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Ensuring adequate public transport-based accessibility to health facilities in different regions is a major concern of social equity
and public health for government. However, the imbalanced spatial distribution of health facilities may lead to an inaccurate
evaluation of the accessibility, which is shaped by both land use and transportation. To address this problem, this study proposed a
new approach to evaluate the adequacy of public transport-based accessibility to health facilities considering the spatial het-
erogeneity. First, we obtained the spatial distribution of health facilities based on POI data, calculated the population centroids of
census tract-based mobile phone positioning data, and estimated travel times from population centroids to every health facility
based on web map services. Second, the public transport-based accessibility to health facilities was measured by the isochrone
approach. /en, the spatial heterogeneity of the health facilities was quantified by a spatial proximity index based on the gravity
model. At last, a benchmark curve of accessibility vs. spatial proximity was established to evaluate the public transport-based
accessibility to health facilities in different areas with spatial heterogeneity. A case study of 218 census tracts in Shanghai was
conducted to verify this method. Consequently, we successfully identified the census tracts where the public transport-based
accessibility to health facilities is insufficient. It shows that even some census tracts within the central city areas are still short of
public transport-based accessibility to health facilities, whereas some tracts in the urban periphery may have adequate public
transport-based accessibility even though there are limited health facilities nearby.

1. Introduction

Because health and treatment are critical to our daily lives,
sufficient accessibility to health facilities should be ensured
in different regions and for different groups of people. In
addition, as a large portion of the patients are the elderly, the
poor and the disabled who do not own a car have to depend
on public transport service to get to the hospital. /us, how
to evaluate the public transport-based accessibility to health
facilities is an important problem that needs to be addressed.

In fact, the accessibility is shaped by two factors, namely,
the land use and transportation [1]. Specifically, land use
factor can be regarded as the spatial proximity of the health
facilities, whereas the transportation factor is the level of
public transport services. Because of the aggregation effects

of urban populations and resources, spatial differentiation
between central urban areas and suburban areas of the city is
an inevitable economic trend, which is also referred to as
spatial heterogeneity./erefore, the land use factor resulting
in the imbalanced distribution of health facilities may have a
more significant impact on the accessibility than the de-
velopment of public transport. For example, the regions
surrounded by many health facilities may have high public
transport-based accessibility to health facilities even though
the level of public transport service is poor. On the contrary,
the public transport-based accessibility in regions with few
health facilities around can never reach a high level even
though the public transport system is well developed.

Although the land use factor is not easy to be changed
because the construction of health facilities is costly and time
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consuming, improving the public transport system is more
realistic. /en how to evaluate and improve the public
transport-based accessibility in different regions with spatial
heterogeneity? Most previous studies just directly compared
the accessibility values of the different regions without
consideration of the spatial heterogeneity. However, because
the land use factor determines the availability and density of
health facilities, it is unreasonable to require the regions with
few health facilities around to achieve the same level of
accessibility as the regions surrounded by many health
facilities.

To address the problem above, this article aims to
propose a new approach to evaluate the public transport-
based accessibility to health facilities considering the spatial
heterogeneity. By exploring the relationship between ac-
cessibility and spatial proximity of health facilities, we can
establish a benchmark curve for evaluation. As a result, there
is a benchmark accessibility corresponding to each value of
spatial proximity. It is also regarded as the evaluation
standard that the public transport-based accessibility should
reach. In this way, we can estimate the gap between the
actual accessibility and benchmark accessibility and recog-
nize the geographical areas where the public transport-based
accessibility to health facilities is insufficient.

/e remainder of this article is organized as follows:
Section 2 reviews the literature related to this study./e data
including points of interests, mobile phone positioning, and
travel time are analyzed in Section 3. Afterward, the methods
of public transport-based accessibility measurements, spatial
proximity analysis of health facilities, and evaluation model
considering spatial heterogeneity are described in Section 4.
Section 5 discusses the results and policy implications for the
improvement of the accessibility in Shanghai. /e final
section concludes the highlights and limitations of this study
and suggests future directions.

