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For the increasing travel demands and public transport problems, dynamically adjusting timetable or bus scheduling is necessary
based on accurate real-time passenger flow forecasting. In order to get more accurate passenger flow in future, this paper proposes
a novel hierarchical hybrid model based on time series model, deep belief networks (DBNs), and improved incremental extreme
learning machine (Im-ELM) to forecast short-term passenger flow.1e proposed model is named HTSDBNE with two modelling
steps. First, referring the idea of parallelization, the hybrid model, constructed by time series model, DBN, and Im-ELM, is used to
forecast short-term passenger flow in different time scales hierarchically and parallel. Second, Im-ELM is utilized to analyse the
relationship of forecasting results from the first step, and the weighted outputs of Im-ELM are as the final forecasting results.
Comparing with single forecasting models and typical hybrid forecasting models, the testing results indicate that HTSDBNE has
better performances. 1e mean absolute percent error of prediction results is around 10% and fully meets the application
requirements of bus operation enterprise.

1. Introduction

For current urban bus transport system, it faces more and
more problems, such as improper arriving of buses, over-
crowded or empty carriages, and so on, which cause pas-
sengers delay, bad ride experiences, and waste of transport
resources. 1us, many enterprises try to adopt dynamically
setting the timetable in real time based on the passenger flow
variations and provide services in a proactive manner as
opposed to a reactive manner with a predictive capability
[1, 2]. Short-term passenger flow prediction, the forecasting
time interval not exceeding 60 minutes, is essentially im-
portant for setting the timetable in real time. It is one of the
most significant basics for the operation planning and de-
cision making so as to rationally utilize transport resources,
solve or ease transport problems, and provide better bus
services [3, 4].

In recent decades, short-term passenger flow prediction
has drawn the widespread attention, and various methods

have been proposed, which could be categorized as linear
models, nonlinear models, and combination models gen-
erally [5]. Because the passenger flow statistics are naturally
time dependent, the linear models, such as autoregressive
integrated moving average (ARIMA), autoregressive moving
average (ARMA), and autoregressive (AR) models, are
widely used for simple short-term passenger flow prediction.
Ma et al. [6] and Xue et al. [7] constructed a combined
forecasting model based on multiple time series algorithms
to forecast the changes of passenger flow in different time
periods. However, linear models are limited in applications
and hard to describe the variation characteristics of pas-
senger flow. For tracking the nonlinear characteristics of real
passenger flow, many nonlinear methods have been intro-
duced by researchers, such as the support vector machine
(SVM) model [8], least squares support vector machine
(LSSVM) model [9], fuzzy neural networks [10, 11],
Bayesian network [12, 13], radial basis function neural
networks (RBF-ANN) [14–17], and grey model [18–20]. 1e
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core idea of these nonlinear methods is to construct the
nonlinear relationship between passenger flow and mine
more potential information without prior knowledge [21].
However, the nonlinear models are closely related to the
specific application environment and lack universality.

Each method mentioned above has its own advantages
and limitations in real applications, and it is hard to cover all
characteristics of passenger flow and provide the best pre-
diction performances globally by a single method [6]. 1us,
the hybrid prediction model, combining multiple algorithms
strategically, can make full use of the advantages of different
algorithms and cover the shortcomings of each algorithm, and
it has become common practices in improving the prediction
performances. For example, Sun et al. [22] proposed a novel
hybrid model Wavelet-SVM; it utilized SVM model to cap-
ture passenger flow characteristics from different frequencies
generated by wavelet decomposition. Yang and Liu [8] in-
troduced affinity propagation to cluster the passenger flow
based on the characteristic analysis and then utilized SVM to
predict each subset; the prediction accuracy was improved
significantly. Liu et al. [23] proposed a combinational pre-
diction model BP-LSSVM; the initial prediction results from
BP are refined by LSSVM further to obtain better predicted
passenger volume. Wang et al. [24] used Lev-
enberg–Marquardt algorithm to optimize the BP, and con-
structed SLMBP model with Spearman rank correlation
coefficient method [25] to predict passenger flow. Among
these hybrid methods, the ANN-based model has been uti-
lized widely because of its better predictive ability [26].

Furthermore, in recent years, deep learning (DL) has
attracted considerable academic and industrial interests
[27]. Some DL-based hybrid models have been applied in
passenger flow prediction, as they could represent the
complex nonlinear relationship and capture the latent
correlative features from passenger flow data. Liu et al. [27]
proposed an end-to-end DL architecture, for short-term
metro passenger flow prediction. Bai et al. [21] presented a
multipattern deep fusion approach (MPDF), which is
constructed by fusing deep belief networks (DBNs) corre-
sponding to multiple patterns, and it utilized DBNs as a deep
representation for passenger flow in each pattern generated
by the affinity propagation algorithm. Ke et al. [28] proposed
a novel DL approach, named the fusion convolutional long
short-term memory network. It is stacked and fused by
multiple convolutional long short-term memory (LSTM)
layers, standard LSTM layers, and convolutional layers,
which capture the spatiotemporal correlations of passenger
demands accurately. Liu et al. [29] presented a passenger
hybrid estimation system based on the convolutional neural
network (CNN) and the spatiotemporal context (STC)
model. CNN is used to detect the passengers, and then STC
is used to track the passengers so as to accurately estimate the
passenger volume.

