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In order to improve the safety, stability, and efficiency of lane change operating, this paper proposes a multivehicle-coordinated
strategy under the vehicle network environment. *e feasibility of collaborative lane change operation is established by
establishing a gain function based on the incentive model. By comparing lane change gain with lane keeping gain, whether it is
feasible to perform the collaboration under current conditions can be judged. Based on the model predictive control (MPC), a
multiobjective optimization control function for cooperative lane change is established to realize the distributed control. A novel
two-stage cooperative lane change framework is proposed, which divides the lane change process into the lane change phase and
the longitudinal headway adjustment phase. It is significant to solve the difficult numerical problem caused by the dimension of
collision-avoidance constraints and the nonlinearity of vehicle kinematics. In the first stage, the subject vehicle completes lane
change operation. Both longitudinal and lateral movements of the vehicle are considered to optimize the acceleration and the error
of following distance at this stage; in the second stage, the operation of adjusting longitudinal headway between vehicles in the
target lane is completed, and at this period, only the longitudinal motion of the vehicle is considered to optimize the vehicle
acceleration error. *e rolling optimization time domain algorithm is used to solve the optimization control problem step by step.
Finally, based on the US NGSIM open-source traffic flow database, the accuracy and feasibility of the proposed strategy
are verified.

1. Introduction

Lane change is one of themost basic driving behaviors with a
high risk. Compared to car-following behavior, the lane
change considers more vehicles, and the decision-making
process is more complicated and difficult to describe.
According to EU statistics, the proportion of traffic accidents
caused by lane change accounts for about 5%, and the traffic
delay reaches 10%. At the same time, 75% of the lane change
accidents were caused by the driver’s mistaken decisions.
*at is, the subject vehicle status information and the
surrounding environment information were not sufficiently
perceived [1]. In recent years, with the advanced sensor
technology and the application of vehicle-to-vehicle (V2V)
communication technology in automobiles, the intercon-
nection between vehicles and road facilities is becoming a
reality. With advanced vehicle networking technology, the

acquisition of vehicle information around the driving sec-
tion can provide more optimized lane change planning and
speed control strategies during the vehicle running so that
the microscopic traffic flow such as vehicle velocity, the
headway, and the time interval of vehicles during the lane
change process changes benignly in characteristics to im-
prove the safety and comfort of vehicle driving [2, 3].

*ere have been several research studies on examining
the connected vehicle environment by taking more than one
vehicle into consideration in driving models. Fridman et al.
[4] put forward a traffic simulation called deep traffic where
the planning systems for a subset of the vehicles are handled
by a neural network as part of a model-free, off-policy re-
inforcement learning process. It used the deep reinforce-
ment learning method to investigate crowd-sourced
hyperparameter tuning of the policy network for self-driving
cars. Li et al. [5] of Beijing University of Aeronautics and
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Astronautics proposed a collaborative model of the confluence
zone to further solve the security problem of the confluence
zone. Li and Zhang [6] proposed a dynamical model based on
the strategy of three-vehicle cooperation driving, achieving
smoother acceleration distribution in the new model through
considering the dynamic collaboration in the car-following
condition. Hoc [7] of the French National Academy of Sci-
ences believed that coordinated lane change was that these
multiagents could take actions to resolve conflicts and ac-
complish personal or common goals whenmultiple vehicles or
agents travelled on the road occurring collide. Heesen et al. [8]
of the German Aerospace Centre studied the cooperative
behavior that drivers may take during actual lane change. It
used a test method to examine typical scenarios and performs
regression processing using a logical model.