2. Literature Review

2.1. Measurements of Accessibility. Accessibility can be de-
fined and measured with different methods [1]. /ese in-
clude well-known definitions such as the ease of reaching
any activity area using a specific transport system [2], po-
tential opportunities for interaction [3], the freedom of
individuals to decide whether to participate in different
activities [4], and the overall benefits provided by a given
transport system [5]. According to studies of Baradaran and
Ramjerdi [6] and Handy and Niemeier [7], accessibility
measures have often been classified into four categories: (1)
travel-cost approach, (2) isochrone approach, (3) gravity-
based approach, and (4) utility-based approach [8]. A
comparison of the four accessibility measures is presented in
Table 1. Different measures have their own advantages and
disadvantages. Researchers need to select the appropriate
approach according to the research interests, objectives, and
data acquisition.

Overall, existing research has provided a solid founda-
tion for the measurement of accessibility. Different measures
have their own advantages and disadvantages. /erefore,
researchers need to choose the appropriate approach

according to the research interests, objectives, and data
acquisition. Because this article focuses on the evaluation of
the public transport-based accessibility to health facilities,
this article will only apply one of them rather than propose a
new method for the accessibility measurement.

2.2. Accessibility toHealth Facilities. In terms of accessibility
to health facilities, there are many empirical studies in the
international literature. Luo and Wang [10] used both the
floating catchment area (FCA) method and gravity-based
method to examine the spatial accessibility to primary health
care in the Chicago ten-county region. /ey further pro-
posed an enhanced two-step floating catchment area
(E2SFCA) method for measuring spatial accessibility to
primary care physicians in northern Illinois [11]. /ese
methods can identify persons with inadequate access to
primary care physicians. Davy et al. [12] built a framework
synthesis to analyze the accessibility to primary health-care
services for indigenous people. /ey found that issues re-
lating to the cultural and social determinants of health such
as unemployment and low levels of education can influence
whether indigenous patients, their families, and commu-
nities were able to access health care. Agbenyo et al. [13]
presented an overview of geographic accessibility to health
care services in rural Ghana using a mixed approach. /ey
found that poor conditions of roads were the major barriers
for household’s accessibility to the district hospital.

/ese studies above mainly focus on the car-based ac-
cessibility to health facilities. However, many people, such as
the elderly, the poor and the disabled, are typically more
dependent on public transport to access the healthcare
service. Higgs et al. [14] investigated the impact of different
modes of travel (car versus bus) on associations between
different measures of General Practitioner (GP) supply and
the percentage of elderly patients. Hou and Jiang [15] an-
alyzed the public transport-based accessibility of residential
districts to the hospitals during the peak and off-peak hours
in Changchun and examined the problems of public
transport systems. LaMondia et al. [16] undertook a sta-
tistical comparison among four commonly applied measures
of transit accessibility to healthcare facilities. /eir results
indicate that different categories of accessibility measures
provide drastically different interpretations of accessibility
which are not comparable and interchangeable. However,
none of the previous studies have ever discussed the rela-
tionship between accessibility to health facilities and the
public transport services.

2.3. Evaluation of Public Transport-Based Accessibility.
Accessibility can be evaluated from various perspectives,
including a particular group, mode, location or activity [17].
How accessibility is evaluated affects many planning deci-
sions [18]. Meanwhile, four types of components can be
identified from different evaluations: land use, trans-
portation, temporal and individual [1]. In this study, we
focus on the public transport-based accessibility, which
describes the accessibility of locations to specific destinations
by public transport mode. /is is different from the public
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transport accessibility which was defined as “the quality of
transit serving a particular location and the ease with which
people can access that service” [19]. In short, the former is
accessibility by public transport mode, while the latter is
accessibility to public transport services.

On the one hand, there is a lot of research assessing the
accessibility to public transport with consideration of the
access to bus stops, duration of public transport journey, and
access to destinations via public transport [20]. Many
evaluation indexes have been proposed. One of the most
recent developments and now seemingly one of the most
widely used indexes is the Public Transport Accessibility
Level (PTAL) developed by London Borough of Hammer-
smith and Fullham [21]. It reflects the walking time from a
point of interest to the public transport access points, the
reliability of the service nodes available, the number of
services available within the catchment, and the average
waiting time [19].

On the other hand, there are few studies that pay at-
tention to the evaluation of public transport-based acces-
sibility. Majority of them are limited to the simple
comparison of accessibility measures. For example, public
transport-based accessibility has been compared with car-
based accessibility to employment and other land uses in
some researches [22–26]. Yan-yan et al. [27] compared the

public transport-based accessibility of different traffic
analysis zones in Beijing by calculating the accessibility
measures based onGIS. In their conclusions, the accessibility
in dense-resource regions is always higher than that in sparse
resource area [28]. However, there is a problem that the
accessibility evaluation criterion for the regions with dif-
ferent spatial attributes should never be consistent because
the amounts of potential opportunities are not comparable.
In fact, the regions with high accessibility measures not
always have sufficient accessibility because the evaluation
standard should be higher with more resources to be con-
nected. /erefore, high accessibility measure does not mean
sufficient accessibility. /ese facts may have a great impact
on the evaluation result of public transport-based accessi-
bility to health facilities.