In summary, the linear model is simple in structure, the
accuracy of nonlinear algorithms is better than linear ones,
and the combination model is more adaptable. However,
these research results mainly include the following defects.
(1) Data problem: the samples of passenger flow statistics
studied in most research studies are all from the automatic

fare collection (AFC) system [30], which cannot cover the
number of passengers who buy tickets in cash. According to
the equipment currently used, most AFC systems of bus
cannot transmit ticket information to the bus operation
enterprise in real time, and in this case, the data samples
cannot be used for real time prediction. (2) Passenger flow is
complex time series data; it has its own special microscopic
characteristic and macroscopic characteristics, and most of
studies do not analyse in this aspect; they only consider
global characteristics or only analyse the nonlinear nature.
(3) Passenger flow in different time scales is correlative with
each other. However, many research studies only assume a
linear relation between their patterns [31, 32], which could
lead to underestimate or degenerate performances, and most
hybrid models are too complex to be used in practices.

In order to solve the problems mentioned above, make
full use of the advantages of linear and nonlinear models,
improve the universality and accuracy of the models, and
reduce model complexity, this paper proposes a short-term
passenger flow hierarchical hybrid forecasting model based
on time series model, DBN and Im-ELM, called HTSDBNE.
1e real-time passenger flow data collected by the automatic
passenger counting (APC) [25] systems are selected as
statistical samples for forecasting. HTSDBNE finishes the
forecasting operation by two steps: (a) utilizing the time
series model and the subhybrid model, consisting of DBN
[33, 34] and Im-ELM [35, 36], to analyse the statistical data
and forecast the variation trends of the passenger flow and
(b) analysing the relationship between the real-time and
historical passenger flow and make full use of passenger flow
series data in different time scales to improve the final result
accuracy.

1e rest of the paper is organized as follows. Section 2
describes the structure of the bus passenger flow sampling
data. Section 3 discusses the novel hybrid forecasting model.
Section 4 shows the comparative experiments and analysis.
At last, Section 5 summarizes the main findings and future
work.

2. Bus Passenger Flow Statistics

2.1. Data Source. 1ere are mainly three approaches to
obtain bus passenger flow statistics: one is survey on buses or
at stops manually. 1e other two statistical methods are
through the AFC and APC systems. Manual statistics are
now almost no longer used due to low efficiency and high
cost. Because the AFC system is widely installed on buses,
passenger flow can be inferred from passenger ticket in-
formation, and it has become the main source of passenger
flow statistics. However, in the current bus system, a con-
siderable number of passengers use cash to buy tickets, so the
passenger flow statistic results from the AFC system cannot
fully cover all passengers. 1e APC system is able to conduct
passenger flow statistics relatively comprehensively and
accurately and has become one of the important develop-
ment directions for bus passenger flow statistics. 1e pas-
senger flow statistics used in this paper are from the APC
system, and the structure of the record is shown in Table 1
[5].
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2.2.Dataset Definition. 1e original passenger flow statistics
set generated by the APC installed on the bus is related to the
bus outbound time.1is paper defines the relevant dataset as
follows.

Define the arrival bus sequence at a station as

BUS ≔ busIDi, i � 1, 2, . . . , n , (1)

where busID1 is the first bus arriving at the station in one day
and busIDn is the last bus arriving at the station in one day.

Define the passenger flow statistics sequence of a stop in
a day as an ordered list:

PC
day ≔ Pc

d
i , i � 1, 2, . . . , n ,

Pc
d
i ≔ 〈stopID, busIDi, ti, count〉,

(2)

where stopID is the number of the bus stop and ti is the time
when passenger flow statistics are uploaded to the database
in real time after the bus with busIDi leaves the stop. 1e
count is the sum of passengers getting on the bus with busIDi

at a stop with stopID.

2.3.Data SampleAnalysis. In this paper, the passenger flow
statistics used are derived from the APC system installed
on the buses of line 28 and line 10 in Dalian, China. Some
stops with large passenger flow volume determine the
whole line’s passenger flow variation. 1erefore, in related
research studies, the bus stops with relatively larger
passenger flow are usually selected as research objects.

Firstly, the daily average passenger flow of each station in
the up direction of line 28 in the past six months was
counted. 1e result is shown in Figure 1.

As shown in Figure 1, the origin station (station 1),
station 3, and station 7 had an average daily ridership of over
1000. 1ese stations are important stops in the upward
direction of the line 28. In this paper, station 7 is selected as
the research object for short-term passenger flow
forecasting.

1e sample data from station 7 used in this paper are 26
weeks’ statistics from Monday 1 October 2018 to Sunday 31
March 2019. 1e part of origin data diagram is shown in
Figure 2.

As shown in Figure 2, the original passenger flow sta-
tistics are related to the arrival time of the buses. Due to
traffic congestion or other reasons, it is difficult for each bus
to arrive at the stop on time according to the timetable,
which causes the data sample intervals to be not equal. In
order to reduce the instability of the passenger flow statistical
sequence caused by abnormal factors, the data are aggre-
gated in equal time intervals to construct a time series as
shown below.