At present, the research of multivehicle cooperative lane
change mainly focuses on two aspects: one is the research on
the decision-making model of cooperative lane change.
Ngoduy and Jia [9] proposed a continuum traffic model
considering both multiple forward and backward driving
strategies and point out that such driving strategy can be
realized through cooperative driving strategy of connected
vehicles. Li et al. [10] described the relationship among ve-
hicles on multiple lanes by threat function and established a
cooperative lane-changing rule model STCA-A based on the
cellular automation model. Cao et al. [11] studied the model
of cooperative lane changing in merging area of expressway
and established a framework of lane-changing decision based
on the driving characteristics. Nie et al. [12] proposed a
decentralized cooperative lane-changing decision-making
framework (DCLDF) for CAVs, which was composed of state
prediction module, candidate decision generation module,
and candidate decision coordination module. Menéndez-
Romero et al. [13] presented a novel method that automat-
ically adapts the driving behavior, integrating the merging
intention of other vehicles.*e other aspect is the research on
the cooperation mode and control of lane-changing vehicles.
Luo et al. [14] of Nissan Motors used the model prediction
control (MPC) to optimize the vehicle motion trajectory of
the confluence area. *e model simplified the cooperative
behavior into a cooperative model of two vehicles, those are
the combined vehicle and the coordinated vehicle on the
original lane. At the same time, the vehicle was a mass point,
and the road was a straight line. Atagoziyev et al. [15] cat-
egorized all the lane-change scenarios into seven typical cases;
in each case, only one vehicle has the lane change intention;
the surrounding normal vehicles cooperatively adjust the
formation until the central lane-change vehicle can change the
lane safely; this single-vehicle lane change process continues
sequentially if more than one vehicle intends to change lane.
Li et al. [16] formulated the multivehicle lane change motion
planning task as a centralized optimal control problem and
proposed a progressively constrained dynamic optimization
(PCDO) method to facilitate the numerical solving process of
this complicated problem.

A review of the prevalent studies is summarized in
Table 1. As reviewed above, various decision-making and
control models have been applied to the study of cooperative
lane change. However, most of these research studies are

based on the unmanned vehicles assumptions, the multi-
vehicle cooperative driving system structures are designed,
and the self-driving control algorithms are constructed. No
study appears to integrate the decision-making and control
models of cooperative lane change. *e research on coop-
erative driving control of multivehicle especially in the lane
change scene is relatively few. What is more, the studied
cooperative lane change scene is relatively simple and ide-
alized. Additionally, due to the dimension of collision-
avoidance constraints and the nonlinearity of vehicle ki-
nematics, the optimal control function is often difficult to
solve.

Hence, this paper proposes a novel multivehicle coor-
dinated safe lane change strategy based on centralized de-
cision-making and distributed control. In order to
determine when and where to perform coordinated lane
change for connected vehicles, we put forward a gain
function model based on the incentive model to determine
whether the original traffic condition is suitable for coor-
dination. After the feasibility judgment, we give a collabo-
rative lane-change optimization model based on the model
predictive control to obtain the expected control input of
each vehicle in real time. A typical scene during the specific
time segment in the NGSIM open-source traffic database is
selected, and the proposed collaborative strategy is applied to
simulate by MATLAB to verify the impact of this method on
improving traffic efficiency, stability, and driving safety and
comfort.

*e contributions of this paper are as follows:

(1) A multivehicle cooperative lane change strategy is
proposed with centralized decision-making and
distributed control. *e lane-change decision and
vehicle control are integrated to build multivehicle
cooperative lane-change system architecture.

(2) In the distributed control, the lane change process is
divided into two stages, and an optimizationmodel is
established. *e first stage is the sparse vertical
spacing stage, which enables the cooperative lane-
change team to move from the original form to a
sparse form to avoid collision.*e second stage is the
lane-change stage, which meets the safety distance
and reduces the constraint requirement to avoid
collision. *us, the difficulty of solving the optimal
control is decreased.

(3) *e model considers the active cooperation of sur-
rounding vehicles during lane change. Compared
with general lane change, it can improve the effi-
ciency of traffic flow and provide a more comfortable
driving experience for drivers.

*e reminder of the paper is organized as follows. *e
first part introduces the system architecture and workflow
for implementing coordinated lane change; the second part
describes the multivehicle coordinated lane change scene
and the feasibility judgment method; the control objective
function of the whole collaborative lane change strategy and
its solving method are introduced on the third part. *e
fourth part is the simulation experiment and results analysis.
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*e conclusions and discussion are presented in the final
section.