In summary, existing studies mainly focus on the
measurements of accessibility but rarely look into the ad-
equacy of public transport-based accessibility. Most of them
fail to take the spatial heterogeneity into account when
directly comparing the accessibility measures in different
geographical regions. As a result, it is possible that high
accessibility regions still lack public transport services, which
cannot be recognized by previous methods. /erefore, it is
more reasonable to compare the level of public transport
services among the regions with the same spatial proximity

Table 1: Comparisons of the four accessibility measures [9].

Accessibility
measures Description Formula Advantages Disadvantages

Travel-cost
approach

/e ease with which any
land-use activity can be
reached from a location

using a particular transport
system

Ai � 
n
j�1(1/f(cij))

(i) Quite easy to
understand and to

calculate
(ii) Less demanding on

data

(i) Neglects variations
across individuals

(ii) Highly sensitive to
the choice of

demarcation area
(iii) Neglects variations

in the locations

Isochrone
approach

/e number of
opportunities that can be
reached within a given
travel time, distance, or

generalized cost

Ai � j∈{cij<c∗}Nj

(i) Relatively easy to
understand and to

calculate
(ii) Easy to visualize

(i) Neglects variations
across individuals

(ii) Highly sensitive to
the size of the range and
the representation of

opportunities
(iii) Neglects variations

in the locations

Gravity-based
approach

Potential of opportunities
for interaction Ai � 

n
j�1Nj/f(cij)

(i) Able to differentiate
between locations

(ii) Represents the joint
effect of transport

systems and land use
patterns on accessibility

(i) Neglects variations
across individuals

(ii) Ambiguity regarding
the magnitude of

indicators

Utility-based
approach

Expected maximum utility
from a random utility
considering individual

characteristics

An
i � max(Un

ij) � (1/μ)ln
n
j�1e

μ(vn
j
− cn

ij
)

(i) Captures individual
differences

(ii) Captures the impact
of all modes including

auto, transit, and
nonmotorized options

(i) Demands extensive
data on locations and
individuals’ travel

behavior

Note: Ai represents the measure of accessibility at location i, n represents the number of included locations, f(cij) represents the deterrence function and cij
represents a variable that represents travel cost between locations i and j, c∗c∗ represents the predetermined threshold within which the activity opportunities
are counted,Nj represents the opportunities in a zone j, Un

ij represents the utility of group n selecting the alternative, vj represents somemeasure reflecting the
attraction of the alternative j, and μ represents a positive scale parameter.
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of the health facilities. In this context, this study expects to
improve the evaluation method of public transport-based
accessibility to health facilities by incorporating the spatial
heterogeneity into the evaluation criterion. In this way, the
problem of consistent evaluation criterion for regions with
different spatial attributes can be addressed.

3. Data Preparation

Shanghai is a megacity covering an area of 6,340.5 square
kilometers in China. /is study takes Shanghai as a case to
evaluate the public transport-based accessibility to health
facilities in 218 census tracts, which were defined by the
government of Shanghai in 2016 for the purpose of taking a
census. We obtained the geography files of the census tracts
from the Open Street Map (OSM) to display the boundaries
of the census tracts on the map. Besides, the POI data and
mobile phone positioning data were collected and analyzed
to support this study. Both of them contain the information
of the longitudes and latitudes, with which we can match
them to the census tracts on the map using the Spatial
Analyst Tool “Intersection” of ArcGIS.

3.1. Health Facility Analysis based on POI Data. A point of
interest (POI) is a specific point location that someone may
find useful or interesting, including businesses, hospitals,
hotels, residences, educational buildings, and shopping
malls./e POI data are usually described by a name, address,
category, and a set of geospatial coordinates [29]. Because
this study focuses on the health facilities, the POI data of all
hospitals and healthcare centers in Shanghai were collected
using the API of Baidu Map which is a web-based tool for
interactions between users and enterprises. For example, one
of POI data record (“a5097bfab4a5a97af13cbaa3,” “Shanghai
Changzheng Hospital,” “Shanghai,” “Huangpu,” “415 Fen-
gyang Road,” “Medical Facility,” “Class 3,” “121.473726,”
“31.23890086”) represents the item ID, name, province,
region, address, category tag, class tag, longitude, and lati-
tude, respectively.