Define time interval as

timeinterval ≔ timeinterval timeinterval
 ∈

· 1min, 2min, . . . , 60min) .
(3)

Generally, time interval is determined by bus scheduling
plan, which is not less than the minimum departure interval.
In the applied research of short-term passenger flow

forecasting, the maximum time interval cannot exceed 60
minutes, and the equal time interval of 5, 15, and 30 minutes
is selected in this paper.

Data segmentation time point can be determined
according to the time interval, defined as

timel ≔ t1 + l∗ timeinterval, l � 1, 2, . . . , max(l), (4)

where t1 is the earliest time of the first bus leaving the stop in
all statistics. Define max(l) as

max(l) �
tn − t1( ∗ 60
timeinterval

, (5)

where tn is the latest time for the last bus leaving the stop.
1e new passenger flow statistical sequence formed after

equal time interval convergence is defined as follows:

PC
day ≔ Pc

d

k, k � 1, 2, . . . , max(l) , (6)

Pc
d

k ≔ 〈stopID, timek, tcount〉, (7)

Pc
d

k · tcount � 

q

i�p

Pc
d
i · count, (8)

timeq < time1 + q∗ timeinterval, (9)

timep ≥ time1 + p∗ timeinterval. (10)

According to equation (7), the passenger flow statistics of
station 7 are aggregated in the interval of 30 minutes, and the
statistical results are shown in Figure 3.

It can be concluded from the curve changes that daily
passenger flow shows double-peak changes in the morning
and evening.1e early peak period of the working day can be
from 7 : 30 to 9 : 30, and the evening peak period can be from
16 : 30 to 18 : 30. In the following study, the model proposed
in this paper will be used to forecast the changes of passenger
flow during the morning peak period, and the datasets are
aggregated in the interval of 30 minutes. From the obser-
vation in Figure 3, the passenger flow statistical sequence has
time-periodic variation characteristics with linear correla-
tion. However, the changes in each cycle are not exactly the
same, with obvious nonlinear characteristics. 1erefore, it is
necessary to combine linear and nonlinear methods to
describe the passenger flow statistical sequence in order to
accurately forecast the passenger flow variation.

3. Hybrid Forecasting Model

1e theoretical and empirical findings have already indi-
cated that the integrated model of different models is an
effective way for improving the forecasting performances
and making up for the shortcomings of each model. 1e
proposed hybrid forecasting model is based on the previous
works. Khashei and Bijari [37] and Zhang [32] employed
linear models to combine with neural network model, by
using linear model to identify and magnify the linear
structure of the data and then using neural network to model
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the preprocessed data in order to improve the prediction
accuracy. Some works [32, 37–40] considered the impor-
tance of the residual series of time series data and combined
the time series forecasting results to improve the per-
formances of the hybrid model. After referring these works
and some idea of online sequential algorithms, a novel
hybrid forecasting model is proposed.

In general, the novel model performs data modelling in
two sequential steps. One is hybrid time series modelling,
which is used to analyse the time series from linear and
nonlinear characteristic. 1e other is nonlinear data mod-
elling, and it is used to analyse the previous results from
different time scales or time and spatial scales.

Figure 4 shows the process of the first step; in general, it
performs in three sequential substeps. (I) Using the linear
model to forecast the time series data. Given the training
time series set Xt, the forecasting result is Xt,L. For the
instability of passenger flow statistical series, the result Xt,L is
not stable and unacceptable, and it cannot be used as the
final results. (II) Analysing and forecasting the residual
series. Based on the real value Xt and time series forecasting
result Xt,L, the error or residual is calculated from their
difference, Et � Xt − Xt,L, and then the residual series is
used to train the nonlinear model, whose output is Xt,NL.
1e nonlinear model is a hybrid model, consisting of DBN
and Im-ELM, and the Im-ELM is used to forecast residual

Table 1: 1e structure of the record from the automatic passenger counters (APCs).

Field name Illustration
Equipment ID 1e unique number of the equipment
On/off Denotes the passenger getting on or off the bus
Vehicle ID 1e unique number of the vehicle
Line ID 1e unique number of the bus line
Trip type Denotes the current trip is up run or down run
Stop ID 1e unique number of stops, where the bus stops at the current time
Count time 1e time when the passenger scans through the AFC
Stop accumulation 1e total number of the passengers getting on or off at a stop
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Figure 1: Daily average passenger flow at all stations of bus line 28.
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Figure 2: Original passenger flow statistics of station 7 of line 28 within 15 days.
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changes based on the extracted feature of DBN. (III)
Nonlinear combination analysis. In the substep, for the
input data Xt,L andXt,NL, the nonlinear model,
Xt � f(Xt,L, Xt,NL), is used to analyse and describe the
relationship between the time series forecasting results and
corresponding residual series, which aims to maximize the
combination performance.

Figure 5 shows the process of second step; it receives
several input data: XA

t , . . . , XK
t . 1ese data could be from

different spatial cross-correlative sections or spatial and
temporal points. In real application, XA

t , . . . , XK
t may be

simple linear relationship, Xt
′ � αAXA

t + · · · + αKXK
t , or also

may be complex nonlinear relationship,
Xt
′ � f(XA

t , . . . , XK
t ), so it does not employ only linear

model or nonlinear model simply to describe the relation-
ship among the input datasets. In the hybridmodel, Im-ELM
is employed to resolve the problem.

