
Research Article
Demand Management of Station-Based Car Sharing System Based 
on Deep Learning Forecasting

Daben Yu,1,2,3 Zongping Li,1,2,3 Qinglun Zhong ,4 Yi Ai,5 and Wei Chen1,2,3

1School of Transportation and Logistics, Southwest Jiaotong University, 610031 Chengdu, China
2National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University,  
610031 Chengdu, China

3Comprehensive Transportation Key Laboratory of Sichuan Province, Southwest Jiaotong University, 610031 Chengdu, China
4Institut für Eisenbahnwesen und Verkehrssicherung, Technische Universität Braunschweig, Pockelsstr. 3,  
38106 Braunschweig, Germany

5Civil Aviation Flight University of China, 618307 Guanghan, China

Correspondence should be addressed to Qinglun Zhong; q.zhong@tu-braunschweig.de

Received 24 April 2019; Revised 11 September 2019; Accepted 6 November 2019; Published 1 February 2020

Academic Editor: Gonçalo Homem de Almeida Correia

Copyright © 2020 Daben Yu et al. �is is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metropolitan development has motivated car sharing into an attractive type of car leasing with the help of information technologies. 
In this paper, we propose a new approach based on deep learning techniques to assess the operation of a station-based car sharing 
system. First, we analyse the pick-up and drop-off operations of the station-based car sharing system, capturing the operational 
features of car sharing service and the behaviours of vehicle use from a temporal perspective. �en, we introduced an analytical 
system to detect the system operation concerning the spontaneous deviations derived from user demands from service provisions. 
We employed Long Short-Term Memory (LSTM) structure to forecast short-term future vehicle uses. An experimental case based 
on real-world data is reported to demonstrate the effectiveness of this approach. �e results prove that the proposed structure 
generates high-quality predictions and the operation status derived from user demands.

1. Introduction

�e recent development in motor drives and information 
technologies has promoted car sharing as a new solution to 
road transportation, due to its abilities to resolve the stressing 
conditions of congesting public roads and insufficient parking 
spaces [1]. Car sharing services can allow more access to 
vehicles without acquiring as many ownerships as private ones. 
In most densely populated large cities, its charm can help 
improve metropolitan traffic conditions from excessive car 
ownership [2]. In 2016, China’s Internet car sharing market 
expanded considerably, including new service providers such 
as �. In August 2017, the Ministry of Communications and 
the Ministry of Housing and Urban-Rural Development of 
China jointly issued the “Guiding Opinions on Promoting the 
Healthy Development of Small and Minibus Leases” [3], 
encouraging new energy vehicles to be leased on time.

Within the wide ranges of public transport systems, the 
practical options for a metropolis like Chengdu are rather 

limited in terms of resolving its traffic dilemmas. Automobile 
holdings in Chengdu amount to more than 4.5 million by the 
end of 2017 [4], and most of them reside within its urban 
districts, occupying parking spaces and jamming public roads. 
Free-floating car sharing system provides shared car access, 
but free-floating cars are hard to manage and can cause the 
same issue of disorderly parking as private cars do. In the 
meantime, a station-based car sharing system establishes its 
business with its own parking spaces and can become advan-
tageous in cities where parking can be a real headache. In the 
meantime, considering the requirements on urban environ-
ment protection and CO2 emission reduction, electric car 
sharing systems can serve as a viable choice, providing better 
urban transport service that allows more privacy [5, 6].

�e further expansion of car sharing business will intensify 
the competition until the market reaches a phase of integration 
[7]. �us, for a car sharing company to operate its business 
properly and to secure profitability, the temporal distribution 
of demands in different stations and mechanisms for 
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inner-system operations should be identified before relevant 
marketing strategies can be made. �erein, user preferences 
are most critical in terms of vehicle uses and the level of service 
(LOS) [8].

We have learned from the market that car sharing is still 
in a development trend, and the fundamental problem of car 
sharing profitability is related to the demand side. Currently, 
the effective utilization rate of shared cars is quite low and fails 
to reach the threshold required for profit. �en, improving 
operational efficiency is the key point to enterprise profitabil-
ity. �erefore, the car sharing enterprises are in urgent need 
of a clear business model and operating model, so that to get 
rid of high costs.

�is paper considers the demand management of sta-
tion-based car sharing service systems, whose customers are 
charged for the time used. �e operation of car sharing systems 
can be analysed based on the usage of vehicles in the system, 
which we formulate as a discrete event model. And better 
operation of the car sharing business requires improved pre-
diction of vehicle demands. �erefore, we wish to predict car 
sharing demand using state-of-the-art deep learning 
approaches. �us, this paper attempts to apply deep learning 
forecasting techniques in the marketing analysis of sta-
tion-based car sharing service. �e contributions of this paper 
are as follows: (1) a discrete event model is established to help 
perceive the vehicle usage behaviours for the car sharing sys-
tem; (2) a Long Short-Term Memory (LSTM) structure is 
formulated to forecast station-based car sharing demand; (3) 
the results from LSTM prediction are analysed using the dis-
crete event model.

�e rest of this paper is structured as follows. Section 2 
reviews past works and existing methods in the fields of car 
sharing and forecasting. Section 3 examines the interaction 
between car sharing service providers and users and analyzes 
the operation status of the car sharing system. In alignment 
with the forecasting car sharing demands, the LSTM structure 
used in this article is given a detailed description in Section 4. 
Section 5 reports a case study on forecasting and analysing 
real-world car sharing demands in Chengdu. Section 6 con-
cludes this work briefly and presents an outlook.

2. Literature Review

One of the earliest car sharing initiatives, “Sefage” 
(Selbstfahrergenossenscha�), operated in Zurich, Switzerland, 
from 1948 to 1998 [1, 9–11]. �e car sharing market in China 
started in 2010. More than 40 car sharing companies together 
operate more than 1,030,000 vehicles in China by Nov. 2018 
[12]. Car sharing operators have developed several models, 
including rebate, interest-free instalment, and P2P (peer-to-
peer) [13, 14], and are expecting a growth of more than 50 
percent.

Existing literature has explored the environmental and 
socio-economic impact of car sharing services. Prettenthaler 
and Steininger [15] discovered that private car ownership had 
shi�ed to usage, and this shi� was o�en promoted in the con-
cept of sustainability. �eir analysis showed that policy tools 
must directly promote car service used instead of merely 

changing its marginal economic costs. Fellows and Pitfield 
[16] used cost-benefit analysis techniques to demonstrate that 
car sharing can bring net benefits comparable to the revenue 
generated by the main road plan. A�er an overview of the 
history of car sharing in Europe and North America, Katzev 
[17] reviewed the history of car sharing in Europe and North 
America and concluded three findings: the correlation of car 
sharing use to reduction of financial expenses, the most influ-
ential factor of car sharing use, and private car ownership. 
Firnkorn and Müller [18] assessed the environmental impact 
of car sharing services using data from Car2go, featuring the 
average CO2 emission reduction per user. Car sharing, as a 
complementary mode of transportation, is becoming more 
and more important, especially in metropolitan areas. �is 
means that further development of planning tools is needed 
to consider this “new mode” in the planning process. An 
agent-based travel demand model that simulated the travel 
behaviour of the population in the greater Stuttgart area for 
one week achieved the integration of car sharing. And the 
model permitted longitudinal analysis of the intensity and 
variability of car sharing usage [19].

