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With the advancement of connected autonomous vehicle (CAV) technology, research on future traffic conditions after the
popularization of CAVs needs to be resolved urgently. Bounded rationality of human drivers is essential for simulating traffic flow
precisely, but few studies focus on the traffic flow simulation considered bounded rationality in CAV mixed traffic flow. In this
study, we introduce random bounded rationality into the hybrid feedback strategy (HFS) under CAVmixed traffic flow to explore
the impacts of CAV penetration rate on the trip cost of vehicles. First, we investigated the bounded rationality of drivers, and we
found that it follows normal contribution. +en, we proposed HFS considering random bounded rationality and the CAV
penetration rate to simulate the traffic condition. +e numerical results show that the enhancement of the CAV penetration rate
could reduce total trip cost. +e research could help us to simulate the CAVs mixed traffic flow more precisely and realistically.

1. Introduction

Along with the development of the Internet of vehicle
technology and the autonomous vehicle technology, mixed
traffic conditions of human-driven vehicles (HDVs) and
connected autonomous vehicles (CAVs) should be studied
[1, 2]. Simulation of the mixed traffic condition is essential
for addressing the future development of intelligent trans-
portation systems.

In recent years, researchers have proposed many traffic
flowmodels in previous studies. Traffic flowmodels could be
generally divided into macromodels [3–5] and micromodels
[6–9]. Macromodels aim to study the relationship between
flow, speed, and density. In contrast, micromodels focused
on driving behaviors. However, the researches above did not
study the traffic flow models based on the mixed traffic
conditions of HDVs and CAVs. Most studies focused on the
traffic flow models of HDVs. Many researchers proposed
car-following models to simulate the traffic flow based on
HDVs, but they ignored the impacts of humans’ bounded
rationality on the traffic flow operation. +erefore, Ou et al.
[10] incorporated bounded rationality into two feedback
strategies to study vehicle trip cost under the feedback

strategies. Moreover, several researchers focused on car-
following models based on CAVs.

However, the researches above did not study the traffic
flow model considering the mixed traffic conditions of
HDVs and CAVs, and their feedback strategies ignored the
penetration rate of CAVs. Furthermore, they did not con-
sider the randomness of HDV drivers’ bounded rationality.
However, under the background of the popularity of CAVs
in the future, the phenomenon of mixed traffic between
CAVs and HDVs will inevitably appear.+erefore, the study
of mixed traffic flow between CAVs and HDVs is imperative.

To solve the problem, we propose a hybrid feedback
strategy (HFS) considering the penetration rate of CAVs and
random bounded rationality. +en, we explore the regula-
tion of random bounded rationality of HDV drivers based
on the questionnaire. Next, we study the impacts of the
penetration rate of CAVs on each vehicle’s travel time in the
two-route traffic network. Additionally, in this study, our
basic hypotheses are as follows: (1) HDVs and CAVs ran-
domly pass the two-route traffic network; (2) two routes of
the two-route traffic network are homogeneous; (3) CAVs
make behavioral choices under absolutely rational
circumstances.
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+is paper has three main contributions: (1) we fit the
distribution of values of random bounded rationality based
on investigations; (2) the proposed HFS considered the
randomness of drivers’ bounded rationality and the CAV
penetration rate to simulate the traffic flow; (3) we explore
the impacts of the CAV penetration rate on the trip cost in a
two-route traffic network. Furthermore, the research is
valuable for promoting the use of CAVs in the future, and it
can help us solve the route guidance problem in the context
of the mixed traffic flow between CAVs and HDVs.

+is paper is organized as follows: literature review is
included in Section 2, and Section 3 describes the data we
used in this study. +e method is indicated in Section 4, and
the results of the case study are included in Section 5. Finally,
Section 6 contains the discussion, the conclusion, and future
research.

2. Literature Review

2.1. Car-FollowingModel of HDVs. Many studies focused on
the microtraffic flow models of HDVs. In terms of car-
following models, several researchers improved the
methods. +ese researches could be divided into two types:
(1) calibrating the parameters of existing car-following
models; (2) learning a new car-following model from the
historical trajectory data based on the machine learning
methods.