1e “Forecasting Model A”, . . ., “Forecasting Model K”
are composite prediction models, which are described in
Figure 4.

3.1. Data SlidingWindow. 1e key point is to determine the
data volume before each training or testing in the substep (I)
and (II). Referring the idea of online sequential algorithms
[41], the self-adaptive sliding data window is employed to
represent the system dynamics [41–43], and it can also adjust

the structure of the time series model and the neural network
model dynamically. 1e data sliding widow is a first-in-first-
out data sequence; its width can be fixed or dynamically
adjusted.

In real application, the data are received one by one or
chunk by chunk, and the sliding window is updated ac-
cordingly by adding new data and discarding the foremost
ones; when the volume of received data s is less than the
sliding window width N, s≥ 1 and s<N. However, in some
extreme conditions, the received data volume s is larger than
the sliding window width N, s>N. For the continuity of the
input data in the first substep (I) and the second substep (II),
the foremost l data are selected from s receiving data, while
l< s and l<N.

1e data sliding window is expressed by the input
samples and corresponding output results, which are the
data pairs, as shown in the following equation:
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Figure 3: Passenger flow statistics within every 30 minutes of station 7 of line 28 in March.
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WS D � Xt− N+1, Yt− N+1( , . . . , Xt− 1, Yt− 1( , Xt, Yt(  ,

(11)

where N is the width of the sliding window WS D and also
denotes the number of the pairs of input data and output result
and t is the time index which shows the newest data index.

3.2. Time Series Forecasting Model. 1e time series fore-
casting is an important phase in the whole model; it is mainly
used to analyse the real-time data and historical data and
forecast the changes of the time series data in future.
Generally, the time series analysis establishes the mathe-
matical models by using curve fitting and parameter esti-
mation. 1e basic model is ARMA, and its mathematical
description is shown in the following equation:

Yt � 

p

i�1
φtYt− i + 

q

j�0
θtεt− j, (12)

where Yt are the time series data; φ is the coefficient of the
autoregressive model; p is the order of the autoregressive
model; ε is the white noise series, which fits normal dis-
tribution with the zero mean; θ is the coefficient of the
moving average model; and q is the order of moving average
model.

ARMA(p, q) is used to analyse the stationary stochastic
process, but the time series data in some fields are changing
upward and downward dramatically, and it also shows the
characteristics of periodic fluctuation. 1e time series data
are nonstationary stochastic process, which could be
modelled byARIMA(p, d, q), shown as equation (13). It is
the ARMA(p, q) model with the differential operation.

φp(B)(1 − B)
d
Yt � θq(B)εt, (13)

where B is the backward shift operator, BYt � Yt− 1, and d is
the order of differencing.

3.3. Improved Extreme Learning Machine Model. ELM is
employed to forecast the data next time, which is a special
learning algorithm for the single hidden layer feed-forward
neural network. It only needs to determine the number and
the output weight of the hidden layer neurons. 1e input
weight and the threshold of activation function are set
randomly and remain unchanged.

Given the training samples, the output of ELM is
Hβ � Y, where H � [h1, . . . , hL]N×L, hij � G(ωi, xj, bi), is
the output matrix of the hidden layer. β � [β1, . . . , βL]T

L×m is
the output weight of the hidden layer connecting the hidden
layer and output layer. Y � [y1, . . . , yN]T

N×m are the output
results of ELM. After fixing the hidden layer neurons, ELM
aims to find the optimal output weight matrix β, in order to
make the output error least, so based on the theory of ELM,
the optimal result is as follows:

β � H
†
Y � H

T
H 

− 1
H

T
Y. (14)

For improving self-adaptability, Huang et al. [44, 45]
updated ELM and proposed an incremental extreme

learning machine algorithm (I-ELM). 1e basic idea of
I-ELM is to update β dynamically by the residual eL and
output HL+1 before and after adding new hidden layer
neuron, as shown in the following equation:

β �
eL, HL+1

HL+1
����

����
2 . (15)

For improving the stability and generalization ability of
I-ELM, Im-ELM is proposed, in which the parameters ωk,L+1
and bL+1 of the new adding neurons are not generated
randomly. Referring the idea of literature [46, 47], the two
parameters ωk,L+1 and bL+1 are dynamically determined
based on the chaos optimization algorithm (COA), which is
highly efficient in global searching ability. In COA, the
chaotic states are introduced into the optimization variables.
1e ergodic range of chaos is mapped into the range of
optimization variables, and during the first and second
carrier wave, shown as equations (16) and (17), to find the
optimal solutions meeting the termination conditions.