Research on the forecasting of car sharing system demand 
is plentiful. In terms of nonAI prediction methods, Wang et al. 
[20] proposed a new method to forecast and relocate car 
sharing service vehicles based on an inventory management 
model consisting of three main components: focus forecasting, 
inventory replenishment, and microscopic traffic simulation. 
Ciari et al. [21] introduced activity-based micro-simulation for 
estimating demands of car sharing, and they sought to develop 
appropriate evaluation tools for innovative transport modes. 
Yoon et al. [22] explored Beijing’s potential car sharing 
demands, fleet size, and economic performance. Car sharing 
mode split is estimated by a stated preference choice modelling 
exercise. Adequate fleet size is estimated through a Monte Carlo 
simulation that includes factors such as vehicle types (electric 
or gasoline vehicle), charger types for electric vehicles (level 2 
or level 3 chargers) that influence charging time, arrival rates, 
travel distance, and travel time based on the time intervals 
(peak or nonpeak hours). Alfian et al. [23] proposed forecasting 
relocation to solve car distribution imbalances for one-way car 
sharing services. Real case data sets have been used to find the 
best simulation results. As a result, the impact of predictive 
relocation on high system utilization and reservation acceptance 
ratio can be seen compared to traditional relocation methods.

In terms of AI prediction methods, in the past three years, 
more and more DL algorithms have been utilized in shared-
based vehicles mode prediction, such as taxi, express, operating 
lease, and car sharing, due to their ability to capture complex 
relationships from large amounts of data. Ghaderi et al. [24] 
employed Recurrent Neural Networks (RNNs) to forecast the 
short-term spatio-temporal wind speed, and they modelled 
spatio-temporal information based on a graph, representing 
data generating entities with nodes and their interactions with 
edges. �e results showed significant improvement compared 
with a set of benchmarks models. Furthermore, Epelbaum  
et al. [25] explored time-dependent data forecasting using 
deep learning frameworks, such as FNN, CNN, and LSTM. 
Xu and Lim [26] proposed an evolutionary neural network 
for predicting the net flow of a car sharing system. Despite the 
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disadvantages in the prediction process, ENN has shown 
excellent performance compared with classical time-series 
predictions. Khoo [27] used a neural network as a simulation 
model to predict the demands at stations in a car sharing 
system. �is research introduced intelligent filtering 
technology, including outlier analysis and cluster analysis, to 
remove noises from the feeding data. �e results showed that 
outlier analysis could better improve the accuracy of the 
predictions compared with cluster analysis. Yu et al. [28] 
proposed a space-time graphic convolutional network 
(STGCN) for time series traffic prediction. �e study achieved 
“faster training, easier convergences, and fewer parameters 
with flexibility and scalability”. To make full use of the temporal 
and spatial characteristics of traffic data. Zhang et al. [29] 
proposed a short-term traffic flow prediction model based on 
the Convolutional Neural Network (CNN) deep learning 
framework. In the proposed framework, the optimal input 
data time lags and the amount of spatial data are determined 
by the spatiotemporal feature selection algorithm (STFSA), 
and the selected spatiotemporal traffic flow features are 
extracted from the actual data and converted into a two-
dimensional matrix. �en, we used CNN to learn these 
features and built a predictive model. It was also verified that 
the proposed method is superior to the baseline model in 
terms of accuracy. Ai et al. [30] employed a deep learning 
approach, named the convolutional long short-term memory 
network (Conv-LSTM), to address the spatial dependences 
and temporal dependences. �e spatiotemporal variables 
including the number of bicycles in area, distribution 
uniformity, usage distribution, and time of day as a 
spatiotemporal sequence in which both the input and the 
prediction target are spatiotemporal 3D tensors within one 
end-to-end learning architecture. Experiments show that 
conv-LSTM outperforms LSTM on capturing spatiotemporal 
correlations. Wang et al. [31] proposed a Global Positioning 
System (GPS)-data-driven approach to solving car sharing 
system demand forecasting problems. Historical vehicle GPS 
data can match the user's current trajectory and infer its 
possible destination. A four-step procedure was proposed 
based on GPS trajectory similarity measurements. �e method 
also considered station correlations and historical user 
destinations. A case study proves the feasibility of the dynamic 
prediction program of the method. Ke et al. [32] proposed a 
new deep learning method, convolutional long-term memory 
network (FCL-Net), which includes spatial, temporal, and 
exogenous dependencies in an end-to-end learning 
architecture. �e results showed that the proposed approach 
outperforms the best benchmark CNN, and custom random 
forest reduced the training time significantly with a slight 
accuracy loss. To bridge the short-term forecast of a supply-
demand gap for online car-hailing services, Gu et al. [33] 
proposed a novel spatio-temporal deep learning model 
(S-TDL). �e model is composed of three sub-models: 
spatiotemporal variable model, spatial attribute variable 
model, and environment variable model. It can capture the 
impact of spatio-temporal correlation, regional difference and 
environmental change on the supply-demand gap. Moreover, 
a feature selection method named feature clustering-maximum 
information coefficient two-stage feature selection is proposed 

to screen out the important features which are strongly 
correlated with the supply-demand gap, improve training 
efficiency. Two deep learning architectures leverage word 
embeddings, convolutional layers and attention mechanisms 
for combining text information with time-series data have 
been proposed [34]. Using publicly available taxi data from 
New York, it empirically showed that by fusing these two 
complementary cross-modal sources of information, the 
proposed models could significantly reduce the error in the 
forecasts.

To reduce the operating cost of the car sharing company 
and improve users’ satisfaction, a one-way car sharing system 
optimization model considering the users’ time window 
requirements is constructed with the minimum total cost 
(including scheduling cost and fines cost). �en, an improved 
tabu search particle swarm optimization algorithm is proposed 
to solve the model [35]. On the other hand, to make daily 
booking services improve user satisfaction, and to provide 
operators with additional information about demand patterns. 
Molnar and Correia [36] proposed an innovative appointment 
execution technique. It can keep the system profitable and 
achieve high service quality while achieving a longer settling 
time.

In conclusion, existing literature has shown the evolve-
ment of forecasting methodologies and their applications in 
related fields, which require either short- or long-term predic-
tions, such as wind speed [24] and free-floating bike distribu-
tion [30]. However, it is not difficult to see that most of the 
researchers are directly optimizing the management of shared 
vehicle systems from the perspective of demand. Ignoring the 
most fundamental crux of finding out the difficulty of trip 
sharing is the most effective way to cure the problem. �erefore, 
this paper focused on the demand management of car sharing. 
For the system operation, we wish to find out the attractiveness 
of car sharing services to driving time. We also wish to clarify 
the difference between the market demands and the servicing 
vehicles in different stations and time periods through evalu-
ating the operation of the existing car sharing system. In terms 
of methodology, we attempt to combine deep learning tech-
niques with car sharing operation modelling so that the pre-
dicted data can be directly involved in detecting the deviations 
of servicing vehicles from market demands caused by system 
operation.