As of July 2016, there are 679 regular and authoritative
health facilities in Shanghai, including 78 Class-3(best)
hospitals (or healthcare centers), 184 Class-2 hospitals, and
417 Class-1 or other hospitals. Given the addresses and
longitudes and latitudes of these health facilities, the spatial
distribution is displayed in Figure 1. Because health facilities
with different classes may have different attractions for
people, it is necessary to consider them separately. In ad-
dition, different groups of people may tend to choose dif-
ferent classes of hospitals, which usually depends on the
patient’s condition, income, age, education, etc. /us, we
give different attraction weights to the three classes of health
facilities based on a web-based questionnaire survey where
the importance of the three classes of health facilities was
rated by 598 respondents sampled randomly. /e sample
distribution is close to the population distribution. /e
results show that 56% respondents tend to choose the Class-
3 hospital, 29% respondents tend to choose Class-2 hospi-
tals, whereas the rest of respondents tend to choose Class-1

or other hospitals. /en, the weights of different classes are
normalized as shown in Table 2.

3.2. Population Distribution Analysis Based on Mobile Phone
Positioning Data. As the population is seldom distributed
homogeneously within a census tract, the population-
weighted centroid rather than the simple geographic cen-
troid of a census tract can represent the location of the
population more accurately [10]. /e population centroid of
a tract may be distant from its geographic centroid, par-
ticularly in rural or peripheral suburban areas where tracts
are large, and population tends to concentrate in limited
space. /e geographic coordinate (Xi, Yi) of the population
centroid for each census tract (i) is defined as,

Xi �


n
k�1PkXk


n
k�1Pk

,

Yi �


n
k�1PkYk


n
k�1Pk

,

(1)

where (Xk, Yk) is the geographic coordinate of home location
k, Pk is the resident population of home location k, in the
census tract (i), and n is the number of distinct home
location.

However, the available census data in China can only
provide the total population within the census tract,
without the exact home locations. Fortunately, lots of
studies have proved that mobile phone positioning data can
provide good potential to identify the home and work
anchor points of the population, since it tracks the posi-
tions of every mobile phone whenever physical moving,
calling, texting, or surfing the Internet [9, 30]. /erefore,
we use the mobile phone positioning data from China
Unicom Communications Corporation of Shanghai col-
lected between March 1, 2016, and March 31, 2016, to infer
the home locations of residents.

/e dataset contains much useful information such as
the mobile identification number of the user, the time when
the data record was collected, and the longitude and latitude
of the user’s estimated location. /en, an algorithm is de-
veloped to identify the home locations of residents based on
the following assumptions: (1) most people stay at home
between 10 pm–6 am every day, (2) the most frequent lo-
cation appeared during this period is the aggregated home
location, and (3) users whose home location remains con-
sistent for more than 20 days during a month are residents of
this area. More details about this algorithm could be found
in reference [9, 29]. As a result, the resident population (Pi)
of each distinct position (Xk, Yk) can be estimated. /en, the
distributions of population densities and centroid of 218
census tracts can be obtained, as shown in Figure 2.

3.3. Travel Time Estimation Based on Web Map Service.
/ere is a tool of Baidu web map services called “Route
Matrix API,” which can calculate the travel times and dis-
tances between origins and destinations in the real-world
road network [9]. /e input parameters of this tool are
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geographic coordinates of the origins and the destinations
(health facilities), and the mode of transportation (public
transport). It uses the shortest path algorithm to estimate the
travel time from origins to destinations by public transport
mode considering the real-time and historical traffic status
[31]. /e estimated travel time also includes walking time
from the origin to the public transport station and waiting
time at the station. In addition, the public transport data of
the web map service are almost complete and up to date,
containing all operated routes (of subways, buses, trolley,
etc.) in the city. /erefore, the estimated travel times based
on this tool are more accurate than the travel times from
survey data or planning models [32].

Based on this tool, we can estimate the travel time (tij)
from each population centroid of the census tract (i) to each
health facility (j) by public transport, given the locations of
health facilities and population centroid of every census tract
which are obtained above. To eliminate the influence of the
commuting traffic, all the travel time was measured during
9 : 00 am–11 : 00 am at the off-peak hours.