X
t
ij � (b − a) · d · c

t
ij, (16)

X
t
ij � X

best
ij + α(t) · c

t
ij, (17)

where i � 1, . . . , n represents the optimization variables; j �

1, . . . , p represents the optimization variables mapped by the
multiple chaos variables; [a, b] is the definition domain of
Xij; t represents the iteration number; and d is the ampli-
fication gain. For better prediction accuracy, equation (17) is
transformed to the following form:

X
t
ij � X

best
ij + α(t) · c

t
ij − κ , j � 1, . . . ,

p

2
,

X
t
ij � a + c

t
ij · (b − a), j �

p

2
+ 1, . . . , p,

(18)

where κ is a regulator. 1e optimization objective function,
f(·) � 

N
i�1(yi − yi

′)2/N, yi and yi
′ are target value and

prediction value of i − th sample, respectively, and yi
′ can be

calculated by using equation (15).
Based on the analysis above, Im-ELM is described in

detail as follows:

Im-ELM

Initialization: L � L0, ε � Y

Training:
While L<Lmax && E> ε
S1: Increase a new hidden layer neuron, L � L + 1
S2: Generate the input weight ωL and the bias bL of the
new neuron and optimize the parameters ωL and bL

based on the COA
S3: Calculate the new weight βL based on equation
(15) after increasing the new neurons
S4: Calculate the output error of the new neural
network EL � f(EL− 1, βLHL)

3.4.DeepLearningModel. DBN is the generative one of the
deep learning models, which is employed in the paper. It
consists of the stacked restricted Boltzmann machine
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(RBM) [48] with only one hidden layer [49]. Because of
the integrating feature learning and deep learning, it has
fast analysing and high data fitting ability [50, 51].

RBM is a special kind of Markov random field which
consists of two parts: one is the visible layer and the other is
the hidden layer. In each RBM, the visible variable v is to
connect with the hidden units h by undirected weights ω
[52]. RBM is considered as an energy model; its energy is
defined as [53]

E(v, h) � − αT
v − b

T
h − h

Tωv. (19)

1e DBN stacks several RBMs as the unsupervised
network considering the visible layer to the hidden layer.
1e hidden layer of one RBM is the visible layer of the
subsequent RBM, and the training process can be divided
into two steps. One step is the unsupervised learning. In
this process, the training samples are transformed
through layer by layer, and the better initial parameters
ωi,j, αi, and bi could be obtained. ωi,j is the symmetric
weight connecting the hidden unit j and the visible unit i.
αi is the bias of the visible unit, and bi is the bias of the
hidden unit. 1e other step is the supervised learning. In
this step, some learning algorithms are used to optimize
the parameters obtained in the first step. At last, through
global fine-tuning process, the optimal parameters are
selected. After finishing the training of the RBMs, the
DBN features can be extracted from the topmost hidden
layer [54].

For determining the parameters α, b, and ω of each RBM,
in the first step of training, the contrast divergence (CD)
algorithm is adopted to train each RBM one by one [48, 55].
CD algorithm is a fast learning algorithm, with one-step
Gibbs sampling for making a better approximation. 1e
process of CD is mainly in four steps: (1) set the first visible
layer variables as the input samples; (2) from visible layer to
hidden layer, the hidden layer variables are updated by
P(hj � 1 | v) based on known visible layer states; (3) negative
phase: based on the hidden layer states in the second step, the
visible layer is reconstructed by P(vi � 1 | h); (4) update the
weights. 1e updating criterion of parameters is as follows:

Δωi,j � η 〈vihj〉 − 〈vi
′hj
′〉 ,

Δαi � η 〈vi〉 − 〈vi
′〉( ,

Δbj � η 〈hj〉 − 〈hj
′〉 ,

(20)

where vi and vi
′ are the states of i − th neuron before and after

reconstructing visible layer respectively; hj and hj
′ are the

states of j − th neuron before and after reconstructing visible
layer; and η is the learning rate.

4. Experiments and Analysis

For illustrating and verifying the model proposed in the
paper, passenger flow statistics at station 7 of line 28 and
station 8 of line 10 are used as experimental samples. 1e
sampling period of the original dataset is from October 1,
2018, toMarch 31, 2019, for a total of 6 months.1e length of
time is from 7 : 30 to 9 : 30 in the morning peak hours and

from 16 : 30 to 18 : 30 in the evening peak hours. As the
model input, the original dataset is aggregated into a time
series of 30-minute interval based on equations (6)–(10), and
the data from station 7 of line 28 are shown in Figure 6.
Moreover, the performances of models are evaluated by the
mean-squared error (MSE) and mean absolute percent error
(MAPE).

MSE �
1
N



N

i�1
yi − yi
′( 
2
,

MAPE �
1
N



N

i�1

y − yi
′

����
����

yi
′

����
����

.

(21)

4.1. Time SeriesModel. 1e following presents the modelling
process for passenger flow analysis using time series model,
which is based on the content described in the literature [5].

4.1.1. Unit Root Test. By observing Figure 6, the sequence
shows significant instability. After the first-order difference,
the unit root test results are shown in Table 2. When the
additional item is “Intercept,” supposing H0: δ � 0, the
t-Static of unit root is − 7.962247, and it is obviously less than
the 1%, 5%, and 10% significance level. 1e critical values of
t-static are − 3.886751, − 3.052169, and − 2.666593 separately.
Obviously, the statistical value of ζ test is less than the
corresponding DW critical values. As a result, it means that
after the first-order difference analysis, the data sequence is
stable and could be analyzed by time series models.