3. Status of System Operation

To tackle the operation status for car sharing systems, we 
intend to investigate the interactions between car sharing ser-
vice providers and users, namely pick-up and drop-off. And 
we detect the deviation of vehicle distribution from customer 
demand by calculating the spontaneous operation process.

3.1. Assumptions. �e current car sharing companies usually 
provide their service on mobile platforms, and users reserve 
vehicles from their smartphones. Car sharing companies 
usually allow a short duration of time for vehicle pick-up 
a�er reservation, since it is not efficient for on-demand ride 
sharing systems—which are supposed to circulate fast and 
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of remaining vehicles at station � at time fraction (�휏, �휏 + 1), 
��휏,�휏+1�푖 , usually holds much longer than the duration of time 
fraction (�휏, �휏 + 1). Let �� denote the action when a vehicle is 
picked up or dropped off at station � in the system, and �휏� = �휏 
when an action occurs at station � in the system. �erefore, 
the number of vehicles at station � during time interval 
[�휏�, �휏� + 1) can be expressed by ��휏� ,�휏�+1�푖 .

Denote a vehicle pick-up from station � at time �� as ��
� , 

while a vehicle drop-off at station � at time �� as ��
� . We regard 

all freshly dropped-off vehicles are available to users for 
operation.

When a vehicle is picked up from station � at time ��, 

When a vehicle is dropped off to station � at time ��, 

Let (�푡�푗, �푡�푗+1), where �푗 ∈ {1, . . . , �퐽}, denote the j-th time slice in 
one operation day, where tj and tj+1 denote the start and end 
of the time slice. Consider the operation of the system during 
time slice (�푡�푗, �푡�푗+1), which includes many instances of time 
fractions. �e total car sharing demands originating from 
station � can be expressed by the vehicles picked up from 
station � during time slice (�푡�푗, �푡�푗+1), denoted as ��푡�푗 ,�푡�푗+1

�푖 , which 
can be given by

In the same vein, the total demands terminating at station � 
during time slice (�푡�푗, �푡�푗+1) be ��푡�푗 ,�푡�푗+1

�푖 , given by

3.2.2. User Perspective. �e utilization of ride sharing 
vehicles can be either based on short-term reservation, or 
ad-hoc, which can be generalized as an aggregated process, 
as illustrated in Figure 1.

A registered customer of the system books his or her use 
of a vehicle in the system, to complete the wanted journey via 
a route from his origin to his desired destination, with resort-
ing to a pick-up and drop-off station of the car sharing 
system.

From the perspective of car sharing system operation, the 
main content of system dispatch, be it through algorithmic 
matching or human intervention, is to deal with car booking 
requests on the system made by its users. �is process can be 
generalized as customer aggregation by authorizing them the 
access of currently available vehicles in the system according 
to their booking specifications, including the distance to be 
traversed during the trip.

�e transport demands on the car sharing system can be 
described in the form of an O–D matrix based on traffic the-
ory, and each element of this matrix includes a complete record 
of ride sharing vehicle usage. A complete record of successful 

(2)�푠�휏� ,�휏�+1�푖 − �푠�휏�−1,�휏��푖 = �푝�휏�
�푖 = −1.

(3)�푠�휏� ,�휏�+1�푖 − �푠�휏�−1,�휏��푖 = �푑�휏�
�푖 = 1.

(4)�퐴�푡�푗 ,�푡�푗+1
�푖 = ∑

�휏∈(�푡�푗 ,�푡�푗+1)
�푝�휏
�푖 .

(5)�퐸�푡�푗 ,�푡�푗+1
�푖 = ∑

�휏∈(�푡�푗 ,�푡�푗+1)
�푑�휏
�푖 .

easy—to allow long-duration pick-up. To analyze the vehicle 
pick-up and drop-off of the system, we make the following 
assumptions:

3.1.1. Historical Data Represent the Real Trip Intentions of the 
Users. We assume that all users of car sharing service make 
rational decisions based on their trip intentions. �erefore, the 
trip demand has a rather reliable consistency under certain 
conditions (such as price rate and traffic condition). �is allows 
us to show the systemic status of the operation under constant 
price and traffic conditions. In this study, vehicle usage pricing 
is constant.

3.1.2. �e Perturbation of Urban Traffic does not Affect the Daily 
Operation of Car Sharing Operations. �ough the real-time 
traffic condition impacts the routing choices for vehicles en 
route, the drivers are aware of the traffic condition in which 
they are involved and make their trips. �erefore, the specific 
urban traffic condition can be disregarded.

3.1.3. Vehicles are Uninterruptedly Made Available to 
Users. With either gasoline- or electric-powered vehicles, we 
assume that car sharing companies have certain maintenance 
procedures that allow the vehicles to circulate efficiently and 
satisfy customer demand without interrupt. �erefore, the 
model does not incorporate the repair or the refueling (or 
charging) procedures.

3.2. Analysis of Vehicle Pick-Up and Drop-Off

3.2.1. Operator Perspective. �e operation of the car sharing 
station can be approached as discrete-time events [37]. Let � 
denote the time when an action (a vehicle pick-up or drop-off) 
at an arbitrary station in the system. Let (�휏, �휏 + 1) denote a time 
fraction, during which no action occurs between time � and 
�휏 + 1. �e number of vehicles at time fraction (�휏, �휏 + 1) in station 
� can be denoted as ��휏,�휏+1�푖 , where �푖 ∈ {1, . . . , �퐼} and � denotes the 
total number of stations in the system. And the number of 
vehicles in use at time fraction (�휏, �휏 + 1) can be denoted as 
��휏,�휏+1, where (�휏, �휏 + 1) represents the time fraction between two 
actions in the system within the time span (usually one day). 
We define virtual station �퐼 + 1 to include those vehicles that 
are in operation. Term ��휏,�휏+1 can be replaced by the number of 
vehicles in station �퐼 + 1 at time fraction (�휏, �휏 + 1)��휏,�휏+1�퐼+1 , which 
can be used for expressing the operation state of the whole 
system at time fraction (�휏, �휏 + 1) when combined with ��휏� ,�휏�+1�푖 .  
At time fraction (�휏, �휏 + 1), we have ∑�퐼+1

�푖=1 �푠�휏,�휏+1�푖 ≤ �퐶0 where �0 
denotes the total number of vehicles in the system. �us, the 
status of the system during time fraction (�휏, �휏 + 1) can be 
expressed as

where ��휏,�휏+1 denotes the operation status of the car sharing 
system at time fraction (�휏, �휏 + 1).