2. System Architecture

In order to realize safe and efficient lane change to the target
lane for subject vehicle (SV), the surrounding intelligent
networked vehicles assist to complete the task by acceler-
ating and decelerating to achieve the purpose of making full
use of road resources. *e architecture for achieving system
cooperation is shown on the left part of Figure 1. *e in-
telligent sensing layer is responsible for perceiving the
driving state of vehicles and road environment information;
*e coordination layer is mainly used to formulate multi-
vehicle cooperative lane-change driving strategies and
control targets; the vehicle control layer commands the
vehicle power system by the vehicle actuator, executing
expectation control according to state information of the
vehicle and the cooperative driving strategy. *e driving
speed and direction of the vehicle are controlled by the
throttle opening, the wheel-cylinder pressure, and the
steering wheel angle to achieve the purpose of completing
the cooperative driving task.

*e system workflow is shown on the right part of
Figure 1; through the intelligent sensing layer, the vehicle
state parameters and surrounding environment information
are obtained, and then the benefit of cooperative lane change
under the present traffic situation at the original time is
comprehensively evaluated, and the feasibility of coordi-
nated lane change is centrally judged. According to the lane-
change strategy proposed by the coordination layer, the
expected control input amount of each vehicle is obtained,
and control information is shared with each coordinated
vehicle based on dedicated short-range communication
(DSRC) technology. Finally, the coordinated operation is
performed, and the vehicles are notified to stop the coop-
eration after completing this task.

3. Application Scenarios

3.1. Introduction to the Scene. *e multivehicle coordinated
lane-change scenario studied in this paper is the highway
environment under the network condition shown in
Figure 2. *e subject vehicle (SV) changes lanes from the
original lane to the target lane during the lane change
process. *e ALV and AFV vehicles, respectively, represent
the front and rear vehicles in the target lane, and the LV
vehicle represents the preceding vehicle in the original lane.

SV changes lanes from the original lane to the place between
the front and rear vehicle in the target lane. During this
process, information exchange among vehicles is realized
through the DSRC technology. *e obtained vehicle state
parameters take the subject vehicle (SV) for reference. *e
goal of coordinated lane change is to assist in performing
lane change operation safely and efficiently.

3.2. Feasibility Judgment of Lane Change. Since the lane
change behavior affects the upstream and downstream ve-
hicles of the original and target lane, it is necessary to ac-
commodate information from a plurality of surrounding
vehicles for feasibility judgment of the collaboration. In
order to model the decision-making behavior of coordinated
lane change, the gain function is constructed based on the
incentive-based model [12]. *e decision-making model
formula for a lane-change vehicle (SV) is defined as follows:

G(SV, O, T) � aSV − aSV( 􏼁 + η min at − at t ∈ Nt

􏼌􏼌􏼌􏼌􏽮 􏽯􏼐 􏼑􏼐 􏼑

+ μ max ao − ao o ∈ No

􏼌􏼌􏼌􏼌􏽮 􏽯􏼐 􏼑􏼐 􏼑,

Ni � j ∈ Vi: 0≤ xSV − xj

�����

�����≤ l􏼚 􏼛, i � O, T{ },

Qi � argmax(SV, O, T),

⎧⎪⎨

⎪⎩

(1)

whereΔath is the switching threshold, that is, the lane change
behavior is better than the lane keeping behavior under
current traffic conditions. Only if the gain function
G(SV, O, T) satisfies restriction (2), the system decision is
feasible for cooperative lane change.

G(SV, O, T)>Δath,

aSV, at

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ asafe,

⎧⎨

⎩ (2)

where for the subject vehicle SV, O and T represent the
original lane and the target lane, respectively; gain function
G(SV, O, T) indicates the overall benefit of SV switching
from lane O to lane T in a coordinated situation; No and Nt

represent subsequent vehicles in the original lane and
subsequent vehicles in the target lane within the commu-
nication range l, respectively. a shows the acceleration of the
vehicle in its original state, and a presents the vehicle ac-
celeration after lane change operating and is calculated from
the state prediction model in the Section 3.3.