4.1.2. Model Selection. 1e process of selecting the time
series model is identifying the orders of the autoregressive
(p) and moving average terms (q). 1e orders can be ob-
tained by calculating the autocorrelation functions (ACFs)
and partial autocorrelation functions (PACFs) of the se-
quence, and the general judgment rules are shown in Table 3
[56]. Analysing these results in Figure 7, when lag � 2, both
ACF and PACF show the tails off exponentially. According
to Table 3, the ARMAmodel is selected preliminarily, and its
parameters p and q are limited in intervals [1, 2].

4.1.3. Parameters Estimation. 1e fitting degree needs to be
tested based on the information criteria AIC, SC, and HQC,
so as to determine the lag order p and q and other pa-
rameters. Item included in test equation. Based on their
interval, the four models ARIMA(2, 1, 2), ARIMA(2, 1, 1),
ARIMA(1, 1, 2), and ARIMA(1, 1, 1) are constructed. After
setting the sample size 40, 50, and 60, each model is tested
three times. Finally, the minimum of AIC, SC, and HQC can
be obtained, as shown in Table 4. Analysing the results, the
minimum of AIC is 7.108482, SC is 7.306342, and HQC is
7.135764. After comprehensive analysis, the performances of
ARIMA(2, 1, 2) in the four models are best, which is selected
as the time series model.
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4.1.4. Model Testing. For verifying the performances of the
selected model, we need to test whether the residual series is
the white noise sequence or not by calculating the ACF and
PACF. 1e results are shown in Figures 8 and 9. In Figure 8,
the lag order shows the residual series is a white noise se-
quence obviously. Figure 9 shows the fitting curve of the
real-world data and forecasting results of the early peak

period.1e fitting effect is significantly reduced due to traffic
jams in the morning peak. 1e conclusion proves that the
single linear model cannot well describe the nonlinear
factors affecting passenger flow change.

In the paper, historical data in a large time scale are
selected as the assistant to improve the predicting effects,
and the analysing model of historical data need to be
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Figure 6: Part of the input dataset at station 7 of line 28.

Table 2: 1e results of unit root tests.

Item included in test equation
t-Static

ADF test statistic
Test critical values

1% level 5% level 10% level
None − 8.059761 − 2.708094 − 1.962813 − 1.606129
Intercept − 7.962247 − 3.886751 − 3.052169 − 2.666593
Trend and intercept − 7.729247 − 4.616209 − 3.710482 − 3.297799

Table 3: ACF and PACF of the time series model.

AR (p) MA (q) ARMA (p, q)
ACF Tails off exponentially Cuts off after lag q Tails off exponentially
PACF Cuts off after lag p Tails off exponentially Tails off exponentially

Lag = 2
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Figure 7: 1e correlation analysis.
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determined based on the operations above. After analysing,
ARIMA(2, 1, 2) is selected for the historical data.

4.2. Im-ELM Model Analysis. Figures 10 and 11 show the
changes of the number of hidden layer neurons and the
learning error during the training process, and
Xt+1 � sin(2/Xt) is selected as the chaotic map function, and
regulator κ � 0.45. As the number of hidden neurons in-
creases, the training error is decreasing. From Figure 11, the
error decreases rapidly at first, and when the number of

hidden neurons is more than 20, the error tends to be stable.
1e final result is acceptable.

For testing the performances of Im-ELM, a piece of
passenger time series data is selected from the whole data.
Figure 12 shows the training and validating process. With
the increasing training process, the training error decreases,
and the error is stable and reaches optimal results whenMSE
is around 10. 1e forecasting results of the real-world data
are also around 10. Table 5 shows the comparison between
Im-ELM and other models (SA-ELM [57], ImSAP-ELM
[58], and ELM). Because of introducing COA, more time is
needed to optimize the parameters of the new neurons in
each iteration. 1e training time is more than SA-ELM, but
less than ImSAP-ELM and ELM.1e difference is only about
0.12 seconds between Im-ELM and SA-ELM, which is totally
acceptable after comprehensive analysis. 1e number of
hidden layer neurons of Im-ELM is 23 less than the others,
and the accuracy of Im-ELM is the best, which is suitable in
the hybrid model and applications.

4.3. DBN Analysis. In DBN, the number of hidden layers
and hidden neurons is determined by the enumeration
method layer by layer. Table 6 shows the comparison be-
tween DBN and other models. 1e prediction accuracy of
DBN increases with number of hidden layers. However, too
many hidden layers or neurons may reduce prediction ac-
curacy. From Table 6, the DBN-4 (with 3 hidden layers and
150 neurons in each hidden layer) performs best, and se-
lected as the part of HTSDBNE.
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Figure 9: 1e fitting analysis of ARIMA(2, 1, 2).
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Figure 8: 1e correlation analysis of ARIMA(2, 1, 2).

Table 4: AIC, SC, and HQC of different ARIMA models.