Notice that � indicates the time when an action occurs in 
the system, not a specific station at time �, we notice that the 
status of stations drives the operation status, and the number 

(1)�푆�휏,�휏+1 = {�푠�휏,�휏+11 , . . . , �푠�휏,�휏+1�퐼 , . . . , �푠�휏,�휏+1�퐼 , �푠�휏,�휏+1�퐼+1 },
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Define �푢�푡�푘 ,�푡�푘+1 = (�푧�푡�푘 ,�푡�푘+11 , . . . , �푧�푡�푘 ,�푡�푘+1�푖 , . . . , �푧�푡�푘 ,�푡�푘+1�퐼 , �푧�푡�푘 ,�푡�푘+1�퐼+1 )�耠 to show 
the deviation of vehicle distribution of all stations in the car 
sharing system during time slice (�푡�푗, �푡�푗+1). Define 
�푢�푖 = (�푧�푡1 ,�푡2�푖 , . . . , �푧�푡�푗 ,�푡�푗+1�푖 , . . . , �푧�푡�푛−1 ,�푡�푛�푖 ) to show the deviation of 
 vehicle distribution of different time slices at the station �. 
Define a matrix �푍 = (�푧�푡�푗 ,�푡�푗+1�푖 )(�퐼+1)×(�푛−1), where �푗 ∈ {1, . . . , �퐽}, and 
�푖 ∈ (1, . . . , �퐼, �퐼 + 1), to show the deviation created during 
 system operation. Let �푍 = (�푢�푡1 ,�푡2 , . . . , �푢�푡�푗 ,�푡�푗+1 , . . . , �푢�푡�푛−1 ,�푡�푛) =
(�푢1, . . . , �푢�푖, . . . , �푢�퐼, �푢�퐼+1)

�푇. Matrix �, therefore, represents the 
balances of the vehicles in the system over the concerned 
period, depending on the purpose of the study (usually being 
one operation day). For �푖 ∈ {1, . . . , �퐼, �퐼 + 1} and �푗 ∈ {1, . . . , �퐽}, 
the matrix can be written as

Based on matrix �, the following statistical terms can be 
calculated

Equation (9) gives the aggregated trip intentions of customers 
using the car sharing system during time slice (�푡�푗, �푡�푗+1); 
Equation (10) gives the aggregated trip intentions of customers 
using car sharing station � over the concerned period; Equation 
(11) gives the intention of customers using car sharing services 

(8)�푍 =
[[[[[[[[[
[

�푧�푡1 ,�푡21 . . . �푧�푡�푗 ,�푡�푗+11 . . . �푧�푡�퐽−1 ,�푡�퐽1
.
.
.

. . .
.
.
.

...
.
.
.

�푧�푡1 ,�푡2�푖 . . . �푧�푡�푗 ,�푡�푗+1�푖 . . . �푧�푡�퐽−1 ,�푡�퐽�푖
.
.
.

...
.
.
.

. . .
.
.
.�푧�푡1 ,�푡2�퐼�푧�푡1 ,�푡2�퐼+1

. . . �푧�푡�푗 ,�푡�푗+1�퐼
�푧�푡�푗 ,�푡�푗+1�퐼+1

. . . �푧�푡�퐽−1 ,�푡�퐽�퐼�푧�푡�퐽−1 ,�푡�퐽�퐼+1

]]]]]]]]]
]

.

(9)
�퐼�푡�푗 ,�푡�푗+1 =

�퐼
∑
�푖 = 1

(�푧�푡�푗 ,�푡�푗+1�푖 ),

(10)�퐼�푖 =
�퐽−1
∑
�푗 = 1

(�푧�푡�푗 ,�푡�푗+1�푖 ),

(11)�퐼 =
�퐼
∑
�푖 = 1

�퐽−1
∑
�푗 = 1

(�푧�푡�푗 ,�푡�푗+1�푖 ),

(12)�퐷�푡�푗 ,�푡�푗+1 =
∑�퐼

�푖 = 1[(�푧
�푡�푗 ,�푡�푗+1
�푖 )

2
]

�퐼 ,

(13)�퐷�푖 =
∑�퐽−1

�푗 = 1[(�푧
�푡�푗 ,�푡�푗+1
�푖 )

2
]

�퐽 − 1 ,

(14)�퐷�푖 =
∑�푛−1

�푗 = 1[(�푧
�푡�푗 ,�푡�푗+1
�푖 )

2
]

�푛 − 1 .

car sharing trips should assume such form as illustrated in 
Figure 2.

�e time and location of actual trips can be collected and 
analysed. Pick-up and drop-off information can be easily 
obtained from the system log, and they can be paired up with 
the number of e-cars used by the users. �us the operation 
status of the system relating to car sharing demand can be 
approached [38, 39].

Suppose that a vehicle was picked up from station � at time 
��, and dropped off at station � at ��. �e driving time �v for 
the vehicle can be given by

3.3. Spontaneous Deviation. Due to customer demands of 
diverse origin-and-destinations, the distribution of vehicles 
within car sharing stations spontaneously changes during 
operation of station-based car sharing systems. We define 
the result of vehicle pick-up and drop-off as spontaneous 
deviation, which can be regarded as the comprehensive 
indicator for system operation under the configurations 
of pricing, vehicle distribution, and demand distribution. 
Spontaneous redistribution of vehicles is most important 
managing subject for both free-floating and station-based 
car sharing as it impacts the service capacity of the system by 
lowering the access of vehicles for the users. �us, various sorts 
of business decisions concerning the relocation of car sharing 
resources revolve around it. We present a mathematical 
evaluation of spontaneous vehicle deviation in station-based 
car sharing system in this section.

�e cumulative result of car pick-ups and drop-offs in the 
station � during time slice (�푡�푗, �푡�푗+1) can be calculated by

(6)�푑v = �휏� − �휏�.

(7)�푧�푡�푗 ,�푡�푗+1�푖 = �퐴�푡�푗 ,�푡�푗+1
�푖 + �퐸�푡�푗 ,�푡�푗+1

�푖 .

By walk or bike

Pick-up
station

via Urban roads

Drop-o�
station

By walk or bike

DestinationOrigin

Figure 1: Basic process.
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Figure 2: A record of a successful car sharing trip.
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(1)  �푓� = 1 if the time is in the inactive period before the 
morning peak;

(2)  �푓� = 2 if the time is during morning peak;
(3)  �푓� = 3 if the time is between morning and evening 

peak;
(4)  �푓� = 4 if the time is during evening peak;
(5)  �푓� = 5 if the time is a�er the evening peak on the same 

day.

Let �� sign a day (day-of-week), and an arbitrary day can be 
classified as:

(1) �푦� = 1 if the day is a working day;
(2) �푦� = 0 if the day is a nonworking day.