+e first kind of researches aims to calibrate the pa-
rameters of existing car-following models. +e studies
generally test the macroscopic features consistency between
simulation result and physical truth to improve the car-
following model while the data only contain loop detector
data [11–14]. Additionally, to calibrate the parameters of
car-following models, researchers also focused on the time
headway and spatial headway distributions of car-following
models [15, 16] and phase diagrams [17, 18].

+e second kind of study learns a new car-following
model from the historical trajectory data based on the
machine learning methods. Generally, the methods input
features such as velocities, velocity differences, and position
differences; then, the velocity and acceleration in the next
time interval are output [19–21]. +e data-driven methods
could reduce the human interference and better fit the
complex driving behavior observed.

2.2. Car-Following Model of CAVs. Recently, several re-
searchers focused on the car-following model of CAVs.
Along with the future introduced CAV technology, the
CAV car-following model should be proposed to si-
mulate the future traffic flow, whereas CAVs have different
car-following features fromHDVs because CAVs can obtain
the traffic condition information of the entire network.

Treiber et al. first developed the intelligent driver
model (IDM) [22]. +e IDM is commonly used in intelligent-
vehicle situation because it can output the realistic acceler-
ation on a single lane. +rough adjusting the parameters, the
revised IDM can be applied into CAV simulation [23]. Yet,
the deceleration of IDMcould be unrealistically highwhile the

current spatial headway is significantly smaller than the ex-
pected spatial headway.+us, Treiber et al. considered that the
current spatial headway is smaller than the expected spatial
headway as a relatively mild-critical condition [24]. To solve
the problem, Kesting et al. reduced the unrealistic decelera-
tion by combining the IDM and the constant acceleration
heuristics (CAH), and the adaptive cruise control (ACC)
model was proposed [25]. Next, Zhou et al. improved the
cooperative intelligent demand model based on the IDM and
tested the CAV system performance [23].

2.3. Bounded Rationality Applied in the Car-FollowingModel.
In traffic flow models, bounded rationality is essential for
simulating HDVs’ driving behaviors more realistic, whereas
the above models did not consider bounded rationality [26].

To consider the bounded rationality in the car-following
model, Tang et al. [27–30] took bounded rationality into
account and developed two car-following models to study
the driving behavior and vehicles’ emissions. Di et al. [31]
stimulated the impacts of bounded rationality on the drivers’
route choice behavior. +en, Li et al. [32, 33] explored the
relationship between bounded rationality and commuting
behaviors. Jiang and Deng [34] proposed a Bayesian network
to describe travel time distribution based on bounded ra-
tionality. In the frame of the nonlinear pairwise swapping
rule, Zhang et al. [35] used absolute bounded rationality and
relatively bounded rationality to study the route choice
behaviors of drivers. Guo et al. [36] proposed a dynamic
pricing policy based on bounded rationality and studied the
impacts of the policy on traffic system optimization. Li et al.
[37] developed aMarkov Logic Network method to combine
the bounded rationality principle with traffic choice and
quantify characteristics and choice models of travelers.
Batista et al. [38] used a Lighthill–Whitham–Richards
mesoscopic traffic simulator to explore the impacts of
bounded rationality on a traffic network performance. Xue
et al. [39] explored the impacts of bounded rationality on
commuter departure time choice. +en, Fujino and Chen
[40] incorporated the bounded rationality of drivers into the
traffic network and studied the performance of the traffic
network. Moreover, Tang et al. [27–30, 41] and Leng et al.
[42, 43] developed a car-following model to study vehicles’
trip costs in different situations. +en, Tang et al. [44], re-
spectively, proposed two feedback strategies and studied
each vehicle’s trip cost under the feedback strategies. Based
on the research of Tang et al. [44], Ou et al. [10] incorporated
bounded rationality into two feedback strategies to study
each vehicle’s trip cost under different feedback strategies.

+e researchers above, respectively, focused on the car-
following models based on HDVs and CAVs, and
they introduced the bounded rationality into HDVs’ car-
following models to simulate the driving behaviors more
realistic. However, they did not study the traffic flow model
considering the mixed traffic conditions of HDVs and
CAVs. Furthermore, they did not consider the randomness
of HDVs’ drivers’ bounded rationality. To bridge these re-
search gaps, the random bounded rationality is introduced
into the car-following model of HDVs and study the impact
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of random bounded rationality on the mixed traffic con-
ditions of HDVs and CAVs.