4. Methodology

4.1. Measurement of Public Transport-Based Accessibility.
/is study adopts the isochrone approach which is also
referred to as “cumulative opportunity” method to measure
the public transport-based accessibility to health facilities.
/is measurement counts the number of health facilities that
can be reached within a given threshold of travel time,
distance, or generalized cost by public transport. Specifically,
for each census tract (i), search every health facility (j) that
are within the threshold travel time (t) from the population
centroid of the census tract (i), and sum up the weighted
attractions of these health facilities. Mathematically, the
public transport-based accessibility to health facilities can be
measured as

Ai � 

j∈ tij<t0 

wjNj, (2)

where Ai represents the public transport-based accessibility
for census tract (i), Nj represents the total number of at-
tractions at each health facility (j), wj represents the at-
traction weight of the health facility (j), and tij represents the
travel time from population centroid of census tract (i) to the
health facility (j) by public transport. According to the 5th
Shanghai Comprehensive Transport Survey, the average
travel time for residents in Shanghai is 29 minutes, whereas

Census tract (218)
Class 1 or others (417)

Class 2 (184)
Class 3 (78)

Medical facilities

0 3 6 12 18 24
Kilometers

N

E
S

W

Figure 1: Spatial distribution of health facilities in Shanghai.

Table 2: Attraction weights of hospitals with different classes.

Hospital class Attraction weight
Class 3 1
Class 2 0.52
Class 1 or others 0.27

46423
0

Population density (residents/km2)Census tract
Population centroid

0 3 6 12 18 24
Kilometers

N

E
S

W

Figure 2: Distributions of population densities and centroids of
218 census tracts.
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32.3 minutes is the average travel time in the center area of
the city. As a result, we take 30 minutes as the travel time
threshold (t0).

4.2. Spatial Proximity Analysis of Health Facilities.
Because the health facilities are distributed unevenly
throughout the city, there is inevitably spatial heterogeneity
among these census tracts. Meanwhile, the spatial interac-
tion between two geographical entities usually declines as the
distance between them increases, which is generally called
distance decay [33]./erefore, these factors may have a great
impact on the evaluation of public transport-based acces-
sibility to health facilities. For example, if there are few
health facilities available around this census tract, the public
transport-based accessibility to health facilities for this tract
can never reach a high level, even though the public
transport system is good enough. To measure the spatial
heterogeneity of the health facilities in different tracts, this
study introduces a spatial proximity index derived from the
gravity model [34], representing the overall spatial proximity
to all available health facilities in the city:

Ri � 

m

j�1

wjNj

d
η
ij

, (3)

where Ri is the spatial proximity index of health facilities for
census tract (i), m is the total number of all health facilities,
dij represents the geodetic distance between the population
centroid of census tract (i) and the health facility (j), and η
represents the distance sensitivity parameter which reflects
the degree of unwillingness people feel toward traveling for
an extended distance. In this article, we set η� 1.08
according to previous studies [35]. /erefore, we can use the
spatial proximity index to represent the spatial heteroge-
neity, which can also measure the spatial aggregative state of
all available health facilities. /e larger the Ri is, the more
concentratedly the health facilities are distributed around
the population centroid of the census tract.

4.3. Evaluation of Public Transport-Based Accessibility to
Health Facilities. As mentioned above, accessibility is gen-
erally determined by two factors: transportation and land
use. In this study, these two factors are represented by the
level of public transport services and the spatial proximity to
all available health facilities respectively. To evaluate the
adequacy of public transport services for health facilities
independently, it is necessary to eliminate the effects of the
spatial proximity. /erefore, we need to construct the re-
lationship between the public transport-based accessibility
and the spatial proximity.

Obviously, the accessibility increases with the spatial
proximity index if the public transport service is sufficient.
However, the growth of the accessibility will not be endless
because of the limits of transportation capacity and space (as
shown in Figure 3). It is very similar to the growth of
population. Consequently, we employ the logistic function
which is widely used for population growth [36] to construct

the relationship between accessibility and spatial proximity
with the following equation:

Ai �
α

1 + e β− Ri( )/χ
, (4)

where Ai is defined as the benchmark accessibility, given a
specific value of Ri; α is a parameter representing the growth
limit; β is a parameter representing R’s value at the inflection
point of the curve where the value of A will be α/2; and χ is a
scale parameter.