4.1.3. Weather. Weather is also an important factor influ-
encing the utilization of car sharing services in choosing the 
desired means of transport. We use identical weekdays but 
the different weather to compare the two-day demands. As 
shown in Figure 3, the cloudy day (northwest wind, breeze) 
has a temperature of 23–26°C. Rainy day (southeast wind, 
level 1) has a temperature of 14–18°C. Heavy rains between 
6:30 and 11:30 resulted in significantly lower demand than 
cloudy days, while demand increased during the light rain. 
�erefore, the weather should be considered in affecting car 
sharing services. We consider main factors of weather, includ-
ing temperature (measured by °C), and wind speed (measured 
by kilometers per hour), visibility (measured by kilometers), 
and condition which includes sunny (1), cloudy (2), light rain 
(3), light snow (4), moderate snow (5), moderate rain (6), 
heavy rain (7), heavy snow (8), and snowstorm (9). In this 
paper, the temperature, wind speed, visibility and condition 
during the �-th time interval are respectively denoted as ���,  
���, �v�, and ���.

4.2. LSTM. �e long short-term memory artificial neural 
network (or LSTM) is a time recurrent neural network 
designed to solve long-term problems. All RNNs have a 
chained form of repetitive neural network modules. In a 
standard RNN, this repeated structural module has only a 
very simple structure, such as a tanh layer. LSTM introduces 

overnight; Equation (12) gives the deviation of customers’ 
intentions from ideal operation condition of the system during 
time slice (�푡�푗, �푡�푗+1), with vector ��푡�푗 ,�푡�푗+1 fully consisted of zeros 
as the ideal operation condition; Equation (13) gives the devi-
ation of customers’ intentions from ideal operation of car 
sharing station � over the concerned period, with vector �� fully 
consisted of zeros as the ideal operation condition; Equation 
(14) gives a rough estimation of the deviation of customers’ 
intentions from ideal operation, with matrix � fully consisted 
of zeros as the most ideal condition.

4. An LSTM Structure for Station-Based Car 
Sharing Demand Forecasting

Deep learning has been considered as a mature application 
technology in various fields for a long time, including traffic 
management and time series prediction. Long Short-Term 
Memory (LSTM) solves many time-series problems that can-
not be solved by a feedforward network using fixed-size time 
windows. �is section proposes a deep learning based on the 
LSTM structure for short-term prediction of time series 
requirements for a station-based car sharing system.

4.1. Temporal Features of Station-Based Car Sharing De-
mand. �e prediction of car sharing system is essentially a 
time series forecasting problem. However, the imbalanced 
distribution of vehicles and demands will have a large impact 
on its time and space evolution. So, it can be a multidimen-
sional space-time prediction problem. �erefore, we only 
consider the time series prediction problem in this paper. 
In the long-term research, it will still be a multidimensional 
space-time prediction problem. We define the time variables 
as follows:

4.1.1. Pick-up/drop-off. Real-time system forecasting is 
always difficult, but car sharing system analysis on a larger 
scale does not require real-time information, such as time 
fragments between pick-up/drop-off. To achieve the mana-
gerial purpose of the analysis prescribed previously in this 
article, numbers of vehicle pick-up ��푡�푗 ,�푡�푗+1

�푖  and drop-off ��푡�푗 ,�푡�푗+1
�푖  

are defined one of time variables.

4.1.2. Arbitrary time. Commuting and noncommuting var-
iants are incorporated to decipher the temporal features of 
station-based car sharing demands from operation data. Since 
car sharing is one of many business modes within the range of 
urban transport services, it is, therefore, subject to the urban 
traffic patterns. Morning and evening peaks, defined by urban 
traffic patterns, shape the urban traffic pattern on a normal 
working day in general. Trip attributes during workdays also 
significantly diverse, featuring mostly leisure activities and 
few commutes. And there are almost all leisure trips and no 
commutes during holidays. With that said, the trip pattern 
using car sharing services can be related to the urban traf-
fic patterns, though not necessarily identical, which requires 
exploration. Let �� sign the time during a day (time-of-day), 
and an arbitrary time can be divided based on two urban traffic 
peaks as ��:
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Figure 3:  Comparison of different weather conditions for two 
identical weekdays.



7Journal of Advanced Transportation

time step candidate memory cell, and controls the flow of 
information through the forget gate and the input gate (see 
Figure 4), using element multiplication (symbol as ⊙),

Controlling the flow of information from memory cells to 
hidden state ��푡 ∈ ��푛×ℎ through the output gate

�e tanh function ensures that the hidden state element value 
is between −1 and 1. When the output gate is approximately 
1, the memory cell information is passed to the hidden state 
for use by the output layer. When the output gate is approxi-
mately 0, the memory cell information is retained by itself. 
Figure 4 shows the calculation of the hidden state in LSTM.

4.3. Structure for Time-Series Terms. Arbitrary time (including 
time-of-day and day-of-week) and weather variables 
(temperature, wind speed, visibility, and weather condition) 
are the other two classes of time-series variables. And separate 
architectures will be used, where each variable corresponds to 
a set of independent stacked LSTM layers. �e stacked LSTM 
layers �� and �v are for number of vehicle pick-ups and drop-
offs. Two high-level components �̂�

�  and �̂�
� can be calculated 

and used for iteration in the above structure, respectively as

(19)�퐶�푡 = �퐹�푡 ⊙ �퐶�푡−1 + �퐼�푡 ⊙ �̂퐶�푡.

(20)�퐻� = �푂� ⊙ tanh(�퐶�).

(21)
(�퐴(�퐿�)

�푡−�퐾�+1, . . . , �퐴
(�퐿�)
�푡−1 ) = �퐹�퐿

�퐿�
. . . �퐹�퐿

1 (�푢�푡−�퐾v
, �푢�푡−�퐾v+1, . . . , �푢�푡−1),

(22)�̂푋�푎
�푡 = �퐹�푇(�퐹�푅(�휎(�휔�푎 ∗ �퐴(�퐿�)

�푡−1 + �푏�푎))),

(23)

(�퐸(�퐿v)
�푡−�퐾v+1, . . . , �퐸

(�퐿v)
�푡 ) = �퐹�퐿

�퐿v
. . . �퐹�퐿

1 (v�푡−�퐾v
, v�푡−�퐾v+1, . . . , v�푡−1),

three gates: input gate, forget gate, and output gate, as well as 
memory cells of the same shape as the hidden state, to record 
additional information. �e reset gate and the update gate 
in the same door empty cycle unit are the same. As shown 
in Figure 4, the input gate of LSTM is the current time step 
input X� and the previous time step hidden state ��푡−1, and the 
output is calculated by the fully connected layer of the Sigmoid 
function. As a result, the value of the three gate elements is 
[0, 1]. Specifically, assuming that the number of hidden cells 
is ℎ, the small-batch input X� ∈ ��×� (the number of samples 
is �, the number of inputs is �) and the previous time step 
hidden state ��푡−1 ∈ ��푛×ℎ is given for the time step �. �e input 
gate ��푡 ∈ ��푛×ℎ, the forgetting gate ��푡 ∈ ��푛×ℎ and the input gate 
��푡 ∈ ��푛×ℎ of the time step are calculated as follows:

LSTM needs to calculate a candidate memory cell �̂�, 
which is similar to the three gates, but the tanh function of the 
range [−1, 1] is used as the activation function. Specifically, 
the candidate memory cell �̂�푡 ∈ ��푛×ℎ of a time step � is calcu-
lated as

W�푥�푖,W�푥�푓,W�푥�표 ∈ �푅�푑×ℎ, Wℎ�푖,Wℎ�푓,Wℎ�표 ∈ �푅ℎ×ℎ, W�푥�푐 ∈ ��푑×ℎ, and 
Wℎ�푐 ∈ �ℎ×ℎ are the weighted parameter matrices, while 
�푏�푖, �푏�푓, �푏�표 ∈ �푅1×ℎ, and ��푐 ∈ �1×ℎ are the intercept parameters.