For the calculation of gain function G(SV, O, T), the first
item in the right half of the formula indicates the advantage
obtained by SV performing the lane change operation. In the

Table 1: Comparison of different methods.

Characteristics
Reference

[9] [10] [11] [12] [13] [14] [15] [16] *is work
Focus on decision-making of cooperative lane change ✓ ✓ ✓ ✓ ✓ 7 7 7 ✓
Focus on control models of cooperative lane change 7 7 7 7 7 ✓ ✓ ✓ ✓
Lane-change manoeuvres are not limited to specified patterns ✓ ✓ 7 ✓ 7 7 7 ✓ ✓
Multiple vehicles can change lanes simultaneously 7 ✓ 7 ✓ 7 7 7 ✓ ✓
Collision-avoidance constraints are precise 7 7 7 7 7 ✓ 7 ✓ ✓
Solutions are obtained in real time ✓ ✓ 7 ✓ ✓ ✓ ✓ ✓ ✓
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second term, η is a courtesy factor that characterizes the
impact of lane change operation on subsequent vehicles
(within communication range) in the target lane, with the
aim of reducing unnecessary and aggressive lane change
behavior and avoiding disruption of traffic stability. Because
the calculation result of at − at is always nonpositive, its
minimum value represents the maximum impact of the lane
change behavior. In the third item, μ is the benefit factor,
which indicates the speed advantage of subsequent vehicles
in the original lane due to the lane change operation and
intends to encourage positive impact of the lane change
behavior on traffic efficiency. *e calculation result of ao −

ao is always nonnegative, so its maximum value is chosen to
indicate the maximum positive impact.

3.3. State Prediction Model. In order to obtain the acceler-
ation of each vehicle after subject vehicle (SV) changing lane,
an optimal velocity model is selected as the car-following
model to predict the assumed condition.*emodel not only

reflects driver characteristics but also describes traffic flow
characteristics [17, 18]. It is shown as follows:

an � K Vm sn+1 − sn( 􏼁 − vn􏼂 􏼃,

Vm Δsn( 􏼁 � V1 + V2 tan h C1 Δsn − lc( 􏼁 − C2􏼂 􏼃,
(3)

where an represents the longitudinal acceleration,
Δsn � sn+1 − sn is the headway of two vehicles, Vm(Δsn) is
the optimal velocity function, lc is the minimum safe dis-
tance including vehicle body length, V1 and V2 are constant
parameters, and C1 and C2 are the corresponding coeffi-
cients. *ese four parameters all need to be calibrated. *e
values of each parameter can be referred to the data in
previous studies [18].

4. Modelling of Cooperative Lane Change

From the original lane to the target lane of lane change
process, the subject vehicle (SV) has both vertical and
horizontal movements, and the surrounding coordinated
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vehicles adjust their longitudinal motion according to the
proposed strategy [19]. In order to ensure smooth operation
of the lane change operation and consider the safety and
comfort, the multiobjective coordinated optimization con-
trol problem is established. In order to reduce the difficulty
of solving the optimal control problem, the entire lane
change process is divided into two stages. In the first stage
(lane change stage), the subject vehicle starts to perform lane
change and ends in entering the target lane. In the second
stage (adjustment stage), the subject vehicles in the target
lane and the spacing between the front and rear vehicles are
adjusted. *e lane change process is shown in Figure 3.

4.1. Lane Change Stage. In the lane change stage of SV,
longitudinal acceleration varies with the desired control
input, while lateral acceleration can be expressed by the
sinusoidal function as shown in the following equation [20]:

ay(t) �

2πW

T2 sin
2π
T

t􏼒 􏼓, 0≤ t≤T,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

*e duration of lateral movement of the entire lane
change process isT.*e lateral displacement that needs to be
completed is one road width W.*e lateral displacement can
be obtained by integrating the lateral acceleration ay(t)

twice:

y(t) �

− W

2π
sin

2π
T

t􏼒 􏼓, 0≤ t≤T,

0, t>T.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

When lateral displacement of the lane change vehicle
reaches a road width, it can be regarded as completing the
lane change phase, that is, T stage 1 shown in Figure 3.