In general, regression analysis estimates the conditional
expectation of the dependent variable, given the indepen-
dent variables. In other words, it reflects the average value of
the dependent variable when the independent variables are
fixed [37]. /erefore, the benchmark value (Ai) represents
the expected (average) level of accessibility in the census
tracts with the same level of spatial proximity. Based on this,
we can establish a benchmark curve of accessibility vs. spatial
proximity index to identify the census tracts where the
public transport services should be improved to match the
spatial proximity. If the actual accessibility (Ai) in a census
tract is lower than Ai, then the public transport-based ac-
cessibility in that tract is considered to be insufficient, in-
dicating that the public transport services are poor, and vice
versa. With the calibrated benchmark model, we can cal-
culate the difference value (ΔAi) between the actual acces-
sibility and benchmark accessibility as follows:

ΔAi � Ai − Ai. (5)

However, the absolute value of gap may not suit for
comparison. /erefore, we propose an index based on the
relative value to evaluate the adequacy of public transport-
based accessibility as follows.

EIi �
ΔAi

Ai

× 100%. (6)

/is evaluation index represents the percentage by which
the actual accessibility is better or worse than the benchmark
accessibility [38, 39]. /us, we can use it to compare and
grade the adequacy of public transport-based accessibility of
different census tracts with spatial heterogeneity.

5. Results and Discussions

With the data and method presented above, we can re-
spectively calculate the public transport-based accessibility
to health facilities of 218 census tracts in Shanghai. /e
spatial distribution of accessibility is presented in
Figure 4(a). Overall, the city of Shanghai is divided into 5
regions by 4 main ring roads. /e regions within the Outer
Ring Road are regarded as the central city areas of Shanghai,
while the regions outside the Outer Ring Road are suburban
areas. It can be found that the accessibility measures in
central city areas are much higher than those of suburban
areas. In the central city areas, the closer to the Inner Ring
Road, the higher the public transport-based accessibility will
be. Besides, the accessibility measures in the west of
Huangpu River are usually higher than those in the east of
Huangpu River. However, in the suburban areas, the
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accessibility measures are very low. Given Figure 4(a), we
can measure and compare the weighted numbers of health
facilities within 30 minutes by public transport in different

tracts. However, do the tracts with large numbers of health
facilities really have sufficient public transport-based ac-
cessibility to health facilities? Whether the short of health
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Figure 3: Benchmark curve of accessibility vs. spatial proximity.
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Figure 4: Spatial distributions of attributes for 218 census tracts. (a) Distribution of public transport-based accessibility. (b) Distribution of
spatial proximity to health facilities.
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facilities or the bad public transport services lead to the low
accessibility in suburb areas? In fact, we cannot answer these
questions by directly comparing the accessibility measures
without considering the spatial heterogeneity.

To take the spatial heterogeneity of health facilities into
account, we calculate the spatial proximity indexes of the 218
census tracts, respectively, as shown in Figure 4(b), which
measures the spatial concentration degree of all available
health facilities. /e distribution trend of the spatial prox-
imity index is very similar to that of accessibility. It reflects
that most health facilities are mainly concentrated in the
central city area, especially within the Inner Ring Road. In
other words, the census tracts within the Inner Ring Road
may have greater potential to access the health facilities if the
public transport services are sufficient. Given Figure 4(b), we
can only know which tracts are short of health facilities, but
we still cannot decide whether the public transport services
for health facilities in these tracts are sufficient or not.

To further evaluate the adequacy of public transport-
based accessibility to health facilities in different census
tracts considering the spatial heterogeneity, we use the ac-
cessibility measures and spatial proximity indexes to fit the
benchmark curve based on equation (4). /e calibration
results are listed in Table 3, which indicates that all the
estimated parameters are significant, and the function is
effective./us, the benchmark accessibility can be calculated
using this function.

/e fitted curve and the actual data points (Ai, Ri) of the
218 census tracts are plotted in Figure 3, where the red dots
represent the tracts whose accessibility is lower than the
benchmark accessibility, whereas the blue ones represent the
opposite. If Ai is lower than the benchmark accessibility at a
fixed value of Ri, then the accessibility in the census tract (i)
is worse than the average level among these tracts with equal
spatial proximity./erefore, we can conclude that the public
transport service for health facility in the census tract(i)
should be improved.