�e calculation of the current time step memory cell �� 
combines the information of the last time step and the current 

(15)�퐼�푡 = �휎(X�푡W�푥�푖 +�퐻�푡−1Wℎ�푖 + �푏�푖),

(16)�퐹�푡 = �휎(X�푡W�푥�푓 +�퐻�푡−1Wℎ�푓 + �푏�푓),

(17)�푂�푡 = �휎(X�푡W�푥�표 +�퐻�푡−1Wℎ�표 + �푏�표).

(18)�̂퐶�푡 = tanh(X�푡W�푥�푐 +�퐻�푡−1Wℎ�푐 + �푏�푐),
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where �퐴(��)
�−� (�푘 = 1, 2, . . . , �퐾�) and �퐸(�v)

�−v (�푘 = 1, 2, . . . , �퐾v) are 
the output hidden tensors in the highest-level layers of the 
architectures of vehicle pick-ups and drop-offs, respectively. 
�� and �� are the look-back time windows. �� and �� are the 
weights, while �� and �v are the intercept parameters.

Out of respect for the influence of time and weather var-
iables on demands, we define vectors �푚� = (�푓�, �푦�) and 
�푛� = (�푛�푡�, �푛�푤�, �푛v�, �푛�푐�), where �푠 = 1, 2, . . . , �푡, and feed them 
into the stacked LSTM architecture, producing the two high-
level components �̂�

�  and 

where �푝(��)
�−� (�푘 = 1, 2, . . . , �퐾�) and �푞(��)

�−� (�푘 = 1, 2, . . . , �퐾�) are 
the output hidden tensors in the highest LSTM layers �� and 
��. �� and �� are the look-back time windows of time and 
weather variable, respectively, while �� and �� are the number 
of designed LSTM layers for time and weather variable. �� and 
�� are the weights, while �� and �� are the intercept 
parameters.

4.4. Fusion. Considering incorporation of the diverse 
influences of high-level components, Hadamard product “∘” 
will be employed to yield these components by multiplication 
with their respective parameter matrices ��, ��, ��, and ��,  
which is given by:

Minimize the gap between the forecasted and the real-world 
demand, given by the squared difference of them, to learn the 
weighted and intercept parameters, during the training pro-
cess. And to avoid overfitting, an L2-norm regularization term 
is included. And the objective function can be given by

where �̂� expresses the real demand intensity, � is the regu-
larization parameter set to balance the bias-variance trade-off, 
and � presents all the weighted parameters in ��.  
�e training of the LSTM can be illustrated in Algorithm 1.

(24)�̂푋�
� = �퐹�(�퐹�(�휎(�휔� ∗ �퐸(�v)

� + �푏�))),

(25)

(�푝(�퐿�)
�푡−�퐾�+1, . . . , �푝

(�퐿�)
�푡 ) = �퐹�퐿

�퐿�
. . . �퐹�퐿

1 (�푚�푡−�퐾�+1, . . . , �푚�푡−1, �푚�푡),

(26)�̂푋�푝
�푡 = �퐹�푇(�퐹�푅(�휎(�휔�푝 ∗ �푝(�퐿�)

�푡−1 + �푏�푝))),

(27)
(�푞(�퐿�)

�푡−�퐾�+1, . . . , �푞
(�퐿�)
�푡−1 ) = �퐹�퐿

�퐿�
. . . �퐹�퐿

1 (�푛�푡−�퐾�
, �푛�푡−�퐾�+1, . . . , �푛�푡−1),

(28)�̂푋�푞
�푡 = �퐹�푇(�퐹�푅(�휎(�휔�푞 ∗ �푞(�퐿�)

�푡−1 + �푏�푞))),

(29)�̂푋� = �푊� ∘ �̂푋�
� +�푊� ∘ �̂푋�

� +�푊� ∘ �̂푋
�
� +�푊� ∘ �̂푋

�
� .

(30)min�푤,�푏
�儩�儩�儩�儩�儩�푋�푡 − �̂푋�푡

�儩�儩�儩�儩�儩
2
2 + �훼‖�푊‖22,

Input  Record on number of pick-ups {�푢1, . . . , �푢�푖, . . . , �푢�푛} 
in training dataset

          Record on number of drop-offs {v1, . . . , v�푖, . . . , v�푛} 
in training dataset

         Record on time-of-day {�푓1, . . . , �푓�푖, . . . , �푓�푛}
         Record on day of week {�푦1, . . . , �푦�푖, . . . , �푦�푛} in train-

ing dataset
         Record on number of weather variables 

{�푛�푡1, . . . , �푛�푡�푖, . . . , �푛�푡�푛}, {�푛�푤1, . . . , �푛�푤�푖, . . . , �푛�푤�푛},  
{�푛v1, . . . , �푛v�푖, . . . , �푛v�푛}, {�푛�푐1, . . . , �푛�푐�푖, . . . , �푛�푐�푛}

        Look-back windows ��, ��, �� and ��
Output LSTM with learnt parameters
1: Procedure LSTM training
2:      initialize a null set: � ← Ø

3:      for all defined time slice � do
4:    �휋�푎

�푡 ← [�푢�푡−�퐾�
, �푢�푡−�퐾�+1, . . . , �푢�푡−1]

5:    �휋�푒
�푡 ← [v�푡−�퐾�

, v�푡−�퐾�+1, . . . , v�푡−1]
6:     �휋�푚

�푡 ← [�푚�푡−�퐾�
, . . . , �푚�푡−1, �푚�푡], where �푚� = (�푓�, �푦�)

7:      �휋�푛
�푡 ← [�푛�푡−�퐾�

, . . . , �푛�푡−1, �푛�푡], where �푛� = (�푛�푡�, �푛�푤�, �푛v�, �푛�푐�)⊳ , 
where ��

� , ��
�, �

�
� , ��

�  are the sets of different categories 
of explanatory variables in one observation

8:    A training observation (�휋�
� , �휋�

� , �휋
�
� , �휋�

� , �퐴 �) is put 
into �

9:    A training observation (�휋�
� , �휋�

� , �휋
�
� , �휋�

� , �퐸�) is put 
into �

10: end for
11:  initialize all the weighted and intercept parameters
12:  repeat
13:     randomly extract a batch of samples �� from �
14:   estimate the parameters by the minimization of the 

objective function shown in Equation (30) within 
��

15:  until convergence criterion met
16:  end procedure

5. An Experimental Case. �is paper uses the data from two 
major station-based car sharing operators in Chengdu, � 
and �, for instance verification. Both focus on the mobile 
platforms. � features 24 h user self-service vehicle sharing 
service. It mainly provides long- and short-term new energy 
vehicle rental services to group users (B2B, B2B2C) and 
private users (B2C). � is a new energy car sharing project that 
provides users with convenient, green, intelligent, economic, 
and fashionable means of urban transport.