Model AIC SC HQC
ARIMA(2, 1, 2) 7.108482 7.306342 7.135764
ARIMA(2, 1, 1) 7.198449 7.346844 7.218911
ARIMA(1, 1, 2) 7.238309 7.387430 7.263546
ARIMA(1, 1, 1) 7.236094 7.335508 7.252919
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4.4. HybridModel Testing and Analysis. 1e time series data
of the working day and nonworking day are obtained to test
the proposed model HTSDBNE. Tables 7 and 8 and Fig-
ures 13 and 14 show the comparison between the HTSDBNE
and other models (ARIMA(2, 1, 2), ELM, TS-ANN, SLMBP,
SAE-DNN [59], and MPDF [21]). In the passenger off-peak
time, such as 7 : 30 am, all models show good accuracy and
small MSE and MAPE. However, in the peak time of the
working day and nonworking day, especially in the critical
zone, the performance of HTSDBNE shows greater supe-
riority. For example, in Figure 13, at 8 : 30 am point, theMSE
of HTSDBNE is 8.24, far lower than the error 18.13 of
ARIMA(2, 1, 2), and compared with others, the accuracy is
improved significantly. In few time points (marked in bold
in Tables 7 and 8 and red asterisk in Figures 13 and 14), the
result of HTSDBNE is weaker than SAE-DNN and MPDF,
but the difference is very small, and the largest difference is
only 1.4257%.

Figures 15 and 16 show the changing trends of the real-
world data and the forecasting results in each working day of

the station 7 of line 28. Due to space constraints and the
similarity of the results, the analysis of station 8 of line 10 is
omitted here. From the curve fitting, HTSDBNE is better in
time 9 : 00 to 9 : 30 and 16 : 30 to 18 : 30. 1e difference
between real-world data and forecasting results of
HTSDBNE is around 2.5, and the least difference of other
models is around 3.2. 1e HTSDBNE has the best perfor-
mances compared with other models. At 7 : 30 am,
ARIMA(2, 1, 2) does not capture the real changes of the
passenger flow, and at 8 : 00 and 17 : 00 pm, the road section
is in the peak and congestion; these led to a large forecasting
delay for ELM, TS-ANN, and SLMBP. HTSDBNE, SAE-
DNN, and MPDF are relatively successful in capturing the
sharp changes of the passenger flow, but HTSDBNE is better
in the forecasting accuracy. In the end of the early peak and
evening peak hours, the prediction results of HTSDBNE are
most consistent with the actual situation.1e results indicate
that HTSDBNE shows better performances and applicability
than other models in both peak and off-peak time.

Table 6: Comparison between DBN and other models.

Models Hidden layers Hidden neurons MSE MAPE (%)
DBN-1 2 200-200 14.524 15.968
DBN-2 2 150-150 14.305 15.208
DBN-3 3 200-200-200 13.624 14.483
DBN-4 3 150-150-150 12.385 13.167
DBN-5 4 150-150-150-150 13.747 14.615
LSSVM — 50 12.472 13.259
ELM — 60 14.983 15.115

Table 5: 1e comparison between Im-ELM and other models.

Im-
ELM

SA-
ELM

ImSAP-
ELM ELM

Number of hidden
neurons 23 29 30 57

Training time (s) 2.7518 2.6287 3.0853 3.9837
Error (MSE) 10.015 11.254 11.438 13.583
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Figure 12: 1e training and validation of Im-ELM.
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Figures 17 and 18 show the changing trends of real-
world data and forecasting data in each nonworking day of
station 7 of line 28. 1e passenger flow peak hour of
nonworking days is 30 minutes later than the working days.
In Figure 17, the passenger flow is on the rise sharply from 8 :
00 am to 8 : 30 am. ARIMA(2, 1, 2), ELM, TS-ANN, SLMBP,
SAE-DNN, and MPDF capture this upward trend, but the
accuracy of prediction results is not high, and the maximum
error is more than 20%. However, HTSDBNE performs well
with an error of only 8.787%. In the end of themorning peak,
HTSDBNE has successfully forecasted the real status of the
passenger flow. Different from the morning peak of non-
working days, in the evening peak hours shown in Figure 18,
the passenger flow increases gradually, and the three hybrid

models (SAE-DNN, MPDF, and HTSDBNE) describe this
characteristic. 1e HTSDBNE is the best in the forecasting
accuracy, and the maximum difference is only about 2.

5. Conclusions

In this paper, the original passenger flow statistical data were
deeply analysed and constructed as a time series with an
aggregation interval of 30minutes. Based on the charac-
teristics of passenger flow variation, a novel hybrid fore-
casting model, HTSDBNE, is proposed, which consisted of
ARIMA, DBN, and Im-ELM. In the first step, the ARIMA is
used to analyse the stability of time series sequences of the
historical data and real-time data and then make a

Table 8: Comparison between HTSDBNE and other models (MAPE) (station 8 of line 10).