In order to achieve a smooth transition of the lane
change process and ensure safety at the same time, the
objective function defined in the lane change phase and the
constraint conditions are shown in equation (6),

4.1.1. Stage 1.

min1U(k) � 􏽘
N

i�1
􏽘
β
λβα

2
β(k + i + 1 | k)⎡⎢⎢⎢⎣

+ 􏽘
φ

hφΔ
2
hφ

(k + i + 1 | k)⎤⎥⎥⎦,

(6)

where U(k) represents the sum of comfort and tracking cost,
N represents the predicted time domain, β � SV,{

LV,ALV,AFV}, φ � SV,AFV{ }, and λβ and hφ are the
weighting factor of each item. (k + i + 1 | k) indicates that
the value of time k + i + 1 is predicted based on the infor-
mation of time k.

In the objective function, the first term represents the
acceleration optimization of the subject vehicle and the

surrounding vehicles and characterizes the comfort cost in
the course of lane change stage; the second term represents
the following distance error between the subject vehicle
and its surrounding vehicles, characterizing its tracking
cost.

*e constraints are as follows:

asmin ≤ aSV ≤ asmax, (7a)

amin ≤ aLV ≤ amax, (7b)

amin ≤ aALV ≤ amax, (7c)

amin ≤ aAFV ≤ 0, (7d)

aSV′ , aLV′ , aALV′ , aAFV′
����

����, (7e)

D∗(k)≥Dsafe � max THW · Vf + Sf,TTC · Vf − V􏼐 􏼑 + Sf􏼐 􏼑,

(7f)

where asmin and asmax are the minimum and maximum
comfortable lane change acceleration acceptable to the
driver; amin and amax are the minimum and maximum
comfort acceleration acceptable to the driver. Tp is the
maximum comfortable longitudinal acceleration rate ac-
ceptable to the driver. A sharp change in acceleration can
also cause discomfort to the driver. (7a)–(7d) guarantee the
safety and comfort of each vehicle during the lane change
stage, ensuring that the state control variables are within the
allowable range. (7c) indicates that the rear vehicle in the
target lane cannot be accelerated. (7f) means that the dis-
tance between two workshops should not be less than the
minimum safe distance. D∗(k) indicates the actual distance
between two vehicles represented by ∗ at k time. THW is
the safety critical follow-up time interval of two workshops,
and TTC is the safety critical collision time. Vf is the speed
of the front car, Sf is the minimum safety spacing between
two vehicles.

4.2. Adjustment Stage. During the adjustment stage, the
subject vehicle completes lane change operation and enters
the target lane, adjusting the distance between the front and
rear vehicles in the target lane. Compared with the lane
change phase, this stage does not consider the front vehicle
in the original lane, so constraints become sparse. *e
objective function and the constraint definition are shown in
equation (8).

loffset

x

y
Tstage1

Lane width

Figure 3: SV lane change process.
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4.2.1. Stage 2.

min2U(k) � 􏽘
N

i�1
􏽘
μ
ωμΔa

2
μ(k + i + 1 | k)⎡⎢⎢⎣ ⎤⎥⎥⎦, (8)

where U(k) represents the comfort cost. *e objective
function expresses the acceleration error optimization of the
self-vehicle and front and rear vehicles in the target lane to
ensure its longitudinal driving comfort. μ � SV,ALV,AFV{ }

and ωμ is the weight factor.
*e constraints are as follows:

amin ≤ aSV ≤ amax, (9a)

amin ≤ aALV ≤ amax, (9b)

amin ≤ aAFV ≤ amax, (9c)

aSV′ , aALV′ , aAFV′
����

����≤Tp, (9d)

D∗(k)≥Dsafe � max THW · Vf + Sf,TTC · Vf − V􏼐 􏼑 + Sf􏼐 􏼑.