5.1. Operation Background. �e operating stations of both 
systems are marked on the map of Chengdu, as in Figure 5. 
�e red triangles mark the stations in the car sharing system 
�, while the yellow filled circles mark the stations in the 
system �. �e car sharing stations of system � is dispersedly 
distributed and covers the city, while the stations of � are 

Algorithm 1
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Suppose fitting function �푓 : ℤ+ → ℝ+ exists, and its associated 
domain can be included in the managerial regulations. We 
exclude the scenario when �푑v = 0 which denotes immediate 
pick-up and drop-off, and thus the domain of the fitting func-
tion is �푑v > 0. �e codomain of the function can be deemed the 
ratio of demands �(�v) whose average driving time is �v within 
�-granularity and the total demands �, namely �푐(�푑v)/�퐶.

We exclude the driving time longer than 1600 min based 
on our review of operation data. Both the attractiveness of car 
sharing service from � and � can be fitted as a kernel density 
function using MATLAB, as shown in Figure 8.

As can be seen from the fitting curve, the vehicle uses of 
� are almost 0 when the driving time exceeds 850 min, and 
the uses between 850 and 1600 are rather scarce. �e vehicle 
uses of � becomes 0 at around 1500 min of driving time. And 
the vehicle uses of � are not so concentrated during certain 
sections in comparison to that of �. �e service of � is con-
siderably more attractive than that of � when the driving time 
is between 25 min and 125 min. In the meantime, the service 
of � is more attractive than � when driving time exceeds 125, 
which could be the result of pricing strategy that service pro-
vider � charges considerably less a�er a certain time of usage.

5.2. Data Preparation. Considering the general traffic 
condition and the average hourly demands on system �, the 
time periods during a day are defined as:

mainly located in the central zone of the city and area around 
Dujiangyan in the northwest outskirt of Chengdu.

As shown in Figures 6 and 7, the average hourly demands 
reflect the size of their business operations, where the hourly 
average demands on system � are smaller than that on �. Do 
notice that the scales on the horizontal axes of the charts are 
different. �e demand patterns during weekday and weekend 
are the same for system �, and so is true for system �. �e 
hourly characteristics of the two systems can be easily differ-
entiated. �e first two peaks at around 10 am, and 5 pm on 
the poly-line of system � adhere to the traffic characteristics 
during the day, followed by leisure activities a�er work. 
However, the average hourly demands on system � cannot be 
easily concluded in a pattern, which is likely the result of its 
pricing strategy as the fourth peak of system �.

We intend to present the attractiveness of the service in 
different driving times in the car sharing market. �e attrac-
tiveness reflects the market’s reaction towards certain strate-
gies of the service providers, such as price rate per time used 
and other promotions. Note that driving time represents the 
utilization of operating vehicles to fulfil the intended transport 
demand of the customers [38, 39]. �us, it is possible to asso-
ciate the driving time during a vehicle usage with usages to 
show the attractiveness of car sharing service over different 
driving times.

We deem the driving times whose differences from their 
average smaller than �-granularity be no different. In an urban 
traffic environment, the value of � between two exact same 
stations is dependent on the traffic condition when the vehicle 
is used, given no significant differences between routing. �en, 
we have the set of driving times whose deviations are no larger 
than � and express it as

where �v signs the average number of vehicles whose driving 
times are within (�푑v − �훿, �푑v + �훿). And the number of e-cars 
whose driving times are �v at �-granularity can be calculated 
by

(31)�푆(�푑v , �훿) = {�푑v},

(32)�푐(�푑v) = ∑
�푑v∈�푆(�푑v ,�훿)

�儨�儨�儨�儨�儨�儨�儨�儨�儨
�푑v

�푑v

�儨�儨�儨�儨�儨�儨�儨�儨�儨
.

Figure 5: Car sharing station distribution for � & �.
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Figure 6: Hourly demand for �.
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Figure 7: Hourly demand for �.
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predicted term is vehicle usages at all car sharing stations on 
a natural day.

In LSTM, we include three variants of our model with a 
different number of layers. �e model utilizes historical data: 
numbers of vehicle pick-up/drop-off, arbitrary time, and 
weather variables, to predict future vehicle pick-ups and drop-
offs. �e structuring of LSTM is introduced in Section 4.2.

We evaluate the model by three effectiveness measures 
(root mean squared error (RMSE), coefficient of determina-
tion �2, mean absolute error (MAE)) to measure the total 
prediction accuracy/degree fitting in the whole test data [32]. 
Table 1 shows that our proposed model is statistically signifi-
cant in all three effectiveness measures. It can be found that 
the proposed LSTM is superior to the benchmarks in the 
measurement of predicting performance. LSTM achieves the 
best predictive performance measured by RMSE (0.0298), 
which is 6.5% lower than CNN (0.0319). In car sharing system, 
CNN captures spatial correlation and is superior to ANN, 
which only considers temporal features. It is indispensable to 
include spatial correlation for predicting station-based car 
sharing demands.

Figure 11 presents the heat maps showing the basic con-
dition of vehicle distribution during respective periods, where 
deeper color denotes larger demand intensity. �e scattered 
utilization of shared vehicles during morning commuting 
peaks and the correspondingly concentrated utilization during 
evening commuting peaks demonstrated on the predicted 
results coincides with urban traffic conditions. In the mean-
time, vehicle usages in noncommuting periods are mainly 
distributed in the city center and tourist sites. It is proven to 
be true that different urban traffic patterns will lead to different 
distribution characteristics of station-based car sharing 
system.

According to the output of LSTM, we obtained a one-day 
predicted OD data of � and � with 4989 records in total, and 
the data catalogue is shown in Table 2.

In the above 16 three-dimensional maps, red represents  
�, and blue represents �. �e columnar height of the site 
represents the strength of the demand. Figure 12 is a screenshot 
of the pick-up. From an overview, we find that the demands 
for car sharing service in Chengdu are remarkably consistent 
with the trip habits of Chengdu residents. As Chengdu is 

(1) inactive period: 00:00–07:00;
(2) morning peak: 07:00–09:00;
(3) between morning and evening peak: 09:00–17:00;
(4) evening peak: 17:00–20:00;
(5) a�er evening peak: 20:00–24:00.