3. Data

3.1.DataCollection. +is research aims to study the status of
mixed traffic flow between HDVs and CAVs, and the
random bounded rationality of HDVs should be considered.
To find out the distribution laws of drivers’ bounded ra-
tionality, we did some investigations about the bounded
rationality of HDVs in April 2020.

For investigating the bounded rationality of HDVs, we
designed a questionnaire. +e detailed questionnaire design
is shown in Table 1.

We choose respondents from different ages and different
genders to do a questionnaire survey through by stratified
sampling method (see Table 2). +en, we delete the wrong
questionnaires, such as incomplete questionnaires, and
questionnaires containing error information. +e survey
contains 1,000 questionnaires, including 979 valid ques-
tionnaires. +e purpose of the questionnaire is to investigate
the εn (εn is a parameter which reflects the nth driver’s
bounded rationality) and vAB (vAB is a parameter that reflects
the tolerance of speed difference between the route a and
route b, where the lengths are, respectively, La and Lb, and
the routes are as for Figure 1). Referring to the research of
Ou et al. [10], reference values of εn and vAB are 0.1 and 2 (see
Table 2). To test the internal consistency reliability of the
questionnaire, we use SPSS to calculate the value of Cron-
bach’s alpha (see Table 2). +e value of Cronbach’s alpha
indicates that the questionnaire is reasonable.

3.2. Data Processing. In this paper, we investigated εn and
vAB of drivers, and we used ORIGIN to fit the data. Statistical
results and the fitting curves are shown in Figures 1 and 2.
Moreover, fitting parameters of εn and vAB are shown in
Table 3.

Figures 2 and 3 show the fitting condition of εn and vAB.
Additionally, R2 is the goodness of fit, which could represent
the fitting degree of data. R2 of εn and vAB demonstrate that
they follow the normal distribution, and their distribution is
as follows:

εn ∼ N 0.101, 0.0212􏼐 􏼑,

vAB ∼ N 1.897, 0.2802􏼐 􏼑.
(1)

4. Methods

4.1. Car-Following Model of HDVs. +e basic car-following
model is as follows:

dvn

dt
� f vn,Δxn,Δvn, . . .( 􏼁, (2)

where vn,Δxn, and Δvn are, respectively, the nth vehicle’s
velocity, headway, and relative speed;f is the stimulus function.

We can obtain different car-following models from
equation (2), e.g., the optimal velocity (OV) model, the
generalized force (GF) model, and the full velocity difference
(FVD) model [45]. Comparing with the OV model and GF
model, the FVD model can produce the desired result and
disappear unrealistically high acceleration [42]. Since the
model could simulate many complex traffic phenomena, we
use the FVD model to simulate vehicles’ behavior. +e FVD
model [45] is as follows:

dvn

dt
� k V Δxn( 􏼁 − vn( 􏼁 + cΔvn, (3)

where k and c are two reactive coefficients; V is the optimal
velocity; Δxn and Δvn are, respectively, the nth headway
and relative speed. Jiang et al. [45] defined k, c, and V(Δxn)

as

k � 0.41,

c �
0.5, if Δxn < 100,

0, otherwise,
􏼨

(4)

V Δxn( 􏼁 � V1 + V2tanh C1 Δxn − lc( 􏼁 − C2( 􏼁, (5)

where lc is the vehicles’ average length; V1, V2, C1, C2, and lc
are parameters which were calibrated by Helbing and Tilch
[46], and they indicated optimal parameter values. V1, V2,
C1, C2, and lc are defined as [45]

V1 � 6.75m/s,

V2 � 7.91m/s,

C1 � 0.13m− 1
,

C2 � 1.57,

lc � 5m.