Models ARIMA(2, 1, 2) (%) ELM (%) TS-ANN (%) SLMBP (%) SAE-DNN (%) MPDF (%) HTSDBNE (%)

Working day

7 : 30 24.59 23.58 19.91 19.57 15.00 14.80 11.84
8 : 00 25.49 24.66 20.82 19.64 15.38 15.17 13.91
8 : 30 23.82 22.89 19.33 18.87 14.52 14.33 11.46
9 : 00 24.64 23.59 19.92 19.58 15.01 14.82 12.12
9 : 30 23.66 22.72 19.18 18.85 11.25 12.01 11.41
16 : 30 21.92 21.52 18.17 18.68 12.59 13.18 12.06
17 : 00 22.97 22.15 18.70 18.38 14.09 13.91 11.13
17 : 30 23.88 21.97 19.13 18.49 14.30 14.11 13.29
18 : 00 23.58 22.54 19.04 18.71 14.34 14.15 11.32
18 : 30 22.39 20.60 17.97 17.36 13.42 13.25 11.68

Nonworking day

7 : 30 21.71 20.88 17.63 17.33 13.29 13.11 10.49
8 : 00 20.69 18.59 16.28 15.69 12.15 11.99 9.88
8 : 30 23.19 20.18 18.19 17.27 13.47 13.30 10.64
9 : 00 17.09 16.58 14.00 13.76 10.55 10.41 10.43
9 : 30 15.37 14.98 12.74 12.47 9.58 9.45 8.56
16 : 30 15.29 14.63 12.36 12.14 10.12 9.39 8.35
17 : 00 15.38 13.97 11.92 11.65 8.96 8.84 8.39
17 : 30 14.59 14.12 12.39 11.93 8.52 8.12 8.40
18 : 00 16.33 14.81 12.83 12.44 8.35 8.84 8.58
18 : 30 14.39 13.59 11.47 11.28 8.65 8.53 8.03

Table 7: Comparison between HTSDBNE and other models (MAPE) (station 7 of line 28).

Models ARIMA(2, 1, 2) (%) ELM (%) TS-ANN (%) SLMBP (%) SAE-DNN (%) MPDF (%) HTSDBNE (%)

Working day

7 : 30 24.59 23.58 19.91 19.57 15.00 14.80 11.84
8 : 00 25.49 24.66 20.82 19.64 15.38 15.17 13.91
8 : 30 23.82 22.89 19.33 18.87 14.52 14.33 11.46
9 : 00 24.64 23.59 19.92 19.58 15.01 14.82 12.12
9 : 30 23.66 22.72 19.18 18.85 11.25 12.01 11.41
16 : 30 21.92 21.52 18.17 18.68 12.59 13.18 12.06
17 : 00 22.97 22.15 18.70 18.38 14.09 13.91 11.13
17 : 30 23.88 21.97 19.13 18.49 14.30 14.11 13.29
18 : 00 23.58 22.54 19.04 18.71 14.34 14.15 11.32
18 : 30 22.39 20.60 17.97 17.36 13.42 13.25 11.68

Nonworking day

7 : 30 21.71 20.88 17.63 17.33 13.29 13.11 10.49
8 : 00 20.69 18.59 16.28 15.69 12.15 11.99 9.88
8 : 30 23.19 20.18 18.19 17.27 13.47 13.30 10.64
9 : 00 17.09 16.58 14.00 13.76 10.55 10.41 10.43
9 : 30 15.37 14.98 12.74 12.47 9.58 9.45 8.56
16 : 30 15.29 14.63 12.36 12.14 10.12 9.39 8.35
17 : 00 15.38 13.97 11.92 11.65 8.96 8.84 8.39
17 : 30 14.59 14.12 12.39 11.93 8.52 8.12 8.40
18 : 00 16.33 14.81 12.83 12.44 8.35 8.84 8.58
18 : 30 14.39 13.59 11.47 11.28 8.65 8.53 8.03
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Figure 13: Comparison between HTSDBNE and other models (MSE) (station 7 of line 28).1e columnW shows the results of working day,
and column N shows the results of nonworking day.
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Figure 14: Comparison between HTSDBNE and other models (MSE) (station 8 of line 10).1e columnW shows the results of working day,
and column N shows the results of nonworking day.
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Figure 15: Continued.
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Figure 16: Comparison between HTSDBNE and other models in the evening peak hours of working days (station 7 of line 28).
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Figure 15: Comparison between HTSDBNE and other models in the morning peak hours of working days (station 7 of line 28).
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preliminary prediction. Next, a subhybrid model based on
DBN and Im-ELM is constructed, which is used to extract
the features of the residual series of the forecasting results
and forecast the changes of the residual series. At the end of
first step, the residual and preliminary forecasting results are
reassembled together as the intermediate prediction results.
For making effective use of historical data to improve the
current forecasting, in the first step of HTSDBNE, the
parallelized submodels are employed, which have the same
structure as the one above. In the second step, the

intermediate forecasting results from the first step based on
the real-time passenger flow and historical data in different
time scales are reassembled together by Im-ELM as the final
forecasting results. In order to verify the performances of
HTSDBNE, a comparative analysis is performed with
ARIMA(2, 1, 2), ELM, TS-ANN, SLMBP, SAE-DNN, and
MPDF. 1e testing results indicate that the novel hybrid
model can capture and forecast the changes of passenger
flow accurately in a more general environment. In future
research, the hybrid model is considered to be parallelized in
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Figure 18: Comparison between HTSDBNE and other models in the evening peak hours of nonworking days (station 7 of line 28).
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Figure 17: Comparison between HTSDBNE and other models in the morning peak hours of nonworking days (station 7 of line 28).
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the big data computing environment, in order to improve
the computational efficiency to adapt the real-time fore-
casting of all bus lines in the whole city.
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