(9e)

4.3. Model Solving Method. Since the objective function
established in this paper is a multiobjective coordination
optimization control problem, the rolling time domain
optimization algorithm is used to solve it. As the sampling
time advances, the deviation of each time period is opti-
mized and calculated repeatedly in finite time interval of
rolling [21], and the expected input of each vehicle is ob-
tained to realize active cooperation. Within the system
predicting the time domain, the constraints are all in the
form of AX≤B.*erefore, this kind of management method
is used to soften the hard constraints, and the Dant-
zig–Wolfe effective set method [22] is selected to obtain the
optimal control variables:

X � argminU. (10)

*e first element of optimal control quantity X(0) is
extracted and entered into the vehicle model. *e desired
optimal throttle opening c∗thr(0) and optimal brake pedal
pressure c∗brk(0) are achieved for optimal control of vehicle
driving and braking. *e parameters in the model are
designed as shown in Table 2.

5. Simulation Experiment Verification

5.1. Experimental Setup and Condition. *is paper uses the
US NGSIM open-source traffic flow database [23] to verify
the lustiness of the proposed model. *e database source
records the traffic flow data of typical highways in the United
States by means of fixed-point video observation and ex-
tracts the motion track data of all vehicles in the video
through image processing technology. *e data selected in
this paper are fifteen minutes (4:00 am–4:15 am) vehicle

trajectory data of the 2nd and 3rd lanes in the I-80-
Emeryville-CA expressway, as shown in Figure 4. *e sec-
tion is 503m (about 1,650 feet) long. In order to verify the
feasibility and practicability of the proposed strategy, the
actual lane change scenario at the moment in the road
section without external disturbance is defined as the general
traditional lane change (TLC); the simulation applied to the
same scenario using the multivehicle coordinated lane
change strategy is defined as a coordinated lane change
condition (CLC).

5.2. Results and Discussion. Figure 5 shows the vehicle
trajectory in the 2nd lane during a certain period of time.
During this time period, a total of 8 lane changes occurred,
six lane changes were from the 3rd lane to the 2nd lane and
two lane changes were from the 2nd lane to the 3rd lane.*e
color in the figure represented the speed of the vehicle, and
the larger the color value, the greater the speed. It could be
seen from Figure 5 that congestion occurred in the position
400–800 feet section from frame 480 to frame 1000, espe-
cially after two lane change behaviors, and the congestion
was obvious. After applying the multivehicle coordinated
lane change strategy (Figure 6), the impact caused by the
lane change became smaller, and the congestion was ef-
fectively controlled. *e vehicle speed was increased, the
time for the vehicle to reach the same position was reduced
by 3–11 s, and the traffic efficiency was improved. *e
feasibility of lane change was also calculated here. *ere was
no significant change in the overall number, but the timing
of the lane change changed.

*e average speed is the average value of all vehicles’
speed in a certain time or space, which is the important
performance indicator of the traffic system. Figure 7 shows
the time average speed in each time zone in the case of TLC
and CLC. Under the coordinated lane change strategy, the
average time of vehicles increased from 26.96 km/h to
30.41 km/h in maximum. *e average speed was signifi-
cantly improved.

Two groups of vehicle lane changing processes were
randomly selected from the above time period, and the
coordinated lane changing strategy was used for simulation
research. Figures 8 and 9 show the acceleration and speed
curve of three vehicles during the lane change. In the tra-
ditional lane changing process (Figure 8), the overall ac-
celeration curve of SV showed a downward trend, but there

Table 2: Parameter design.

Parameter symbol Parameter value
λβ [0.3, 0.2, 0. 1, 0.1]
hφ [0.15, 0.15]
ωμ [0.4, 0.3, 0.3]
Tp 1.5m/s3

asmin − 1m/s2

asmax 1.5m/s2

amin − 4m/s2

amax 4m/s2

W 3.75m
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were obvious fluctuations. After entering the target lane, the
vehicle acceleration was maintained near 0m/s2, and the
vehicle speed was stable. With the coordinated lane change
strategy, the lane changing vehicle was always in the ac-
celeration state during the entire lane changing process, but

the acceleration variation was small and gradually decreased.
In the TLC scenario, when the vehicle in the 2th lane was cut
in, that was, in the second stage, AFV decelerated rapidly. It
could be speculated reasonably that the driver generated a
dangerous perception influenced by the speed of the lane
change vehicle and the distance between the vehicles. *e
acceleration of ALV was affected by its own preceding ve-
hicle. In this example, the safe distance between SV and ALV
could be determined by setting an appropriate threshold
range, and the speed change under the coordinated lane
change strategy was more stable.