(6)

To study the impacts of bounded rationality, Tang et al.
[27] proposed a car-following model with bounded ratio-
nality as

dvn

dt
�

0, if k V Δxn( 􏼁 − vn( 􏼁 + cΔxn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ εn,

k V Δxn( 􏼁 − vn( 􏼁 + cΔxn, otherwise,

⎧⎪⎨

⎪⎩

(7)

where εn is a parameter that reflects the nth driver’s bounded
rationality; k and c are two reactive coefficients;
vn,Δxn and Δvn are, respectively, the nth vehicle’s ve-
locity, headway, and relative speed; V is the optimal velocity;
and dvn/dt indicates the nth vehicle’s accelerated velocity.

4.2. Car-FollowingModel of CAVs. +e PATH Laboratory of
the University of California, Berkeley, has carried out long-
term research on the cooperative adaptive cruise control
(CACC) model and proposed a CACC car-following model
based on a constant headway [47–50].+emodel structure is
as
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an(t) � k1an− 1(t) + k2 xn− 1(t) − xn(t) − tgvn(t) − l − s0􏽨 􏽩

+ k3 vn− 1(t) − vn(t)􏼂 􏼃,

(8)

where an(t) represents the acceleration of vehicle n at time t;
xn(t) indicates the location of vehicle n at time t; vn(t) is the
velocity of vehicle n at time t; l represents the length of the
vehicle; s0 indicates the safe distance between vehicles; tg is
the expected time headway of CACC; k1, k2, and k3 are
coefficients of the model, and we take k1, k2, and k3 as 1.0,
0.2, and 3.0, respectively [51].

+e CACC model proposed by PATH is clear in the
physical meaning and is currently commonly used as the
CACC car-following model. However, the expected spa-
tial headway under the constant spatial headway car-
following strategy is a linear function of speed, which
makes the impact of traffic flow characteristics with dif-
ferent spatial headway different. +erefore, this paper
proposes the nonlinear dynamics-expected time headway
strategy of the CACC car-following model. Based on the
traffic flow following characteristics, the lower vehicle
speed makes expected spatial headway smaller. Based on
the results of [52], the dynamic expected spatial headway
is as

hd(t) �
l + s0

1 − vn(t)/v0( 􏼁
, (9)

where hd(t) represents the expected spatial headway; v0 is
the velocity of free traffic flow. According to [53],
s0 and l are, respectively, 2m and 5m.

Table 1: +e detailed questionnaire design.

Questions Answers
What is your gender? Male/female
What is your age? —
Where is the registration location of your vehicle? —
While you drive a car following the forehead vehicle, what is your reaction
speed of changing your velocity? Reference values are in (0, 0.2)

While you choose the route in a two-route traffic network, what is your tolerance of
speed difference between the two routes? Reference values are in (1, 3)

Table 2: Data structure description.

Indicators Description (Cronbach’s α � 0.874)
Age Age of drivers. 250 drivers aged 20–30, 30–40, 40–50, and 50–60 were selected
Gender Gender; 1: male, 2: female. Respondents of all ages included half females and half males
εn +e reaction speed of drivers. Range in (0, 0.2)
vAB (m/s) Tolerance of speed difference between the two routes. Range in (1, 3)
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Figure 1: Statistical result and the fitting curves of εn.
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Figure 2: Statistical result and the fitting curves of vAB.

Table 3: Fitting parameters of εn and vAB.

Minimum Maximum Mean
value

Standard
deviation R2

εn 0.03 0.19 0.101 0.021 0.908
vAB

(m/s) 1.0 3.0 1.897 0.280 0.913
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4.3. Proposed Feedback Strategy. Next, we propose a feed-
back strategy in the traffic network. As for the feedback
strategies, researchers proposed several feedback strategies
to study each vehicle’s trip cost [54–56], whereas the
feedback strategies did not consider random bounded ra-
tionality and the penetration rate of CAVs. +erefore, we
proposed HFS in a microsimulation, which takes random
bounded rationality and penetration rate of CAVs into
account. In HFS, because drivers usually choose the route
based on the speed of traffic flow, we take the average speed
of vehicles on the route as the reference index. +en, we give
the following underlying assumptions:

(1) +e traffic network includes routes a and b (see
Figure 3), where the lengths are, respectively, La and
Lb; N vehicles enter/leave the network at the origin/
destination, where each vehicle’s no. on the route a/b
is na/nb, and its time headway at the origin isΔt0; and
the routes are homogeneous.