Furthermore, we present the relative evaluation index
(Ei) of the 218 census tracts, respectively, on the map for
comparison, as shown in Figure 5. /e census tracts in cold
colors (blue) may not have sufficient public transport-based
accessibility to health facilities. It shows that above half of
218 census tracts cannot reach the benchmark accessibility.
To better understand the results, the subway network which
has been built in Shanghai and the bus stops are also plotted
in Figure 5. We can find that the tracts not covered by dense
subways or bus stations, especially the areas outside the
Suburb Ring Road, usually have insufficient accessibility to
the health facilities. /us, it is urgent for these areas to
improve their public transport services. However, even some
census tracts within the Inner Ring Road may not have
adequate public transport-based accessibility to health fa-
cilities. Although there are more facilities around these areas,
the public transport services may not match with the high
level of spatial proximity. Consequently, improvements to
public transport services are also needed in some central city
area. Although for some tracts around the Outer Ring Road
there are limited health facilities nearby, their public
transport services are good enough to connect these

available facilities. /erefore, it is not necessary to improve
their public transport services. For this condition, only
increasing the spatial proximity can further improve their
public transport-based accessibility to health facilities.

6. Conclusion

/is study proposed a novel method to evaluate the ade-
quacy of public transport-based accessibility to health fa-
cilities by exploring the relationship between accessibility
and spatial proximity of health facilities and establishing a
benchmark curve for evaluation criterion. A case study of
218 census tracts in Shanghai was conducted to verify this
evaluation method. With a relative evaluation index derived
from the benchmark curve, we can compare and grade the
adequacy of public transport-based accessibility of different
census tracts with different spatial proximity. As a result, we

Table 3: Calibration results of logistic function.

Parameters Estimate Std. error t value Pr(>|t|)
α 203.6747 3.7496 54.32 <2e − 16∗∗∗
β 11.6744 0.3041 38.39 <2e − 16∗∗∗
χ 2.5914 0.2470 10.49 <2e − 16∗∗∗

Note: Signif. codes: 0 “∗∗∗” 0.001 “∗∗” 0.01 “∗” 0.05 “·” 0.1 “ ” 1.

0%~25% (51)
25%~50% (4)
>50% (20)

<–50% (45)
–50%~–25% (21)
–25%~0% (77)

Evaluation indexRing Road
Subway
Bus stop

0 3 6 12 18 24
Kilometers

N

E
S

W

Figure 5: Distribution of evaluation indexes of public transport-
based accessibility to health facilities.
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successfully identified the census tracts where the public
transport-based accessibility to health facilities are insuffi-
cient. We find that even some census tracts within the
central city areas are still short of public transport-based
accessibility to health facilities, whereas some tracts in the
urban periphery may have adequate public transport-based
accessibility even though there are limited health facilities
nearby. However, previous studies mostly failed to recognize
these counterintuitive results mainly because of neglecting
the spatial heterogeneity in different areas.

To sum up, the primary contribution of this research is to
introduce a novel method to evaluate the adequacy of public
transport-based accessibility to health facilities by exploring
the relationship between accessibility and spatial proximity
of health facilities. Specifically, we discover that the growth
law of the accessibility vs. spatial proximity can be described
by the logistic function, with which a benchmark curve can
be established for the accessibility evaluation. In this way, we
can efficiently recognize the geographical areas where the
public transport-based accessibility to health facilities is
insufficient. It is the first time that the effect of public
transport on public health has been separated from the
accessibility evaluation./erefore, this research can not only
help the government to better evaluate the public transport-
based accessibility to health facilities but also provide a clear
direction for decision-maker to implement the accessibility
and healthcare improvement policies.

However, a few limitations still exist in this study, which
also motivates a few future research directions. First, the
measurement of accessibility only used a relatively simple
and easy method (isochrones approach) because of the data
availability. In future studies, a more comprehensive ap-
proach tomeasuring the public transport-based accessibility,
which also incorporates the spatial heterogeneity of public
facilities, would be proposed. Second, the logistic function is
calibrated using only 218 census tracts’ data. If the spatial
scale of each zone can bemademuch smaller, the results may
be even more accurate. What is more, other public facilities
and additional cases should be applied to verify the effec-
tiveness and applicability of this approach.

Data Availability

/e mobile phone data used to support the findings of this
study have not been made available because we do not have
right to share this to the public. But we can provide part of
the encrypted data. /e POI data used to support the
findings of this study are available from the corresponding
author upon request.
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