�e relative frequency of vehicle utilization is immediately 
related to the attractiveness of car sharing to its consumers. 
�e utilization of car sharing services from both companies 
share a consensus that most consumers are prone to using the 
service if the destination can be reached within 30–90 min of 
driving. �is is especially so for � company, whose relative 
frequency of demand within 30–90 is only slightly less than 
half of the total trips using its service (see Figure 9). Besides, 
there are noteworthy differences between � and � in terms of 
average driving time as well as average driving distance. �e 
average driving time of � is 166 min, while that of � is 267 min, 
slightly less than that of �.

Main users use the scar sharing service of � within the 
driving distance of � from 5 km to 20 km, while most driving 
distances of � range from 2 km to 15 km (see Figure 10). �e 
average driving distance of trips from system � is 11.39 km, 
while that from � is 6.85 km, which is slightly less than that 
of �.

5.3. Demand Prediction. �e interval of a dataset for temporal 
series variables is set to be one hour. We recognize that a single 
trip demand on the car sharing system originates from one of 
its stations. We visualize the data for prediction in such form: 
pick-up is represented in red pillars and drop-off in blue, and 
their heights are proportionate to the numbers of pick-ups 
(drop-offs). �e LSTM is trained on the training dataset and 
validated on the test dataset, respectively. In the same vein, the 
LSTM network is only fed with the historical demand dataset.

We use LSTM as the unconditional short-term prediction 
model, which includes all the variables, number of vehicles at 
the station, usage distribution, time of day, and day of week. 
�e lookback time window is set to be �퐾 = 4. And the 
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Figure 8: Kernel function fitting curve for � & �.

Table 1: Performance comparison of different approaches.

Model RMSE �2 MAE
ANN 0.0375 0.812 0.0205
CNN 0.0319 0.803 0.0189
LSTM 0.0298 0.794 0.0182

Table 2: GPS data catalogue.

Data types Data content
Routine Pick-up time
Routine Drop-off time
Longitude and latitude Car starting coordinates
Longitude and latitude Car destination coordinates
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the morning peak period, the demands for car sharing service 
in the entire system may not be high due to traffic jams in the 
metropolis. At noon, the demands are transferred to the most 

economically developing its southern region, as well as 
commerce agglomerating there, the demands in the inactive 
period are significantly higher than in other regions. During 
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Figure 9: Driving time distribution.
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Figure 10: Driving distance distribution.
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Figure 11: Real demand distribution on the map during different time periods. (a) 00:00–07:00. (b) 07:00–09:00. (c) 09:00–12:00. (d) 12:00–
14:00. (e) 14:00–17:00. (f) 17:00–19:00. (g) 19:00–22:00. (h) 22:00–24:00.
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calculated, as well as the indicators for showing the operating 
condition of the car sharing system. For normal operation of 
the car sharing system without vehicle malfunctioning, the 
vehicle leased out of the system should always return to the 
same system, meaning

where (�푡�푗, �푡�푗+1) covers one-day operation. However, it is not 
always so in one day’s operation. Some users may prefer to use 
car sharing services overnight, which may cause a deviation 
between pick-up and drop-off within one day.

�e overall deviations, from the perfect condition of oper-
ation, of company � and � are calculated as �퐼� = −13, and 
�퐼� = 47. �e operational interpretation of �� being negative 
means that up to the end of the predicted operation day, more 
vehicles were borrowed than returned. And the operational 
interpretation of �� being positive 47 means that up to the end 
of the predicted operation day, more vehicles were returned 
than borrowed, compared with ��. And it can be predicted 
based on Equation (33) that negative and positive values 
should alternately appear, when predicting more than one day 
of operation.

Concerning the operational status of the two companies, 
their standardized variances of deviation are calculated as 
�퐷� = 0.671, and �퐷� = 2.005. It can be easily interpreted that 
the performance on resource distribution and management 
of service provider � is better than that of provider � since 
they are the accumulated value of the deviations in system 

(33)∑
�푖
∑
�푗
�푧�푡�푗 ,�푡�푗+1�푖 = 0,

CBDs in Chengdu. �e demands during the a�ernoon and 
the evening peak is not that high. But what's interesting is that 
Chengdu, as an attractive tourist city, generates the highest 
demands during the day. A�er the evening peak, the demand 
is less balanced than between morning and evening peak due 
to the regulation placed on driving. Predicted results 
demonstrate that the utilization of deep learning forecasting 
techniques based on given initial resource distribution as well 
as visualization can help car sharing operators and government 
to detect changes of demand distribution, based on which a 
more well-based adjusting strategy can be designed to avoid 
these imbalanced conditions. As far as the two companies are 
concerned, the number of vehicles and site settings invested 
by � is much higher than that of �. �erefore, from this 
visualization, it is not possible to determine which operator’s 
operating mode is better.

Figure 13 is a three-dimensional visual view of drop-off. 
�e situation shown in the figure is just the opposite of the 
pick-up. From morning to a�ernoon, the distribution and 
intensity of drop-off have been stabilizing. A�er 5 pm, the 
drop-off intensity in the city center suddenly increased sharply 
and continued until the end of the evening. �e visualization 
results in Figures 12 and 13 tell us that the OD data learned 
by the LSTM structure is in line with the situation in Chengdu, 
which can bring the most reliable guarantee for the manage-
ment research of further car sharing systems.

5.4. Analysis of Predicted Results: Spontaneous Deviation. Using 
the predicted data, the matrix demonstrating the spontaneous 
deviations that the operation imposes on the system can be 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 12: Predicted pick-up demand distribution on map during different time periods. (a) 00:00–07:00. (b) 07:00–09:00. (c) 09:00–12:00. 
(d) 12:00–14:00. (e) 14:00–17:00. (f) 17:00–19:00. (g) 19:00–22:00. (h) 22:00–24:00.
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6. Conclusion

Car sharing service is easy and efficient to use due to a pre-ver-
ification process, while electricity-powered vehicles are com-
monly regarded environment-friendly. It makes electric car 
sharing especially appealing to large cities, such as Chengdu, 
that must process transport demands efficiently with relatively 
environment-friendly means of transport. Even though the 
concept of car sharing is no longer new, there still lacks a gen-
eral understanding of the emerging features of its operation, 
such as the spontaneous deviating process caused by vehicle 

management from real market demands. Based on Figure 14, 
a noticeable difference can already be told from the hourly 
performance of the whole system. Even though the deviation 
of system � in 20:00-21:00 is quite large, but not as that of �.  
Deviations of system � in 03:00-04:00 and 04:00-05:00 are 
both above 90, while others in the meantime are greater than 
that of system �. �e station-wise daily deviations of � are 
distinguishably better gentle than that of � based on 
Figure 15, not to mention that provider � has more than twice 
stations than �. In a nutshell, the operating condition of � 
car sharing system is more favourable than that of �.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 13: Predicted drop-off demand distribution on map during different time periods. (a) 00:00–07:00. (b) 07:00–09:00. (c) 09:00–12:00. 
(d) 12:00–14:00. (e) 14:00–17:00. (f) 17:00–19:00. (g) 19:00–22:00. (h) 22:00–24:00.
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Figure 14: �e hourly deviation of system � & �.
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