(2) When n≤N0, the nthe driver randomly selects route;
when n>N0, the driver selects a route based on the
HFS.

(3) Ma/b is the number of vehicles on route a/b; vj,a/b is
the jth vehicle’s speed on route a/b.

(4) vAB > 0, εn > 0 are parameters that represent random
bounded rationality.

(5) +e HFS with random bounded rationality consists
of HVFS (HDV feedback strategy) and CVFS (CAV
feedback strategy); prCAV is the penetration rate of
CAVs. In this strategy, the differences between
HDVs and CAVs are reflected in εn and vAB.
+erefore, we proposed HVFS and CVFS to reflect
the differences in the mobility characteristics of these
vehicles.

(6) +e HVFS with random bounded rationality is de-
fined as follows:

(i) If (1/Ma) 􏽐
Ma

j�1 vj,a > (1/Mb) 􏽐
Mb

j�1 vj,b + vAB, the
vehicle selects route a

(ii) If (1/Mb) 􏽐
Mb

j�1 vj,b > (1/Ma) 􏽐
Ma

j�1 vj,a + vAB, the
vehicle chooses route b

(iii) If |(1/Ma) 􏽐
Ma

j�1 vj,a − (1/Mb) 􏽐
Mb

j�1 vj,b|≤ vAB,
the vehicle randomly chooses route

(7) +e CVFS is defined as follows:

(i) If (1/Ma) 􏽐
Ma

j�1 vj,a ≥ (1/Mb) 􏽐
Mb

j�1 vj,b, the vehicle
selects route a

(ii) If (1/Ma) 􏽐
Ma

j�1 vj,a < (1/Mb) 􏽐
Mb

j�1 vj,b, the vehicle
chooses route b

Finally, we define the calculation of trip cost as

Tn � αΔtn, (10)

Ta � 􏽘

Ma

k�1
Tk,a, (11)

Tb � 􏽘

Mb

k�1
Tk,b, (12)

Ttotal � Ta + Tb, (13)

where Tn is the nth vehicle’s trip cost; tn is the nth vehicle’s
travel time; α is the value of time (the unit is Yuan/s); Ta, Tb is
the total trip cost on the route a/b, respectively; Tk,a, Tk,b is the
kth vehicle’s trip cost on the route a/b, respectively; and Ttotal is
the traffic network’s total trip cost. In the numerical test, pa-
rameters [27, 44] are as equation (14). +e numerical test
indicates that the first ten vehicles randomly choose route, and
then, other vehicles choose the route based on HFS. Moreover,
we assume that the time value is 0.01Yuan/s [27, 44]:

N � 100,

N0 � 10,

La � Lb � 1000,

α � 0.01 Yuan/s,

Δt � 0.1.

(14)

We use the numerical test to study the impacts of
random bounded rationality, and penetration rate of CAVs

VMS feedback

a

b

0 D

Figure 3: +e structure of the two-route traffic network.
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on vehicles’ trip cost under HFS in the traffic network, and
we use the Euler difference to discretize equations (7) to (15)
and (16):

vn(t + Δt) � vn(t) +
dvn(t)

dt
· Δt, (15)

xn(t + Δt) � xn(t) + vn(t) · Δt +
1
2
dvn(t)

dt
· (Δt)2, (16)

where Δt � 0.1 s is the time-step length and xn is the nth
vehicle’s position.

5. Results

First, we study the effects of CAV penetration rate on vehicle
trip costs under the HFS (see Figures 4–6). In the HFS, we
not only considered the random bounded rationality but
also took the penetration rate of CAVs into account. In the
HFS, εn and vAB indicate the random bounded rationality,
and prCAV represents the penetration rate of CAVs. And in
the numerical test, the value range of Δt0 is in (0, 6) and the
value range of prCAV is in (0, 1). From Figures 4–6, we can
obtain the following findings:

(1) When prCAV is relatively low (e.g., prCAV � 0.25),
the difference between the travel time of two routes is
prominent. As prCAV rises, the difference between
the travel time of vehicles on the two routes drops.