Figure 10 shows the comparison between the TLC tra-
jectory and the CLC trajectory.*e CLC trajectory was more
continuous. *e indicators reflecting the safe lane change
included the time of lane change, jerk, headway of SV, and
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the deceleration of ALV. Table 3 shows the comparison of
these parameters in the lane change process. *e time of
CLC was 4.8 s, slightly smaller than TLC, and the jerk was
also significantly reduced. THW was higher than TLC, es-
pecially during the lane change process, the maximum
deceleration of ALV was only − 0.09m/s2, which was sig-
nificantly lower than TLC, and the safety was higher.

Similarly, Figures 11 and 12 show the acceleration and
velocity curves for another scene.*e speed of the target lane
started to decrease significantly at the beginning in TLC, and
the speed of the lane change vehicle fluctuated greatly. In
CLC, SV remained stable after smooth accelerating, and the
speed of AFV was basically unchanged at the whole stage.

It could be seen from Figure 13 and Table 4 that the CLC
trajectory was smooth and stable. In this scenario, the lane
change time was basically unchanged, the jerk was signifi-
cantly reduced, the minimum THW was increased, and the
maximum deceleration of ALV was -0.04m/s2. *e effect of
CLC was smaller, and the safety was even better.
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Figure 8: Vehicle accelerations during lane changing.

0 20 40 60 80
15

20

25

30

35

40

45

V 
(k

m
/h

)

Time (0.1s)

SV-CLC
AFV-CLC
ALV-CLC

SV-TLC
AFV-TLC
ALV-TLC

Stage 1 Stage 2

Figure 9: Vehicle speeds during lane changing.
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Figure 10: Vehicle trajectory of TLC and CLC.

Table 3: Indicator comparison of TLC and CLC.

Indicator
SV ALV

MinTHW
(s)

MaxJerk
(m/s3)

MergeTime
(s)

MaxDec
(m/s2)

TLC 2.51 0.92 5.3 − 1.32
CLC 3.30 0.53 4.8 − 0.09

0 10 20 30 40 50 60 70
–3

–2

–1

0

1

2

3

a 
(m

/s
2 )

Time (0.1s)

SV-CLC
AFV-CLC
ALV-CLC

SV-TLC
AFV-TLC
ALV-TLC

Stage 1 Stage 2

Figure 11: Vehicle accelerations during lane changing.
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6. Conclusions

*is work is based on comprehensive real-time multivehicle
information, taking active cooperation of the surrounding
vehicles during lane change process into account. Compared
with the general lane change, it provides drivers with a more
comfortable driving experience. *e multivehicle-coordi-
nated lane change strategy based on centralized decision-
making and distributed control divides the whole lane

change process into the lane change stage and the longi-
tudinal spacing adjustment stage, which reduce the difficulty
of solving the optimal control model. *e superiority of the
CLC strategy over TLC is verified by the actual traffic
scenarios in the NGSIM open-source traffic flow database.
*e results show that compared with TLC, the CLC strategy
makes the lane change behavior more feasible. *e decel-
eration of upstream vehicles will be weakened, and the shock
wave in traffic flow can be relieved to some extent. During
the lane change process, the acceleration of each vehicle
tends to be stable, the lane change process is safer and more
efficient, and the road traffic efficiency is improved.

Communication delays, system response time, and
perceived errors are not considered, and this is a work that
needs further improvement. In addition, in order to make
the problem easy to solve, several cars in the lane change
scene are all intelligent networked vehicles, which is not
practical; we will further expand the influence of the system
penetration and consider problems without so strong an
assumption.
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