 3952 3922 4204 4062 3724

LMIs 3396 8734 9536 9202 9478 8098 7625
AR

DT
0.54 0.42 0.41 0.43 0.44 0.50 0.49

N
T
 (person)

GP 520 810 1254 1216 1030 550 1020
LMIs 1330 1808 1676 1898 1694 1402 2266

AR
T

1.59 1.01 1.17 1.07 1.12 0.91 0.91

N
UD

 (person)
GP 6650 4510 3816 3911 3789 4388 4256

LMIs 23729 17940 17279 17428 17319 18955 18564
V

OF
 (min) 1195194 900512 857763 718191 562194 940501 922784
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the con�guration of some routes, whereby increasing transit 
travel demands equitably for LMIs and GP. �e minor tuning, 
based on GA, produces subtle variations in the con�guration 
o®ransit routes and changes in the headway, whereby meeting 
more transit travel demands, particularly those of LMIs.

A real world case study is presented in four of the paper’s 
results sections. Section 5.2.1 (Comparison between original 
and optimal solutions) shows that the ACA–GA transit route 
network solution is better than the original transit route net-
work. Section 5.2.2 (Sensitivity analysis of di�erent weights) 
shows that the proposed weight set (i.e., tendency for LMIs) 
promotes the transit travel environment of LMIs better than 
two other types of weight sets (i.e., tendency for LMIs, and 
equitableness for LMIs and GP). �e results of these two sec-
tions indicate that the proposed model obtains a better transit 
route network and attains the goal of improving the transit 
travel environment of LMIs. Section 5.2.3 (Evolution analysis 
from ACA to GA) suggests that the ACA–GA applied on the 
TRNDLMI problem can meet three degrees of con�guration 
adjustments and better satis�es the transit demands of LMIs. 
Section 5.2.4 (Comparison to other approaches) points out 
that the ACA–GA applied on the TRNDLMI problem pro-
duces a better optimal solution for LMIs than both ACA and 
GA without in§uencing the total runtime. �e results of these 
two latter sections indicates that the proposed hybrid meta-
heuristic approach applied on the TRNDLMI problem not 
only satis�es our optimization requirement and goal but also 
improves the convergence rate and precision of the 
algorithm.

In future work, we will further our research from four 
aspects: (a) how to improve runtime to improve the searching 
e�ciency of the ACA–GA; (b) how to build new TRND mod-
els considering transit trips of distinct LMI groups (including 

respectively. As expected, the results of ACA–GA are the best 
among the three approaches. Furthermore, we see that the 
three approaches have almost the same runtime with reason-
able iterations. �e ACA–GA reduces the search scope in the 
major tuning and �ne tuning processes. However, the ACA–
GA contains one more optimization process than both ACA 
and GA. �is result is consistent with the results of Kuan 
et al. [26], who found that ACA and GA have similar runtimes 
when solving the feeder bus network design problems. 
�erefore, when the ACA–GA is applied on the TRNDLMI 
problem, it increases search e�ciency without in§uencing the 
total runtime.

6. Conclusion

�is paper puts forward the research of transit route network 
optimization for LMIs following the authors’ previous e�ort, 
and proposes a suitable solution algorithm by integrating ACA 
and GA to solve the TRNDLMI problem.

In the model, a multi-objective function is presented to 
minimize the weighted sum of di�erent user class costs (direct 
traveler, transfer, and unsatis�ed demand), and considers the 
relationship between three transit travel demands of LMIs and 
GP further. �en, the values of weight parameters related to 
the interaction between di�erent user classes and trade-o�s 
between LMIs and GP are determined according to the exist-
ing analysis results and our optimization goal.

In the solution methodology, a hybrid metaheuristic 
approach (ACA–GA), including the major tuning and �ne 
tuning, is presented to solve the TRNDLMI problem according 
to the optimization requirement (di�erent existing routes need 
to produce di�erent degrees of con�guration adjustments). 
�e major tuning uses the ACA to instigate large changes in 
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older adults, low-income individuals, and individuals with 
disabilities), respectively; (c) how to study the localization of 
transit vehicles for LMIs based on relevant research [34–36]; 
(d) how to apply the proposed model based on the ACA–GA 
approach to more cities so as to calibrate related parameters 
and enhance the practical application value.
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