(2) When prCAV is relatively high (e.g., prCAV � 0.75),
the difference between the travel time of two routes is
inconspicuous.

(3) When Δt0 is short (e.g., Δt0 � 0.5 s), vehicles’
travel time rises with its number; each vehicle’
travel time on each route is slightly longer than
the corresponding one in the study [10], but each
vehicle’s travel time in our study is fluctuant. +e
result shows that random bounded rationality
could increase the volatility of each vehicle’s
travel time.

(4) When Δt0 is relatively long (e.g., Δt0 � 1.5 s, 2.5 s),
each vehicle’s travel time approximately equals to a
constant with fluctuation. In addition, as the Δt0
grows, the fluctuation of each vehicle’s trip cost
decreases.

(5) In summary, vehicles’ travel time reduced with Δt0
and prCAV, and random bounded rationality slightly
increases the travel time of vehicles and raises the
volatility of vehicles.

+en, we analyze the effects of random bounded ra-
tionality and the penetration rate of CAVs on the total trip
cost of the traffic network (see Figures 7–9).

Figures 7 and 8 show that the total trip cost drops rapidly
while Δt0 < 1.5 s, because of each vehicle’s travel time on

each route decreases rapidly with Δt0. Moreover, when
Δt0 ≥ 1.5 s, the total trip cost smoothly decreases. Further-
more, as the penetration rate of CAVs grows, the total trip
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cost goes down consistently. It indicates that the penetration
rate of CAVs effectively reduces the total trip cost in the
traffic network. Impacts of Δt0 and prCAV are shown in
Figure 9, and higher prCAV and longer Δt0 lead to less total
trip cost (see Figure 9).

6. Discussion and Conclusions

6.1. Discussion. In this paper, we studied the effects of the
CAV penetration rate on each vehicle’s travel time and
system total trip cost under the HFS considered the random
bounded rationality, and we can obtain the following
findings:

(1) +e bounded rationality of drivers follows the
normal distribution, and the distribution is as
equation (1). Before the investigation, we give the
interviewees a reference value. It may influence their
choices of bounded rationality.
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(2) +e CAV penetration rate has qualitative effects on
the travel time of each vehicle and system total trip
cost (see Figures 7–9). As prCAV increases, the travel
time of each vehicle and total trip cost both smoothly
decrease because of the CAVs’ entry reduces the
average hesitate time of all vehicles.

(3) +e total trip cost of the traffic network rapidly drops
when Δt0 < 1.5 s, because of each vehicle’s travel time
on each route declines rapidly with Δt0. Moreover,
when Δt0 ≥ 1.5 s, the system total cost smoothly
decreases. And Figure 9 indicates that larger Δt0
leads to less travel time and total trip cost.

Nevertheless, this research still has some limitations. For
example, we did not test the numerical results by experi-
ments on the road and a real medium-sized road network
should be studied. Moreover, we will take more factors into
account to simulate the traffic flow realistically, such as CAV
market penetration, platooning intensity effects, single lane,
and managed lane.

6.2.Conclusions. Many feedback strategies were proposed to
study the condition of the traffic flow in traffic networks [57],
but the feedback strategies do not consider the randomness
of bounded rationality and the penetration rate of CAVs in
the mixed traffic flow of HDVs and CAVs. In this paper, we
proposed HFS, which takes random bounded rationality and
the penetration rate of CAVs into account. According to the
numerical results, we found that drivers’ bounded rationality
follows the normal distribution (εn ∼ N(0.101,

0.0212), vAB ∼ N(1.897, 0.2802)). Based on the distribution
of random bounded rationality, we found that the pene-
tration rate of CAVs could effectively reduce the system total
trip cost. Furthermore, Δt0 under HFS has qualitative effects
on the trip cost of vehicles.

In the future, more experiments can be concerned. We can
test the numerical results by experiments on the road and
simulate the traffic flow in a real medium-sized road network.
Furthermore, we will take more factors into account to sim-
ulate the traffic flow realistically, such as CAV market pene-
tration, platooning intensity effects, single lane, and managed
lane, to make more contributions to the CAV study.
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